Dynamics of Magnetization in Multilayer TbCo / FeCo Structures under the Influence of Femtosecond Optical Excitation
https://doi.org/10.32362/2500-316X-2019-7-3-50-58
Abstract
The need to study ultrafast processes in magnetism is due to the prospects for creating ultrafast magnetic recording and ultrafast spintronic devices. In order to excite the magnetic subsystem femtosecond optical pulses are used. The excitement is manifested as in spin precession. In metals, the material is heated first due to significant optical absorption, and significant Joule losses occur. The most important task is to search for materials in which spin processes are excited without heating. Obvious candidates are weakly absorbing materials, such as ferrite garnets. However, the range of such materials and the range of their functionality are limited.The purpose of this work is to study the dynamics of systems with nonthermal mechanisms of spin precession excitation. Such excitation is possible in ferromagnetic / antiferromagnetic heterostructures with exchange interaction, provided that the recombination time of photocarriers is shorter than the time of heat diffusion. Multilayer TbCo / FeCo structures of the near IR range were investigated for a femtosecond optical pulse. The spin dynamics are compared with the direction of the wave vector of the exciting pulse along and perpendicular to the axis of easy magnetization of the structures (“easy axis” and “hard axis” geometry, respectively). It is shown that in case of “easy axis” geometry the determinative mechanism is the thermal interaction. When the system is exposed to an excitation pulse, this mechanism leads to a decrease in the projection of magnetization on the direction of propagation of the test beam. In case of “hard axis” geometry, the magnetization turns to the magnetic field at the initial stage. Then it precesses and relaxes to an equilibrium angular orientation. Such dynamics indicate a rapid recovery of the uniaxial anisotropy field after laser irradiation. The presented results demonstrate an ultrafast change in the magnetic anisotropy induced during the fabrication of the heterostructure under study, which may be of interest for optical control of the orientation of the magnetization.
About the Authors
N. A. IlyinRussian Federation
Ph.D. (Physics and Mathematics), Researcher of the Laboratory of Femtosecond Optics for Nanotechnologies
78, Vernadskogo pr., Moscow 119454, Russia
Author ID: 18037137700
A. A. Klimov
Russian Federation
Ph.D. (Physics and Mathematics), Docent, Associate Professor of the Chair of Information Systems, Institute of Cybernetics
78, Vernadskogo pr., Moscow 119454, Russia
Author ID: 35391085300
N. Tiercelin
France
Charge de Recherche CNRS-HDR
UMR 8520 – IEMN, 59651 Villeneuve d’Ascq, France
Author ID: 6603515103
P. Pernod
France
CNRS-HDR
UMR 8520 – IEMN, 59651 Villeneuve d’Ascq, France
Author ID: 7003429648
E. D. Mishina
Russian Federation
D.Sc. (Physics and Mathematics), Professor, Head of the Laboratory of Femtosecond Optics for Nanotechnologies
78, Vernadskogo pr., Moscow 119454, Russia
Author ID:7005350309
M. S. Gaponov
Russian Federation
Postgraduate Student of the Chair of Nanoelectronics, Institute of Physics and Technology
78, Vernadskogo pr., Moscow 119454, Russia
K. A. Brekhov
Russian Federation
Junior Researcher of the Laboratory of Femtosecond Optics for Nanotechnologies
78, Vernadskogo pr., Moscow 119454, Russia
Author ID: 55452447100
A. S. Sigov
Russian Federation
Academician, D.Sc. (Physics and Mathematics), Professor, Head of the Chair of Nanoelectronics, Institute of Physics and Technology
78, Vernadskogo pr., Moscow 119454, Russia
Author ID: 35557510600
V. L. Preobrazhensky
Russian Federation
D.Sc. (Physics and Mathematics), Chief Researcher
38, Vavilova st., Moscow 119991, Russia
Author ID: 7004493603
References
1. Sander D., Valenzuela S.O., Makarov D., Marrows C.H., Fullerton E.E., Fischer P., McCord J., Vavassori P., Mangin S., Pirro P., Hillebrands B., Kent A.D., Jungwirth T., Gutfleisch O., Kim C.G., Berger A. The 2017 Magnetism Roadmap. J. Phys. D. Appl. Phys. 2017; 50(36): 363001 (33 рр.).
2. Beaurepaire E., Merle J.-C., Daunois A., Bigot J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996; 76(22):4250-4253. DOI: https://doi.org/10.1103/PhysRevLett.76.4250
3. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010; 82(3): 2731-2784. DOI: https://doi.org/10.1103/RevModPhys.82.2731
4. Stupakiewicz A., Szerenos K., Afanasiev D., Kirilyuk A., Kimel A.V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature. 2017; 542(7639): 71-74.
5. Kimel A.V., Kirilyuk A., Tsvetkov A., Pisarev R.V., Rasing T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature. 2004; 429(6994):850-853. DOI: 10.1038/nature 02659.
6. Kimel A.V., Kirilyuk A., Usachev P.A., Pisarev R.V., Balbashov A.M., Rasing T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature. 2005; 435(7042):655-657. DOI: 10.1038/nature 03564.
7. Ma X., Fang F., Li Q., Zhu J., Yang Y., Wu Y.Z., Zhao H.B., Lüpke G. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes. Nat. Commun. 2015; 6(1):8800. DOI: 10.1038/ncomms9800.
8. Klimov A., Tiercelin N., Preobrazhensky V., Pernod P. Inhomogeneous spin reorientation transition (SRT) in giant magnetostrictive TbCo2/FeCo multilayers. INTERMAG 2006 – IEEE International Magnetics Conference. 2006; 452-452. https://doi.org/10.1109/INTMAG.2006.376176
9. Koopmans B., Malinowski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Materials. 2009; 9(3):259-265. DOI: 10.1038/NMAT2593
10. He P., Ma X., Zhang J.W., Zhao H.B., Lüpke G., Shi Z., Zhou S.M. Quadratic scaling of intrinsic gilbert damping with spin-orbital coupling in FePdPt films: Experiments and Ab Initio calculations. Phys. Rev. Lett. 2013; 110(7):077203-5. DOI: 10.1103/PhysRevLett.110.077203
Supplementary files
|
1. Fig.1. Scheme of the experiment: a – top view, b – side view. Numbers indicate two geometries of the experiment: 1) "easy axis" (lies in the plane of incidence; 2) "difficult axis" (perpendicular to the plane of incidence). | |
Subject | ||
Type | Research Instrument | |
View
(35KB)
|
Indexing metadata ▾ |
Review
For citations:
Ilyin N.A., Klimov A.A., Tiercelin N., Pernod P., Mishina E.D., Gaponov M.S., Brekhov K.A., Sigov A.S., Preobrazhensky V.L. Dynamics of Magnetization in Multilayer TbCo / FeCo Structures under the Influence of Femtosecond Optical Excitation. Russian Technological Journal. 2019;7(3):50-58. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-3-50-58