Interface traps build-up and its influence on electrostatic discharge robustness of high-power metal-oxide-semiconductor field-effect transistor
https://doi.org/10.32362/2500-316X-2025-13-6-86-94
EDN: KOATTE
Abstract
Objectives. The aim of the study is to confirm that the robustness of high-power metal–oxide–semiconductor fieldeffect transistor (MOSFET) to electrostatic discharge (ESD) after gamma irradiation is determined by the concentration of built-up interface traps (IT). The reason for such dependence is the degradation of the gain of the parasitic bipolar transistor in the structure of high-power MOSFETs during accumulation of IT. As a result, higher ESD pulse voltage is required to activate the parasitic bipolar transistor and cause the subsequent catastrophic failure of MOSFET.
Methods. The study describes the physical mechanism of the influence of IT accumulation on the robustness of highpower MOSFETs to ESD. Experimental studies included determination of ESD robustness for two types of highpower MOSFETs before irradiation, 60Co gamma irradiation to several levels of total ionizing dose, and subsequent determination of the ESD robustness of irradiated samples.
Results. The study developed a method for calculating IT concentration and radiation-induced charge density from subthreshold drain-gate characteristics. It was also shown that for the first type of MOSFET, when irradiated to total ionizing dose level of 3 krad, the build-up IT did not occur, nor was any change or insignificant decrease in the breakdown voltage observed when exposed to ESD. For the second type of MOSFET, build-up IT was observed when irradiated to total ionizing dose level of 2 and 4 krad and an increase in the breakdown voltage was also observed when exposed to ESD.
Conclusions. The study shows the relationship between the IT concentration and the change in the breakdown voltage when exposed to ESD. The results obtained can be used to assess the failure-free operation time of devices operating under conditions of ionizing radiation and electrostatic discharges.
About the Authors
D. M. BakerenkovaRussian Federation
Diana M. Bakerenkova, Test Engineer
8, Turaevo Industrial Area, Lytkarino, Moscow oblast, 140080
Competing Interests:
The authors declare no conflicts of interest.
A. S. Petrov
Russian Federation
Aleksandr S. Petrov, Cand. Sci. (Eng.), Head of Department
8, Turaevo Industrial Area, Lytkarino, Moscow oblast, 140080
Scopus Author ID 7401779679
Competing Interests:
The authors declare no conflicts of interest.
References
1. Paderov V.P., Silkin D.S., Goryachkin Yu.V., et al. Effect of proton irradiation on the breakdown voltage of a highvoltage p–n junction. J. Commun. Technol. Electron. 2017;62(6):616–620. https://doi.org/10.1134/S1064226917060158 Original Russian Text: Paderov V.P., Silkin D.S., Goryachkin Yu.V., Khapugin A.A., Grishanin A.V. Effect of proton irradiation on the breakdown voltage of a high-voltage p–n junction. Radiotekhnika i ehlektronika. 2017;62(6):596–600 (in Russ.). https://www.elibrary.ru/ysugwj
2. Shu L., Zhao Y.-F., Galloway K.F., Wang L., Wang X.-S., Yuan Z.-Y., Zhou X., Chen W.-P., Qiao M., Wang T.-Q. Effect of Drift Length on Shifts in 400-V SOI LDMOS Breakdown Voltage Due to TID. IEEE Trans. Nucl. Sci. 2020;67(11): 2392–2395. https://doi.org/10.1109/TNS.2020.2970743
3. Zhou X., Chen L., Chen C., Qiao M., Li Z., Zhang B. New Insight into Total-Ionizing-Dose Effect-Induced Breakdown Voltage Degradation for SOI LDMOS: Irradiation Charge Field Modulation. IEEE Trans. Nucl. Sci. 2023;70(4):659–666. https://doi.org/10.1109/TNS.2022.3231877
4. Seehra S.S., Slusark W.J. The Effect of Operating Conditions on the Radiation Resistance of VDMOS Power FETs. IEEE Trans. Nucl. Sci. 1982;29(6):1559–1563. https://doi.org/10.1109/TNS.1982.4336404
5. Blackburn D.L., Benedetto J.M., Galloway K.F. The Effect of Ionizing Radiation on the Breakdown Voltage of Power MOSFETS. IEEE Trans. Nucl. Sci. 1983;30(6):4116–4121. https://doi.org/10.1109/TNS.1983.4333092
6. Liang W., Alexandrou K., Klebanov M., Kuo C.-C., Kymissis I., Sundaram K.B., Liou J.J. Characterization of ESD protection devices under total ionizing dose irradiation. In: IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Chengdu, China: 2017. P. 1–4. https://doi.org/10.1109/IPFA.2017.8060225
7. Wu M., Lu W., Zhang C., Peng W., Zeng Y., Jin H., Xu J., Chen Z. The impact of radiation and temperature effects on dual-direction SCR devices for on-chip ESD protections. Semicond. Sci. Technol. 2020;35(4):045016. https://doi.org/10.1088/1361-6641/ab74ed
8. Arzamastseva D.М., Petrov А.S., Tapero К.I. Effect of Preliminary Gamma Irradiation on Degradation of Power N-MOS Transistors Influenced by Electrical Static Discharge. Voprosy atomnoi nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeistviya na radioehlektronnuyu apparaturu. 2023;3:19–22 (in Russ.).
9. Bakerenkov A.S., Felitsyn V.A., Chubunov P.A., Skorkin I.V. Temperature Dependence of Surface Recombination Current in Bipolar Transistors. In: 5th International Conference on Radiation Effects of Electronic Devices (ICREED). Kunming, China: 2023. https://doi.org/10.1109/ICREED59404.2023.10390896
10. Kosier S.L., Schrimpf R.D., Nowlin R.N., Fleetwood D.M., DeLaus M., Pease R.L. Charge Separation for Bipolar Transistors. IEEE Trans. Nucl. Sci. 1993;40(6):1276–1285. https://doi.org/10.1109/23.273541
11. Lenahan P.M., Dressendorfer P.V. An Electron Spin Resonance Study of Radiation Induced Electrically Active Paramagnetic Centers at the Si/SiO 2 Interface. J. Appl. Phys. 1983;54(3):1457–1460. https://doi.org/10.1063/1.332171
12. McLean F.B. A Framework for Understanding Radiation-Induced Interface States in SiO2 MOS Structures. IEEE Trans. Nucl. Sci. 1980;27(6):1651–1657. https://doi.org/10.1109/TNS.1980.4331084
13. Winokur P.S., McGarrity J.M., Boesch H.E. Dependence of Interface-State Buildup on Hole Generation and Transport in Irradiated MOS Capacitors. IEEE Trans. Nucl. Sci. 1976;23(6):1580–1585. https://doi.org/10.1109/TNS.1976.4328543
14. Reichert G., Raynaud C., Faynot O., Balestra F., Cristoloveanu S. Temperature dependence (300–600 K) of parasitic bipolar effects in SOI-MOSFETs. In: Proceedings of the 7th European Solid-State Device Research Conference. 1997.
15. Saks N.S., Dozier C.M., Brown D.B. Time Dependence of Interface Trap Formation in MOSFETs Following Pulsed Irradiation IEEE Trans. Nucl. Sci. 1988;35(6):1168–1177. https://doi.org/10.1109/23.25435
16. Winokur P.S., Boesch H.E., McGarrity J.M., McLean F.B. Field- and Time-Dependent Radiation Effects at the Si/SiO2 Interface of Hardened MOS Capacitors. IEEE Trans. Nucl. Sci. 1977;24(6):2113–2118. https://doi.org/10.1109/TNS.1977.4329176
17. McWhorter P.J., Winokur P.S. Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 1986;48(2):133–135. https://doi.org/10.1063/1.96974
18. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. Radiation Effects in MOS Oxides IEEE Trans. Nucl. Sci. 2008;55(4):1833–1853. https://doi.org/10.1109/TNS.2008.2001040
Review
For citations:
Bakerenkova D.M., Petrov A.S. Interface traps build-up and its influence on electrostatic discharge robustness of high-power metal-oxide-semiconductor field-effect transistor. Russian Technological Journal. 2025;13(6):86-94. https://doi.org/10.32362/2500-316X-2025-13-6-86-94. EDN: KOATTE


























