On the working zone of a magnetometer-electromagnet measuring device when using opposing pole pieces with flat surfaces
https://doi.org/10.32362/2500-316X-2025-13-6-95-103
EDN: JCFXYH
Abstract
Objectives. The work set out to develop an approach for assessing the working (local) zone in magnetometerelectromagnet measuring devices designed for controlling the magnetic properties of samples in which the homogeneity of the magnetic field should be observed in terms of constancy of the field strength or induction.
Methods. The coordinate characteristics of the field strength (induction) between pole components were experimentally obtained to identify the desired working zone (in the vicinity of the minimum of each of these characteristics), taking into account the distance b between the poles and their diameter D.
Results. Data on working zones between opposing flat poles are obtained for different values b and D. With increased ratios b/D = 0.7–1.3, the size of the working zone concentrated in the middle axial part of the interpolar area is estimated at a value not exceeding 25–30% of the distance b such that the characteristic longitudinal size of the sample does not exceed 5–10 mm. As D increases and b/D decreases, the working area increases. In particular, at b/D ≅ 0.5, the size of the working area is estimated to be up to 90% and even 100% of the distance b.
Conclusions. A principled approach to the assessment of the working (axial) zone between opposing flat poles is demonstrated by obtaining and analyzing the necessary coordinate (significantly dependent on b and D) characteristics of the field strength (induction) between them.
Keywords
About the Authors
D. A. SandulyakRussian Federation
Daria A. Sandulyak, Cand. Sci. (Eng.), Associate Professor, Department of Devices and InformationMeasuring Systems, Institute for Cybersecurity and Digital Technologie
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 36621369400
ResearcherID L-9814-2016
Competing Interests:
The authors declare no conflicts of interest.
M. N. Polismakova
Russian Federation
Maria N. Polismakova, Cand. Sci. (Eng.), Associate Professor, Department of Devices and InformationMeasuring Systems, Institute for Cybersecurity and Digital Technologies
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 36621096600
ResearcherID O-8796-2017
Competing Interests:
The authors declare no conflicts of interest.
D. A. Golovchenko
Russian Federation
Daria A. Golovchenko, Researcher Intern, Laboratory of Magnetic Control and Material’s Separation
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
A. S. Kharin
Russian Federation
Alexey S. Kharin, Engineer, Laboratory of Magnetic Control and Material’s Separation
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
A. V. Sandulyak
Russian Federation
Alexander V. Sandulyak, Dr. Sci. (Eng.), Professor, Department of Devices and Information-Measuring Systems, Institute for Cybersecurity and Digital Technologies
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57194504434
ResearcherID V-6094-2018
Competing Interests:
The authors declare no conflicts of interest.
A. A. Sandulyak
Russian Federation
Anna A. Sandulyak, Dr. Sci. (Eng.), Professor, Department of Devices and Information-Measuring Systems, Institute for Cybersecurity and Digital Technologies
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 7004032043
ResearcherID S-5187-2017
Competing Interests:
The authors declare no conflicts of interest.
References
1. Kolesov K.A., Mashirov A.V., Koledov V.V., et al. Solenoid based on tapes of high-temperature superconductor for magnetocaloric applications. Zhurnal radioehlektroniki = J. Radio Electronics. 2024;11 (in Russ.). https://doi.org/10.30898/1684-1719.2024.11.31
2. Franz V.G. Superconducting solenoid from the second-generation HTSC tape. In: Gagarin Readings – 2022: Collection of Abstracts of the Works of the International Youth Scientific Conference 48th Gagarin Readings 2022. Moscow: 2022. P. 310 (in Russ.). https://www.elibrary.ru/zlbgea
3. Сhen D.X., Pardo E., Zhu Y.-H., Xiang L.-X., Ding J.-Q. Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders. J. Magn. Magn. Mater. 2018;449:447–454. https://doi.org/10.1016/j.jmmm.2017.10.069
4. Sandulyak D.A., Sandulyak A.A., Gorpinenko Yu.O., et al. “Pipe-layer” model of the magnetized chain of spheres: magnetic properties and assessment of the hyper-amplification field between the spheres. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie = Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2023;3(144): 49–61 (in Russ.). https://doi.org/10.18698/0236-3933-2023-3-49-61
5. Tsitsikyan G.N., Antipov M.Yu. Calculating the Inductance of Single- and Two-Layer Solenoids Taking into Account the Specific Features of Their Practical Application. Elektrichestvo. 2019;10:48–53 (in Russ.). https://doi.org/10.24160/0013-5380-2019-10-48-53
6. Kapitza P.L., Filimonov S.I. Solenoid producing a magnetic field up to 30 kOe in a volume of 5 liters and consuming 500 kW. Sov. Phys. Usp. 1968;11(3):299–303. https://doi.org/10.1070/PU1968v011n03ABEH003833 [Original Russian Text: Kapitza P.L., Filimonov S.I. Solenoid producing a magnetic field up to 30 kOe in a volume of 5 liters and consuming 500 kW. Uspekhi fizicheskikh nauk. 1968;95(1):35–43 (in Russ.). https://doi.org/10.3367/UFNr.0095.196805d.0035 ]
7. Chechernikov V.I. Magnitnye izmereniya (Magnetic Measurements). Moscow: Moscow State University; 1963. 286 p. (in Russ.).
8. Thirumurugan A., Ramadoss A., Dhanabalan S., et al. MXene/Ferrite Magnetic Nanocomposites for Electrochemical Supercapacitor Applications. Micromachines (Basel). 2022;13(10):1792. https://doi.org/10.3390/mi13101792
9. Lopez-Dominguez V., Quesada A., Guzmán-Mínguez J.C., Moreno L., Lere M., Spottorno J., Giacomone F., Fernández J.F., Hernando A., García M.A. A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum. 2018;89(3):034707. https://doi.org/10.1063/1.5017708
10. Li W., Cai H., Kang Y., Ying Y., Yu J., Zheng J., Qiao L., Che S. High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Materialia. 2019;167:267–274. https://doi.org/10.1016/j.actamat.2019.01.035
11. Sandulyak A.A., Ershov D.V., Oreshkin D.V., Sandulyak A.V. Characteristics of magnetic field induction inside a module of a magnetic separator. Vestnik MGSU. 2013;5:103–111 (in Russ.).
12. Neiman L.A., Neiman V.Yu. Single Coil Electromagnet: RF Pat. RU 2791925. Publ. 14.03.2023 (in Russ.).
13. Amoskov V.M., Znamenshchikova N.S., Kukhtin V.P., Kaparkova M.V., Krylova N.A., Lamzin E.A., Larionov M.S., Mel’nikov D.D. Method for Ensuring Magnetic Field Homogeneity in the Working Region of a Salient-Pole Magnetic Resonance Device: RF Pat. RU 2833238. Publ. 15.01.2025 (in Russ.).
14. Sandulyak A.V., Sandulyak A.A., Polismakova M.N., Kiselev D.O., Sandulyak D.A. Faraday magnetometer with spheric pole pieces: identification zone with a stable force factor. Russ. Technol. J. 2017;5(6):43–54 (in Russ.). https://doi.org/10.32362/2500-316X-2017-5-6-43-54
15. Sandulyak A.A., Sandulyak A.V., Polismakova M.N., et al. The Use of Spherical Pole Pieces for Performing the Faraday Balance Method. Instrum. Exp. Tech. 2018;61(1)123–126. https://doi.org/10.1134/S0020441218010293 [Original Russian Text: Sandulyak A.A., Sandulyak A.V., Polismakova M.N., Kiselev D.O., Ershova V.A., Sandulyak D.A. The Use of Spherical Pole Pieces for Performing the Faraday Balance Method. Pribory i tekhnika eksperimenta. 2018;1: 109–112 (in Russ.). https://doi.org/10.7868/S0032816218010342 ]
Review
For citations:
Sandulyak D.A., Polismakova M.N., Golovchenko D.A., Kharin A.S., Sandulyak A.V., Sandulyak A.A. On the working zone of a magnetometer-electromagnet measuring device when using opposing pole pieces with flat surfaces. Russian Technological Journal. 2025;13(6):95-103. https://doi.org/10.32362/2500-316X-2025-13-6-95-103. EDN: JCFXYH


























