Preview

Russian Technological Journal

Advanced search

Maximum likelihood estimates of the angle-of-arrival of deterministic and random signals in multielement antenna arrays of various configurations

https://doi.org/10.32362/2500-316X-2025-13-6-47-62

EDN: EYOGWG

Abstract

Objectives. The purpose of this work is to study in detail the properties of maximum likelihood (ML) estimates of the angles-of-arrival of deterministic and random signals in multielement antenna arrays, to develop effective algorithms for finding ML estimates and to determine the exact values of threshold signal-to-noise ratios (SNR), below which abnormally large errors occur significantly in excess of the theoretically minimum values determined by the Cramér– Rao bounds.

Methods. The methods used include: the theory of optimal signal detection; intensive numerical simulation of the signal processing system in multielement antenna arrays based on the developed algorithms for finding ML estimates; and comparison of the standard errors of the estimates obtained by means of the theoretically minimal analytically established Cramér–Rao bounds.

Results. Numerical study of the characteristics of ML estimates of the direction of arrival for deterministic and random signals was performed over a wide range of SNRs in multielement linear and circular antenna arrays. The study proposes a method for high-precision determination of threshold SNR values, below which anomalously large measurement errors occur. Numerical simulations demonstrate that coherent and incoherent signal processing yield the same ultimately achievable accuracy at the same SNR values above the threshold. At the same time, the threshold value is significantly influenced by the type of signal and the processing method. The general relationships between these threshold values, antenna array configurations, the type of signal processed, and the estimation algorithm used were identified.

Conclusions. The numerical and analytical results obtained allow recommendations to be developed relating to the choice of multielement antenna arrays configurations and the main parameters of systems for high-precision bearing of radiation sources of various signals. These enable abnormally large measurement errors to be avoided. The results can be directly utilized in the calculation of characteristics of systems under design. 

About the Author

O. V. Bolkhovskaya
National Research Lobachevsky State University of Nizhny Novgorod
Russian Federation

Olesya V. Bolkhovskaya, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Statistical Radiophysics and Mobile Communication Systems, Faculty of Radiophysics 

23, Gagarina pr., Nizhny Novgorod, 603950 

Scopus Author ID 56373874700

ResearcherID AAQ-4264-2020 


Competing Interests:

The author declares no conflicts of interest.



References

1. Skolnik M.I. Radar Handbook. 3rd ed. New York: McGraw-Hill Professional; 2008. 1328 p.

2. Shirman Ya.D., Manzhos V.N. Teoriya i tekhnika obrabotki radiolokatsionnoi informatsii na fone pomekh (Theory and Technique of Radar Information Processing Against the Background of Interference). Moscow: Radio i svyaz; 1981. 416 p. (in Russ.).

3. Richards M.A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill; 2014. 640 p.

4. Vaughan R., Andersen J.B. Channels, Propagation and Antennas for Mobile Communications. London: The Institution of Engineering and Technology; 2003. 784 p. https://doi.org/10.1049/PBEW050E

5. Sand S., Dammann A., Mensing C. Positioning in Wireless Communications Systems. Chichester: John Wiley & Sons; 2014. 280 р.

6. Krim H., Viberg M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Mag. 1996;13(4):67–94. https://doi.org/10.1109/79.526899

7. Dosso S.E., Wilmut M.J. Maximum-likelihood and other processors for incoherent and coherent matched-field localization. J. Acoust. Soc. Am. 2012;132(4):2273–2285. https://doi.org/10.1121/1.4730978

8. Malekhanov A.I., Smirnov A.V. Large-Array Processing of Coherence-Degraded Signals: Analytical Study, Modeling, and Estimations of Optimization Possibilities. Radiophys. Quantum El. 2023;66(12):988–1011. https://doi.org/10.1007/s11141-024-10346-3 [Original Russian Text: Malekhanov A.I., Smirnov A.V. Large-Array Processing of Coherence-Degraded Signals: Analytical Study, Modeling, and Estimations of Optimization Possibilities. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. 2023;66(12):1094–1121 (in Russ.). https://doi.org/10.52452/00213462_2023_66_12_1094 ]

9. Stoica P., Nehorai A. MUSIC, maximum likelihood, and Cramér–Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989;37(5):720–741. https://doi.org/10.1109/29.17564

10. Li J., Compton R.T. Maximum likelihood angle estimation for signals with known waveforms. IEEE Trans. Signal Process. 1993;41(9):2850–2862. https://doi.org/10.1109/78.236507

11. Kay S.M. Fundamentals of Statistical Signal Processing. Volume 1. Estimation Theory. Upper Saddle River, NJ: Prentice Hall; 1993. 625 p.

12. Viberg M., Ottersten B., Nehorai A. Performance analysis of direction finding with large arrays and finite data. IEEE Trans. Signal Process. 1995;43(2):469–477. https://doi.org/10.1109/78.348129

13. Van Trees H.L. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. New York, NY: Wiley; 2001. 716 p.

14. Van Trees H.L., Bell K.L. Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing. Hoboken, NJ: Wiley; 2002. 1480 p.

15. Renaux A., Foster P., Chaumette E., Larzabal P. On the high-SNR conditional maximum-likelihood estimator full statistical characterization. IEEE Trans. Signal Process. 2006;54(12):4840–4843. https://doi.org/10.1109/TSP.2006.882072

16. Renaux A., Forster P., Boyer E., Larzabal P. Unconditional maximum likelihood performance at finite number of samples and high signal-to-noise ratio. IEEE Trans. Signal Process. 2007;55(5):2358–2364. https://doi.org/10.1109/TSP.2007.893205

17. Cramer H. Mathematical Methods of Statistics. Princeton, New Jersey: Princeton University Press; 1946. 589 p.

18. Rao C.R. Linear Statistical Inference and Its Applications. New York: Wiley; 1946. 660 p.

19. Tikhonov V.I. Optimal’nyi priem signalov (Optimal Signal Detection). Moscow: Radio i svyaz; 1983. 320 p. (in Russ.).

20. Trifonov A.P., Shinakov Yu.S. Sovmestnoe razlichenie signalov i otsenka ikh parametrov na fone pomekh (Joint Discrimination of Signals and Estimation of Their Parameters Against the Background of Interference). Moscow: Radio i svyaz; 1986. 264 p. (in Russ.).

21. Barankin E.W. Locally best unbiased estimates. Ann. Math. Statist. 1949;20(4):477–501. https://doi.org/10.1214/aoms/1177729943

22. Bhattacharyya A. On some analogues of the amount of information and their use in statistical estimation. Sankhyᾱ. 1946;8(1):201–218. Available from URL: https://www.jstor.org/stable/25047921

23. Bell K.L., Ephraim Y., Van Trees H.L. Ziv-Zakai lower bounds in bearing estimation. In: Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal Processing (ICASSP); 1995 May 9–12; Detroit, MI, USA. IEEE. P. 2852–2855. https://doi.org/10.1109/ICASSP.1995.479888

24. Athley F. Threshold Region Performance of Maximum Likelihood Direction of Arrival Estimators. IEEE Trans. Signal Process. 2005;53(4):1359–1373. https://doi.org/10.1109/TSP.2005.843717

25. Chernoyarov O.V., Rozanov A.E., Salnikova A.V. Quasi-likelihood appearance time estimate of the random pulse with free-form envelope shape and inaccurately known duration. Radiotekhnika = Radioengineering. 2013;10:65–70 (in Russ.).

26. Bolkhovskaya O., Maltsev A., Sergeev V. The wavefront estimation and signal detection in multi-element antenna arrays at low SNR. In: Proceedings 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS); 2018 Dec 20–22; Bern, Switzerland. IEEE. P. 497–501. https://doi.org/10.1109/EECS.2018.00097

27. Trifonov A.P., Korchagin Yu.E., Titov K.D. Efficiency of the Detection of a Specific Wideband Signal under a Priori Parametric Uncertainty. Tech. Phys. 2018;63(8):1199–1204. https://doi.org/10.1134/S1063784218080212 [Original Russian Text: Trifonov A.P., Korchagin Yu.E., Titov K.D. Efficiency of the Detection of a Specific Wideband Signal under a Priori Parametric Uncertainty. Zhurnal tekhnicheskoi fiziki. 2018;88(8):1235–1240 (in Russ.). https://doi.org/10.21883/JTF.2018.08.46315.2552 ]

28. Bolkhovskaya O., Maltsev A., Sergeev V. Joint detection and the AoA estimation of noncoherent signals in multi-element antennas. In: Proceedings 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). 2019 Jul 22–24; Berlin, Germany. IEEE. P. 1–6. https://doi.org/10.23919/SPECTS.2019.8823557

29. Bolkhovskaya O., Maltsev A., Sergeev V., Keusgen W., Peter M. Investigation of theoretical limits for unconditional AoA estimations in multi-element antenna arrays by simulations. In: Proceedings 2020 IEEE International Conference on Industrial Technology (ICIT). 2020 Feb 26–28; Buenos Aires, Argentina. IEEE. P. 663–668. https://doi.org/10.1109/ICIT45562.2020.9067150

30. Fateev A.A., Tokarev A.B., Chernoyarov O.V., Salnikova A.V. Influence of the radiation pattern errors for the correlation interferometer. J. Phys.: Conf. Ser. 2021;2094(2):022054. http://doi.org/10.1088/1742-6596/2094/2/022054

31. Serbes A., Qaraqe K.A. Threshold regions in frequency estimation. IEEE Trans. Aerosp. Electron. Syst. 2022;58(5): 4850–4856. https://doi.org/10.1109/TAES.2022.3166063

32. Bolkhovskaya O.V., Maltsev A.A., Sergeev V.A. A passive system for source detection and distance measurement based on signal wavefront estimation. Radiotekhnika = Radioengineering. 2022;86(9):98–112 (in Russ.). https://doi.org/10.18127/j00338486-202209-11

33. Beshara-Flynn K., Adhikari K. Effects of signal and array parameters on MSE and CRB in DOA estimation. In: 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 2022 Oct 26–29; New York, NY, USA. IEEE. P. 373–379. https://doi.org/10.1109/UEMCON54665.2022.9965625

34. Chumankin Yu.E., Fidelman V.R., Morozov O.A. A Method for Estimating the Changes in the Directions of the Main Maxima of the Directional Pattern of a Multibeam Antenna in the Problem of Passive Direction Finding. Radiophys. Quantum El. 2022;65(9):689–697. https://doi.org/10.1007/s11141-023-10249-9 [Original Russian Text: Chumankin Yu.E., Fidelman V.R., Morozov O.A. A Method for Estimating the Changes in the Directions of the Main Maxima of the Directional Pattern of a Multibeam Antenna in the Problem of Passive Direction Finding. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. 2022;65(9):758–767 (in Russ.). https://doi.org/10.52452/00213462_2022_65_09_758 ]

35. Shchukin A.A., Pavlov A.E. Parameterization of user functions in digital signal processing for obtaining angular superresolution. Russ. Technol. J. 2022;10(4):38–43. https://doi.org/10.32362/2500-316X-2022-10-4-38-43

36. Bolkhovskaya O., Sergeev V., Maltsev A. Cramér–Rao lower bounds for the task of joint estimation of signal initial phase and AoA in multi-element antenna arrays. In: 2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). 2023 Jun 5–9; St. Petersburg, Russian Federation. IEEE. P. 1–6. https://doi.org/10.1109/WECONF57201.2023.10148023

37. Xu Y., Cao N., Jin H., et al. Robust beamforming design for integrated sensing and communication systems. IEEE J. Sel. Areas Sens. 2024;1:114–123. https://doi.org/10.1109/JSAS.2024.3421391

38. Korchagin Yu.E., Titov K.D., Volovach V.I., Kondratovich P.A., Zavalishina O.N. Quasi-likelihood estimation of the arrival time of an ultra-wideband quasi-radio signal with unknown amplitude and initial phase. Radiotekhnika = Radioengineering. 2024;88(9):112–122 (in Russ.). https://doi.org/10.18127/j00338486-202409-10

39. Ermolaev V.T., Semenov V.Yu., Flaksman A.G. Spatiotemporal signal processing in automotive radar subject to active interference. Radiophys. Quantum El. 2024;67(3):261–269. https://doi.org/10.1007/s11141-025-10371-w [Original Russian Text: Ermolaev V.T., Semenov V.Yu., Flaksman A.G. Spatiotemporal signal processing in automotive radar subject to active interference. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. 2024;67(3):292–301 (in Russ.). https://doi.org/10.52452/00213462_2024_67_03_292 ]

40. Mazor Y., Berman I.E., Routtenberg T. On the limitations of the Bayesian Cramér–Rao bound for mixed-resolution data. IEEE Signal Process. Lett. 2025;32:446–450. https://doi.org/10.1109/LSP.2024.3519804

41. Bolkhovskaya O.V., Sergeev V.A., Maltsev A.A. Detection and position determination of the signal source in the near-field zone of the circular antenna array. Antenny = Antennas. 2023;5:23–37 (in Russ.). https://doi.org/10.18127/j03209601-202305-03

42. Sergeev V.A. Optimization of the size of the circular antenna array in the problem of determining the direction to the radiation source in the far-field zone. Antenny = Antennas. 2023;5:13–22 (in Russ.). https://doi.org/10.18127/j03209601-202305-02

43. Bolkhovskaya O., Maltsev A., Sergeev V., Keusgen W., Peter M. Accurate iterative algorithm for detection and the signal AoA estimation in low SNR region. In: 2019 4th International Conference on Computing, Communications and Security (ICCCS). 2019 Oct 10–12; Rome, Italy. IEEE. P. 89–95. https://doi.org/10.1109/CCCS.2019.8888112


Review

For citations:


Bolkhovskaya O.V. Maximum likelihood estimates of the angle-of-arrival of deterministic and random signals in multielement antenna arrays of various configurations. Russian Technological Journal. 2025;13(6):47-62. https://doi.org/10.32362/2500-316X-2025-13-6-47-62. EDN: EYOGWG

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)