QUANTUM INFORMATICS: OVERVIEW OF THE MAIN ACHIEVEMENTS
https://doi.org/10.32362/2500-316X-2019-7-1-5-37
Abstract
About the Authors
A. SigovRussian Federation
E. Andrianova
Russian Federation
D. Zhukov
Russian Federation
S. Zykov
Russian Federation
I. E. Tarasov
Russian Federation
References
1. The report of the Digital McKinsey expert group “Digital Russia: a new reality”. 2017. 122 p. URL: http://www.mckinsey.com/global-locations/europe-andmiddleeast/russia/ru/ourwork/mckinsey-digital (Access date 01/15/2019). (in Russ.)
2. The program “Digital economy of the Russian Federation”, approved by Decree No. 1632-p of the Government of the Russian Federation of July 28, 2017. (in Russ.)
3. The program “On the strategy for the information society development in the Russian Federation for 2017-2030”, approved by the Decree of the President of the Russian Federation dated May 9, 2017. No. 203. (in Russ.)
4. Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A., Smelyanskiy V., Martinis J. Commercialize quantum technologies in five years. Nature. 2017; 543(7644): 171-174. DOI: 10.1038/543171a
5. Grenshtein S. A new study by the Association of the semiconductor industry: "After 5 years, Moore's law will cease to operate". URL: https://habr.com/post/307158/ (Access date 01/15/2019) (in Russ.)
6. Levchaev P.A. The digital economy as the future of our lives. Russian Journal of Management. 2017; 5(4): 515-523. URL: https://doi.org/10.29039/article_5a5df35550f2d6.65514969
7. Karasev S. Head of Intel: On relations with Apple, Moore's law, new devices and materials. Electronic media "3DNews". URL: https://3dnews.ru/about (Access date 01/15/2019). (in Russ.)
8. Humble T. Consumer applications of quantum computing: A promising approach for secure computation, trusted data storage, and efficient applications. IEEE Consumer Electronics Magazine. 2018; 7(6): 8-14. DOI: 10.1109/MCE.2017.2755298
9. Kulik S.D., Berkov A.V., Yakovlev V.P. Introduction to the theory of quantum computation (methods of quantum mechanics in cybernetics): in 2 books. Book 1. Moscow: MEPhI Publ., 2008. 212 p. (in Russ.)
10. Quantum computing for the curious. URL: https://cloudcoin.ru/quantum-computing (Access date 01/15/2019). (in Russ.)
11. Quantum computer and quantum communication. URL: http://www.tadviser.ru/index.php (Access date 01/15/2019). (in Russ.)
12. Foundation for Advanced Studies. URL: https://fpi.gov.ru/press/media/jekspert_mnogokubitniy_kvantoviy_kompyyuter_mozhno_sozdaty_v_rossii_za_god (Access date 01/15/2019). (in Russ.)
13. Debnath S., Linke N.M., Figgatt C., Landsman K.A., Wright K., Monroe C. Demonstration of a small programmable quantum computer with atomic qubits. Nature. 2016; 536(7614): 63-66. DOI: 10.1038/nature18648
14. Linke N.M., Maslov D., Roetteler M., Debnath S., Figgatt C., Landsman K.A., Wright K., Monroe C. Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. U.S.A. 2017; 114(13): 3305-3310. DOI: 10.1073/pnas.1618020114
15. Britt K.A., Humble T.S. High-performance computing with quantum processing units. ACM Journal on Emerging Technologies in Computing Systems. 2017; 13(3): Article No. 39. DOI: 10.1145/3007651
16. Sapaev D., Bulychkov D. Quantum computing versus classical: Why do we need so many digits. URL: https://habr.com/company/sberbank/blog/343308/ (Access date 01/15/2019). (in Russ.)
17. Sapaev D., Bulychkov D. Quantum calculations: Annealing with switches and other fun. URL: https://habr.com/company/sberbank/blog/344830/ (Access date 01/15/2019) (in Russ.)
18. List of quantum algorithms. URL: https://math.nist.gov/quantum/zoo/ (Access date 01/15/2019). (in Russ.)
19. Dumas J.P., Soni K., Rasool A. An introduction to quantum search algorithm and its implementation. In: Balas V., Sharma N., Chakrabarti A. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing. 2019; 808: 19-31. Springer, Singapore. DOI: 10.1007/978-981-13-1402-5_2
20. Wang G. Quantum algorithm for linear regression. Phys. Rev. A. 2017; 96(1): Article No. 012335. DOI: 10.1103/PhysRevA.96.012335
21. Kliuchnikov V., Maslov D., Mosca M. Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Trans. Comp. 2016; 65(1): 161-172. Article No. 7056491. DOI: 10.1109/TC.2015.2409842
22. Selinger P. Efficient Clifford+T approximation of single-qubit operators. Quantum Information and Computation. 2014; 15(1-2): 159-180.
23. Bocharov,A., Roetteler M., Svore K.M. Efficient synthesis of probabilistic quantum circuits with fallback. Phys. Rev. A. Atomic, Molecular, and Optical Physics. 2015; 91(5): Article No. 052317. DOI: 10.1103/PhysRevA.91.052317
24. Palsson M.S., Gu, M., Ho J., Wiseman H.M., Pryde G.J. Experimentally modeling stochastic processes with less memory by the use of a quantum processor. Science Advances. 2017; 3(2): Article No. e1601302. DOI: 10.1126/sciadv.1601302
25. Stolyarov A. Quantum computing and smart spaces can change the storage market. URL: http://safe.cnews.ru/news/top/2018-11-14_kvantovye_vychisleniya_i_umnye_prostranstva_mogut (Access date 01/15/2019). (in Russ.)
26. Fitzsimons J.F., Kashefi E. Unconditionally verifiable blind quantum computation. Phys. Rev. A. 2017; 96(1): Article No. 012303. DOI: 10.1103/PhysRevA.96.012303
27. Roetteler M., Svore K.M. Quantum computing: Codebreaking and beyond. IEEE Security and Privacy. 2018; 16(5): 22-36. Article No. 8490171. DOI: 10.1109/MSP.2018.3761710
28. Pirandola S., Ottaviani C., Spedalieri G., Weedbrook C., Braunstein S.L, Lloyd S., Gehring T., Jacobsen C.S., Andersen U.L. High-rate measurement-device-independent quantum cryptography. Nature Photonics. 2015; 9(6): 397-402. DOI: 10.1038/nphoton.2015.83
29. Grassl M., Langenberg B., Roetteler M., Steinwandt R. Applying Grover’s algorithm to AES: Quantum resource estimates. Lecture Notes in Computer Science. 2016; 9606: 29-43. 7th Int. Workshop on Post-Quantum Cryptography, PQ Crypto 2016; Fukuoka; Japan; February 24-26, 2016; code 164489. DOI: 10.1007/978-3-319-29360-8_3
30. Roetteler M., Steinwandt R. A note on quantum related-key attacks. Information Processing Lett. 2015; 115(1): 40-44. DOI: 10.1016/j.ipl.2014.08.009
31. Walenta N., Burg, A., Caselunghe D., Constantin J., Gisin N., Guinnard O., Houlmann R., Junod, P., Korzh B., Kulesz, N., Legré M., Lim C.W., Lunghi T., Monat L., Portmann C., Soucarros M., Thew R.T., Trinkler P., Trolliet G., Vannel F., Zbinden H. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New Journal of Physics. 2014; 16: Article No. 013047. DOI: 10.1088/1367-2630/16/1/013047
32. Shibata H., Honjo T., Shimizu K. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors. Optics Lett. 2014; 39(17): 5078-5081. DOI: 10.1364/OL.39.005078
33. Xu F., Xu H., Lo H.-K. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A. Atomic, Molecular, and Optical Physics. 2014; 89(5): Article No. 052333. DOI: 10.1103/PhysRevA.89.052333
34. Curty M., Xu F., Cui W., Lim C.C.W., Tamaki K., Lo H.-K. Finite-key analysis for measurement-device-independent quantum key distribution. Nature Commun. 2014; 5: Article No. 3732. DOI: 10.1038/ncomms4732
35. Tang Z., Liao Z., Xu F., Qi B., Qian L., Lo H.-K. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2014; 112(19): Article No. 190503. DOI: 10.1103/PhysRevLett.112.190503
36. Yu Z.-W., Zhou Y.-H., Wang X.-B. Statistical fluctuation analysis for measurementdevice-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A. Atomic, Molecular, and Optical Physics. 2015; 91(3): Article No. 032318. DOI: 10.1103/ PhysRevA.91.032318
37. Wang C., Song X.-T., Yin Z.-Q., Wang S., Chen W., Zhang C.-M., Guo G.-C., Han Z.-F. Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2015; 115(16): Article No. 160502. DOI: 10.1103/PhysRevLett.115.160502
38. Comandar L.C., Lucamarini M., Fröhlich B., Dynes J.F., Sharpe A.W., Tam S.W.-B., Yuan Z.L., Penty R.V., Shields A.J. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nature Photonics. 2016; 10(5): 312-315. DOI: 10.1038/ nphoton.2016.50
39. Yin H.-L., Chen T.-Y., Yu Z.-W., Liu H., You L.-X., Zhou Y.-H., Chen S.-J., Mao Y., Huang M.-Q., Zhang W.-J., Chen H., Li M.J., Nolan D., Zhou, F., Jiang X., Wang Z., Zhang Q., Wan X.-B., Pan J.-W. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 2016; 117(19): Article No. 190501. DOI: 10.1103/PhysRevLett.117.190501
40. Chen D., Wei L., YaLiang C., Qing P., Lei S. Reference-frame-independent measurementdevice-independent quantum key distribution using hybrid logical basis. Quantum Information Processing. 2018; 17(10): Article No. 256. DOI: 10.1007/s11128-018-2030-7
41. Musser G. Job one for quantum computers: Boost artificial intelligence. Quanta Magazine. URL: https://www.quantamagazine.org/job-one-for-quantum-computers-boostartificial-intelligence-20180129/ (Access date 01/15/2019).
42. Altayskiy M.V., Kapustina N.E., Krylov V.A. Quantum neural networks: Current state and development prospects. Fizika elementarnykh chastits i atomnogo yadra (Physics of Elementary Particles and Atomic Nucleus). 2014; 45(5-6): 1825-1856. (in Russ.)
43. Haykin S. Neural Networks. Pearson Education. NY: IEEE, 1999. 600 p.
44. Schuld M., Sinayskiy I., Petruccione F. The quest for a quantum neural network. Quantum Information Processing. 2014; 13(11): 2567-2586. DOI: 10.1007/s11128-014-0809-8
45. Qi F., Chen C. Qubit neural tree network with applications in nonlinear system modeling. IEEE Access. 2018; 6: 51598-51606. Article No. 8463464. DOI: 10.1109/ACCESS.2018.2869894
46. da Silva A.J., Ludermir T.B., de Oliveira W.R. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks, 2016; 76: 55- 64. DOI: 10.1016/j.neunet.2016.01.002
47. Lv F., Yang G., Yang W., Zhang X., Li K. The convergence and termination criterion of quantum-inspired evolutionary neural networks. Neurocomputing. 2017; 238: 157-167. DOI: 10.1016/j.neucom.2017.01.048
48. Panchi L.I., Zhao Y. Model and algorithm of sequence-based quantum-inspired neural networks. Chinese Journal of Electronics. 2018; 27(1): 9-18. DOI: 10.1049/cje.2017.11.007
49. Ganjefar S., Tofighi M. Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction. Neurocomputing. 2018; 291: 175-186. DOI: 10.1016/j.neucom.2018.02.074
50. Ganjefar S., Tofighi M. Training qubit neural network with hybrid genetic algorithm and gradient descent for indirect adaptive controller design. Engineering Applications of Artificial Intelligence. 2017; 65(10): 346-360. DOI: 10.1016/j.engappai.2017.08.007
51. Ueguchi T., Matsui N., Isokawa T. Chaotic time series prediction by qubit neural network with complex-valued representation. 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). Tsukuba; Japan; September 20-23, 2016. Article No. 7749232. P. 1353–1358. DOI: 10.1109/SICE.2016.7749232
52. Romero J., Olson J.P., Aspuru-Guzik A. Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology. 2017; 2(4): Article No. 045001. DOI: 10.1088/2058-9565/aa8072
53. Schuld M., Sinayskiy I., Petruccione F. An introduction to quantum machine learning. Contemporary Physics. 2015; 56(2): 172-185. DOI: 10.1080/00107514.2014.964942
54. Perdomo-Ortiz A., Benedetti M., Realpe-Gómez J., Biswas R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology. 2018; 3(3): Article No. 030502. DOI: 10.1088/2058-9565/aab859
55. Rebentrost P., Mohseni M., Lloyd S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014; 113(3): Article No. 130503. DOI: 10.1103/PhysRevLett.113.130503/
56. Lloyd S., Mohseni M., Rebentrost P. Quantum principal component analysis. Nature Physics. 2014; 10(9): 631-633. DOI: 10.1.038/NPHYS3029
57. Alvarez-Rodriguez U., Lamata L., Escandell-Montero P., Martín-Guerrero J.D., Solano E. Supervised quantum learning without measurements. Scientific Reports. 2017; 7(1): Article No. 13645. DOI: 10.1038/s41598-017-13378-0
58. Schuld M., Sinayskiy I., Petruccione F. Prediction by linear regression on a quantum computer. Phys. Rev. A. 2016; 94(2): Article No. 022342. DOI: 10.1103/PhysRevA.94.022342
59. Benedetti M., Realpe-Gómez J., Biswas R., Perdomo-Ortiz A. Quantum-assisted learning of hardware-embedded probabilistic graphical models. Phys. Rev. X. 2017; 7(4): Article No. 041052. DOI: 10.1103/PhysRevX.7.041052
60. Wittek P., Gogolin C. Quantum enhanced inference in Markov logic networks. Scientific Reports. 2017; 7: Article No. 45672. DOI: 10.1038/srep45672
61. Potok T.E., Schuman C.D., Young S.R., Patton R.M., Spedalieri F., Liu J., Yao K.-T., Rose G., Chakma G. A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. 2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC), Salt Lake City, Utah, USA, 2016: 47-55. doi:10.1109/MLHPC.2016.009
62. Aerts D., Broekaert J., Gabora L., Sozzo S. Quantum structures in cognitive and social science (Editorial). Front. Psychol. 2016; 7(APR): Article No. 577. DOI: 10.3389/fpsyg.2016.00577
Supplementary files
|
1. Fig. 2. Graphical representation of the architecture of quantum computers involved in the experiment | |
Subject | ||
Type | Research Instrument | |
View
(234KB)
|
Indexing metadata ▾ |
Review
For citations:
Sigov A., Andrianova E., Zhukov D., Zykov S., Tarasov I.E. QUANTUM INFORMATICS: OVERVIEW OF THE MAIN ACHIEVEMENTS. Russian Technological Journal. 2019;7(1):5-37. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-1-5-37