Preview

Russian Technological Journal

Advanced search

Unsteady heat transfer problem during single-pass spraying on a half-space

https://doi.org/10.32362/2500-316X-2025-13-6-127-138

EDN: ORZKBC

Abstract

Objectives. Thermal spraying and powder laser cladding are promising technologies widely used in various industries, including aerospace, energy, and mechanical engineering. The efficiency of these technologies depends on the management of thermal processes occurring during coating application, which directly affect the quality and durability of the resulting materials and products. This article considers a nonstationary problem of heat transfer during single-pass spraying on a half-space. The research aim was to simulate the temperature distribution in a material half-space upon the action of a moving heat source on its boundary.

Methods. A theoretical study of the temperature distribution on the surface and in the bulk of the processed material during movement of the spray head was carried out by solving the equation of nonstationary thermal conductivity in Cartesian coordinates. This equation employs a special type of the heat source power density function in the form of a thermal strip, simulating the process of heat transfer from the spray path to the material half-space of the part base.

Results. The obtained solution representing the evolution of temperature in time at different points of the medium shows that at a certain point of time after the passage of the heating pulse, the temperature inside the medium reaches its maximum value rapidly followed by its relatively slow relaxation to the equilibrium temperature of the environment. Penetrating deeper into the bulk of the medium, the thermal pulse is spreading out while decreasing its amplitude and increasing its width, accompanied by a monotonic increase in the time to reach the maximum. The transverse temperature distribution has the form of symmetrical peaks, less pronounced in depth.

Conclusions. The obtained solution can be used when describing the general temperature field at some distance from the spray head area, where specific heating details are lacking. In particular, the work shows that significant temperature gradients arise in the vicinity of the primary spray area, which will cause noticeable nonstationary temperature stresses. 

About the Authors

M. E. Soloviev
Yaroslavl State Technical University
Russian Federation

Mikhail E. Soloviev, Dr. Sci. (Phys.-Math.), Professor, Department of Information Systems and Technologies, Institute of Digital Systems 

88, Moskovskii pr., Yaroslavl, 150023 

Scopus Author ID 57190224257

ResearcherID A-4328-2014 


Competing Interests:

The authors declare no conflicts of interest.



S. S. Kokarev
Regional Scientific and Educational Center “Logos”
Russian Federation

Sergey S. Kokarev, Cand. Sci. (Phys.-Math.), Director of the Regional Scientific and Educational Center “Logos” 

80, Respublikanskaya ul., Yaroslavl, 150000 


Competing Interests:

The authors declare no conflicts of interest.



S. L. Baldaev
Technological Systems for Protective Coatings
Russian Federation

Sergey L. Baldaev, Cand. Sci. (Eng.), Deputy General Director 

9A, Yuzhnaya ul., Shcherbinka, Moscow, 108851 


Competing Interests:

The authors declare no conflicts of interest.



L. Kh. Baldaev
Technological Systems for Protective Coatings
Russian Federation

Lev Kh. Baldaev, Dr. Sci. (Eng.), General Director

9A, Yuzhnaya ul., Shcherbinka, Moscow, 108851
 


Competing Interests:

The authors declare no conflicts of interest.



D. V. Malyshev
Yaroslavl State Technical University
Russian Federation

Denis V. Malyshev, Assistant, Department of Information Systems and Technologies, Institute of Digital Systems 

88, Moskovskii pr., Yaroslavl, 150023 


Competing Interests:

The authors declare no conflicts of interest.



References

1. Davis J.R. Handbook of Thermal Spray Technology. ASM International; 2004. 338 p.

2. Gazotermicheskoe napylenie (Gas Thermal Spraying). Baldaev L.H. (Ed.). Moscow: Market DS; 2007. 344 p. (in Russ.).

3. Ghasempour-Mouziraji M., Lagarinhos J., Afonso D., de Sousa R.A. A review study on metal powder materials and processing parameters in Laser Metal Deposition. Opt. Laser Technol. 2024;170:110226. https://doi.org/10.1016/j.optlastec.2023.110226

4. Cheng J., Xing Y., Dong E., Zhao L., Liu H., Chang T., Chen M., Wang J., Lu J., Wan J. An Overview of Laser Metal Deposition for Cladding: Defect Formation Mechanisms, Defect Suppression Methods and Performance Improvements of Laser-Cladded Layers. Materials. 2022;15(16):5522. https://doi.org/10.3390/ma15165522

5. Chen H.F., Zhang C., Liu Y.C., Song P., Li W.-X., Yang G., Liu B. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met. 2020;39(5):498–512. https://doi.org/10.1007/s12598-019-01307-1

6. Hardwicke C.U., Lau Y.C. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review. J. Therm. Spray Technol. 2013;22(5):564–576. https://doi.org/10.1007/s11666-013-9904-0

7. Bernhard R., Neef P., Wiche H., Wesling V., Hoff C., Hermsdorf J., Kaierle S. Laser Cladding – Additive Manufacturing. In: Cavaliere P. (Ed.) Laser Cladding of Metals. Springer, Cham; 2021. P. 1–8. https://doi.org/10.1007/978-3-030-53195-9_1

8. Lim W.Y.S., Cao J., Suwardi A., Meng T.L., Tan C.K.I., Liu H. Recent advances in laser-cladding of metal alloys for protective coating and additive manufacturing. J. Adhes. Sci. Technol. 2022;36(23–24):2482–2504. https://doi.org/10.1080/01694243.2022.2085499

9. Zhuravskiy A.V. Mathematical Modeling of Heat Transfer During Chemical Vapor Deposition. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering. 2017;11(692):10–17 (in Russ.). https://doi.org/10.18698/0536-1044-2017-11-10-17

10. Ravichandran K.S., An K., Dutton R.E., Semiatin S.L. Thermal conductivity of plasma-sprayed monolithic and multilayer coatings of alumina and yttria-stabilized zirconia. J. Am. Ceram. Soc. 2004;82(3):673–682. https://doi.org/10.1111/j.1151-2916.1999.tb01816.x

11. Ma K., Cheng Y., Jeyaprakash N., Zhou J., Wan Y., Yang W. Temperature gradient and solidification rate simulation model of the microstructure of laser-cladded 27SiMn. Metals. 2023;13(10):1682. https://doi.org/10.3390/met13101682

12. Moritz S., Schwanekamp T., Reuber M., Lentz J., Boes J., Weber S. Impact of insitu heat treatment effects during laserbased powder bed fusion of 1.3343 high-speed steel with preheating temperatures up to 700°C. Steel Research Int. 2023;94(6):2200775. https://doi.org/10.1002/srin.202200775

13. Yamashita Y., Ilman K.A., Kunimine T., Sato Y. Temperature evaluation of cladding beads and the surrounding area during the laser metal deposition process. J. Manuf. Mater. Process. 2023;7(6):192. https://doi.org/10.3390/jmmp7060192

14. Chen C., Sun G., Ren B., Wang H., Zhang Y., Zhao X. A novel heterogeneous particle addition method based on laser cladding hybrid wire arc additive manufacturing: improvement performance of stainless steel components. Virtual Phys. Prototyp. 2024;19(1):e2397815 https://doi.org/10.1080/17452759.2024.2397815

15. Li C., Han X., Zhang D., Gao X., Jia T. Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding. J. Adhes. Sci. Technol. 2021;36(17):1894–1920. https://doi.org/10.1080/01694243.2021.1 991142

16. Li C., Jia T., Han X., Jiang X. Study on parameter optimization of laser cladding Fe60 based on GA-BP neural network. J. Adhes. Sci. Technol. 2022;37(18):2556–2586. https://doi.org/10.1080/01694243.2022.2159298

17. Huang H., Wu M., Luo S., Chen Z. Optimization of process parameters in laser cladding multi channel forming using MVBM-NSGA-II method. Mater. Manuf. Processes. 2024;39(15):2226–2235. https://doi.org/10.1080/10426914.2024.2395002

18. Hu Z., Li C., Tian D., Li X., Wang J., Xu Z., Sun X. Numerical simulation analysis of temperature distribution of NbC-reinforced Ti-based composite coating by laser cladding. Metals. 2023;13(8):1348. https://doi.org/10.3390/met13081348

19. Deng C., Zhu Y., Chen W. Numerical Investigation of the Effects of Process Parameters on Temperature Distribution and Cladding-Layer Height in Laser Cladding. Coatings. 2024;14(8):1020. https://doi.org/10.3390/coatings14081020

20. Jiang Y., Cheng Y., Zhang X., Yang J., Yang X., Cheng Z. Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process. Optik. 2020;203:164044. https://doi.org/10.1016/j.ijleo.2019.164044

21. Sun Z., Guo W., Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Addit. Manuf. 2020;33:101175. https://doi.org/10.1016/j.addma.2020.101175

22. Wang C., Zhou J., Zhang T., Meng X., Li P., Huang S. Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Opt. Laser Technol. 2022;149:107843. https://doi.org/10.1016/j.optlastec.2021.107843

23. Chai Q., Zhang H., Fang C., Qiu X., Xing Y. Numerical and experimental investigation into temperature field and profile of Stellite6 formed by ultrasonic vibration-assisted laser cladding. J. Manuf. Process. 2023;85:80–89. https://doi.org/10.1016/j.jmapro.2022.11.035

24. de La Batut B., Fergani O., Brotan V., Bambach M., Mansouri M.E. Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V. J. Manuf. Mater. Process. 2017;1(1):3. https://doi.org/10.3390/jmmp1010003

25. Gao Y., Jiang S., Tong Y., Bai S., Lu P. Temperature field simulation and experimental confirmation of laser cladding high-entropy alloy coating on Cr12MoV. Processes. 2024;12(2):257. https://doi.org/10.3390/pr12020257


Review

For citations:


Soloviev M.E., Kokarev S.S., Baldaev S.L., Baldaev L.Kh., Malyshev D.V. Unsteady heat transfer problem during single-pass spraying on a half-space. Russian Technological Journal. 2025;13(6):127-138. https://doi.org/10.32362/2500-316X-2025-13-6-127-138. EDN: ORZKBC

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)