Preview

Russian Technological Journal

Advanced search

Microelectromechanical systems for improved gyroscope design

https://doi.org/10.32362/2500-316X-2025-13-3-103-121

EDN: KBLENU

Abstract

Objectives. Microsystem engineering is currently receiving a great deal of research attention due to the very wide scope of application of its various elements. The present study of the development and creation of modern gyroscopes based on microelectromechanical systems (MEMS gyroscopes) analyzes the risks associated with the technological aspects of their production and identifies promising areas for further development both of MEMS gyroscopes themselves and the technologies used to manufacture them.
Methods. A detailed analysis of existing scientific publications, analytical reviews, and other available sources on MEMS gyroscopes and current trends in the field of microoptoelectromechanical technologies and ferroelectric films was carried out.
Results. A brief description of the design solutions of modern MEMS gyroscopes and their integration into mechatronic systems is presented. The production technologies of MEMS gyroscopes and specifics of the technological equipment used are considered. A separate section discusses the configuration and calibration aspects of these devices. Promising directions for the development of MEMS gyroscopes with an emphasis on the use of microoptoelectromechanical converters and ferroelectric films are highlighted.
Conclusions. Based on the analysis, the prospects for the development of MEMS gyroscopes are shown, despite the existing technological challenges. It is noted that new physical principles and unique technologies can contribute tothe emergence ofnew types ofMEMS gyroscopes using micro-optoelectromechanical converters and ferroelectric films. This, in turn, opens up new horizons for future developments in this area. The necessity of developing new production technologies and specialized equipment to improve the quality of MEMS gyroscopes is demonstrated.

About the Author

P. S. Kuznetsov
State Scientific Research Institute of Instrument Engineering (GosNIIP)
Russian Federation

Pavel S. Kuznetsov, Cand. Sci. (Eng.), Deputy Head of the Experimental Complex of Microelectronics and
Micromechanical Systems 
125, Mira pr., Moscow, 129226 Russia


Competing Interests:

The author declares no conflicts of interest.



References

1. Maltsev P.P., Telets V.A. Lecture 13. Microsystem technology. In: Bazovye lektsii po elektronike (Basic Lectures on Electronics): in 2 v. V. II. Solid-State Electronics. Moscow: Tekhnosfera; 2009. P. 499–575 (in Russ.).

2. Peshekhonov V.G. The Outlook for Gyroscopy. Gyroscopy Navig. 2020;11:193–197. https://doi.org/10.1134/S2075108720030062

3. Damianos D., Mouly J., Delbos P. Status of the MEMS Industry 2021. Market & Technology Report; 2021. 10 p.

4. Sinelnikov A.O., Tikhmenev N.V., Ushanov A.A., Medvedev V.M. State-of-the-Art and Development Trends of Inertial Navigation Systems Based on the Ring Laser Gyroscopes. Fotonika = Photonics Russia. 2024;8(6):450–466. http://doi.org/10.22184/1993-7296.FRos.2024.18.6.450.466

5. Robin L., Perlmutter M. Gyroscopes and IMUs for Defense Aerospace and Industrial. Report by Yole Development. 2012. 317 р.

6. Pyzhova E.M. Micromechanical gyroscopes in navigation systems. In: Prikladnaya elektrodinamika, fotonika i zhivye sistemy – 2019 (Applied Electrodynamics, Photonics and Living Systems – 2019). Proceedings. Kazan: Individual Entrepreneur Sagieva A.R.; 2019. P. 669–671 (in Russ.). https://www.elibrary.ru/agslgx

7. Verner V.D., Ivanov A.A., Kolomenskaya N.G., Luchinin V.V., Maljtcev P.P., Popova I.V., Saurov A.N., Teletc V.A. The Produces of Microsystems Techniques – Fundamental Ideals and Terms. Nano- i mikrosistemnaja tehnika = Nano- and Microsystem Technique. 2007;12:2–5 (in Russ.).

8. Kuznetsov P.S. Issues and prospects for the development of mechatronics and microsystem technology. Nano- imikrosistemnaja tehnika = Nano- and Microsystem Technique. 2024;26(4):159–169 (in Russ.). https://doi.org/10.17587/nmst.25.159-169

9. Raspopov V.Ya., Nikulin A.V., Likhoshurst V.V. Classification of designs of micromechanical gyros. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie = J. Instrument. Eng. 2005;48(8):5–8 (in Russ.).

10. Vavilov V.D., Timoshenkov S.P., Timoshenkov A.S. Mikrosistemnye datchiki fizicheskikh velichin (Microsystem Sensors of Physical Quantities). Monograph in two parts. Moscow: TEKhNOSFERA; 2018. 550 p. (in Russ.).

11. Timoshenkov S.P., Mikheev A.V., Kamenskii A.M., Artemov E.I., Polushkin V.M., Petrova N.A., Boev L.R., Puzikov V.V. Inertial microelectromechanical systems (accelerometers and gyroscopes). Nanoindustriya = Nanoindustry. 2020;(S96-2): 471–474 (in Russ.). https://doi.org/10.22184/1993-8578.2020.13.3s.471.474

12. Asar C., Shkel A. MEMS Vibratory Gyroscopes. Structural Approaches to Improve Robustness. Springer; 2009. 260 p. https://doi.org/10.1007/978-0-387-09536-3

13. Lukyanov D.P., Raspopov V.Ya., Filatov Yu.V. Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes). St. Petersburg: Electropribor; 2015. P. 42–46 (in Russ.).

14. Shakhnovich I.V. MEMS-gyroscopes – unity of choice. Elektronika: Nauka, Tekhnologiya, Biznes = Electronics: Science, Technology, Business. 2007;1:76–85 (in Russ.).

15. Xinfeng Z., Jingjing F., Zhipeng L., Mengtong Z. MEMS Gyroscopes Development and Application Overview on Intelligent Vehicles. In: 2020 Chinese Control and Decision Conference (CCDC). Hefei, China. 2020. P. 53–59. https://doi.org/10.1109/CCDC49329.2020.9164093

16. Zhanshe G., Fucheng C., Boyu L., et al. Research development of silicon MEMS gyroscopes: a review. Microsyst. Technol. 2015;21(10):2053–2066. https://doi.org/10.1007/s00542-015-2645-x

17. Konovalov S.F., Ponomarev Yu.A., Mayorov D.V. Magnetic compensation of the zero signal in a two-axis hybrid R-R-R type MEMS gyro. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie = Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2013;4(93):122–131 (in Russ.).

18. Kalikanov A.V. Calculation of the sensing element of an RR-type micromechanical gyroscope. Molodoi uchenyi = Young Scientist. 2020;1(291):28–33 (in Russ.).

19. Bocharov L.Yu., Maltsev P.P. Status and development prospects of microelectromechanical systems abroad. Mikrosistemnaya tekhnika = Microsystem Technology. 1999;1:41–46 (in Russ.).

20. Popova I.V., Lestev A.M., Semenov A.A., Ivanov V.A., Rakityanskii O.I. Micromechanical Gyroscope-Accelerometer: RF Pat. 84542. Publ. 10.07.2009 (in Russ.).

21. Popova I.V., Lestev A.M., Semenov A.A., Ivanov V.A., Rakityanskii O.I., Burtsev V.A. Encapsulated micromechanical gyroscopes and accelerometers for navigation and control systems. Giroskopiya i navigatsiya = Gyroscopy and Navigation. 2008;3(62):27–36 (in Russ.).

22. Poduraev Yu.V. Actual problems of mechatronics. Mekhatronika, avtomatizatsiya, upravlenie = Mechatronics, Automation, Control. 2007;4:50–53 (in Russ.).

23. Filimonov N.B. The subject of modern mechatronics and its place in the system of sciences. Mnogoyadernye protsessory, parallel’noe programmirovanie, PLIS, sistemy obrabotki signalov = Multicore Processors, Parallel Programming, FPGAs, Signal Processing Systems. 2017;1(7):151–159 (in Russ.).

24. Egorov O.D., Poduraev Yu.V. Analysis and synthesis of integrated mechatronic modules. Mekhatronika, avtomatizatsiya, upravlenie = Mechatronics, Automation, Control. 2005;10:3–8 (in Russ.).

25. Bradley D. Mechatronics – More questions than answers. Mechatronics. 2010;20(8):827–841. https://doi.org/10.1016/j.mechatronics.2010.07.011

26. Bogolyubov V., Bakhtieva L. Astatic Gyrocompass Based on a Hybrid Micromechanical Gyroscope. In: IEEE East-West Design and Test Symposium, (EWDTS) – Proceedings. 2021. P. 1–5. https://doi.org/10.1109/EWDTS52692.2021.9580982

27. Evstifeev M.I. Principal stages of development of domestic micromechanical gyroscopes. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie = J. Instrument. Eng. 2011;54(6):75–80 (in Russ.).

28. Evstifeev M.I. Experience in the development of micromechanical gyroscopes. In: Navigation and Motion Control: Materials of the Reports of the 10th Anniversary Conference of Young Scientists). St. Petersburg: Electropribor; 2008. P. 9–20 (in Russ.).

29. Moiseev N.V., Nekrasov Ya.A. Analysis of control systems of mems gyroscope channel. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of the Tula State University. Technical Sciences. 2012;7:115–126 (in Russ.).

30. Bekmachev A., Popova N. Inertial MEMS sensors manufactured by JSC GYROOPTIKA. Sovremennaya elektronika = Modern Electronics. 2018;5:4–6 (in Russ.).

31. Evstafiev S.D., Rakityanskii O.I., Severov L.A., Semenov A.A. Calibration of information characteristics MMG LL type. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of the Tula State University. Technical Sciences. 2012;7:167–172 (in Russ.).

32. Novikov V.Yu., Prilutskii I.S. Prospects for the development of micromechanical and nanomechanical devices. Elektronnye sredstva i sistemy upravleniya (Electronic Means and Control Systems). Materials of the Reports of the 4th International Scientific and Practical Conference. October 13–16, 2010. Tomsk: V-Spektr; 2011;2:109–113 (in Russ.).

33. Teryaev E.D., Filimonov N.B. Nanomechatronics: state, problems, prospects. Mekhatronika, avtomatizatsiya, upravlenie = Mechatronics, Automation, Control. 2010;1:2–14 (in Russ.).

34. Kuznetsov P.S. On the issue of technology for creating solid-state micromechanical systems. Estestvennye i tekhnicheskie nauki = Natural and Technical Sciences. 2024;3(190):136–139 (in Russ.). https://doi.org/10.25633/ETN.2024.03.09

35. Ivashov E.N., Kuznetsov P.S., Fedotov K.D. Optimization of control of metrological support parameters in the production of micromechanical gyroscopes. Vestnik Mashinostroeniya. 2015;5:40–45 (in Russ.).

36. Vasin V.A., Ivashov E.N., Kuznetsov P.S., Stepanchikov S.V. Monograph 6. Microengineering of magnetic devices. In: Mikro- i nanoinzheneriya v elektronnom mashinostroenii (Micro- and Nanoengineering in Electronic Engineering): A series of 7 monographs. Ivanteevka: Research Institute of Extreme Technologies; 2013. 205 p. (in Russ.).

37. Vasin V.A., Ivashov E.N., Stepanchikov S.V. Increasing the uniformity of thin film deposition in vacuum. Tekhnologiya Mashinostroeniya. 2011;6:27–30 (in Russ.).

38. Vasin V.A., Ivashov E.N., Kuznetsov P.S., Stepanchikov S.V. Devices with contactless magnetic interaction for special technological equipment. Tekhnologiya Mashinostroeniya. 2011;2:47–51 (in Russ.).

39. Vasin V.A., Ivashov E.N., Kuznetsov P.S., Stepanchikov S.V. The features of application of devices with contactless magnetic interaction in modern ultrahigh vacuum control and diagnostic and technological equipment. Kontrol’. Diagnostika = Testing. Diagnostics. 2011;2:44–48 (in Russ.).

40. Vasin V.A., Ivashov E.N., Stepanchikov S.V. Control and navigation system of the modern ultrahigh vacuum analytical and processing complex. Kontrol’. Diagnostika = Testing. Diagnostics. 2012;5:71–74 (in Russ.).

41. Ivashov E.N., Luchnikov A.P., Sigov A.S., Stepanchikov S.V. Proektirovanie elementov i ustroistv tekhnologicheskikh sistem elektronnoi tekhniki (Design of Elements and Devices of Technological Systems of Electronic Equipment). Moscow: Energoatomizdat; 2008. 288 p. (in Russ.).

42. Salenko D.S. Features of MEMS gyroscope modeling. Avtomatika i programmnaya inzheneriya = Automatics & Software Enginery. 2015;2(12):109–115 (in Russ.).

43. Kuznetsov P.S. Determination of parameters in the production of MEMS gyroscopes. Innovatsii na osnove informatsionnykh i kommunikatsionnykh tekhnologii = Innovations Based on Information and Communication Technologies. 2014;1:457–460 (in Russ.). https://www.elibrary.ru/ukrxnv

44. Kuznetsov P.S. Compensation of the nonlinearity of MEMS gyroscopes using mathematical modeling. Innovatsii na osnove informatsionnykh i kommunikatsionnykh tekhnologii = Innovations Based on Information and Communication Technologies. 2014;1:460–462 (in Russ.). https://www.elibrary.ru/ukrxnv

45. Boikov I.V., Krivulin N.P. Identification of discrete dynamical systems with distributed parameters. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauk = University Proceedings. Volga region. Physical and Mathematical Sciences. 2014;2(30):34–48 (in Russ.).

46. Krylov A.A., Korniyuk D.V. Technological approaches to zero offset compensation in MEMS gyroscopes being a part of the inertial measurement unit. Trudy MAI. 2018;103:18 (in Russ.).

47. Krylov A.A., Kuznetsov P.S. MEMS gyroscope zero drift elimination at different temperature dynamics. Vestnik Kontserna VKO Almaz-Antei. 2019;2(29):34–39 (in Russ.).

48. Krylov A.A. Research of MEMS gyroscopes zero drift instability and ways of its accounting at calibration. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of the Tula State University. Technical Sciences. 2020;1:64–69 (inRuss.).

49. Busurin V.I., Vasetsky S.O., Kazaryan A.V. Compensating Micro-optoelectromechanical Angular Velocity Sensor: RF Pat. 2806242. Publ. 30.10.2023 (in Russ.).

50. Xia D., Huang L., Zhao L. A New Design of an MOEMS Gyroscope Based on a WGM Microdisk Resonator. Sensors. 2019;19(12):2798. https://doi.org/10.3390/s19122798

51. Barbin E., Nesterenko T., Koleda A., Shesterikov E., Kulinich I., Kokolov A. An Optical Measuring Transducer for a MicroOpto-Electro-Mechanical Micro-g Accelerometer Based on the Optical Tunneling Effect. Micromachines. 2023;14(4):802. https://doi.org/10.3390/mi14040802

52. Busurin V.I., Kazaryan A.V., Shtek S.G., Zheglov M.A., Vasetskiy S.O., Ky P.L. Frame microoptoelectromechanical angular velocity transducer with optical readout units based on optical tunneling effect. Izmeritel’naya Tekhnika. 2022;5:50–55 (in Russ.). https://doi.org/10.32446/0368-1025it.2022-5-50-55

53. Busurin V.I., Vasetskii S.O., Shtek S.G., Zheglov M.A. Micro-optoelectromechanical Angular Velocity Sensor: RF Pat. 2790042. Publ. 14.02.2023 (in Russ.).

54. Barbin E., NesterenkoT., KoledaA., Shesterikov E., Kulinich I., KokolovA., PerinA. The Design, Modeling and Experimental Investigation of a Micro-G Microoptoelectromechanical Accelerometer with an Optical Tunneling Measuring Transducer. Sensors. 2024;24(3):765. https://doi.org/10.3390/s24030765

55. Shtek S.G., Zheglov M.A., Belyakov V.V., Andreasyan O.G., Vasetskiy S.O., Kuznetsov P.S. Development of a Sensitive Element of a Micro-Opto-Electromechanical Accelerometer. In: 2023 30th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). https://doi.org/10.23919/ICINS51816.2023.10168511

56. Schmidt S.P., Ivanov V.V. Prospects for the creation and development of a fully optical computer. Innovatsionnaya nauka = Innovative Science. 2015;8-2(8):83–85 (in Russ.).

57. Molodyakov S.A. Optoelectronic processors with CCD photodetectors. Pipeline signal processing. Informatsionnoupravlyayushchie sistemy = Information and Control systems. 2008;6:2–8 (in Russ.).

58. Stepanenko S.A. Photonic computer: Structure and algorithms. Estimations of parameters. Fotonika = Photonics. 2017;7(67):72–3 (in Russ.). https://doi.org/10.22184/1993-7296.2017.67.7.72.83

59. Umarova U.B. Optical computers and their advantages. In: Sovremennye instrumental’nye sistemy, informatsionnye tekhnologii i innovatsii (Modern Instrumental Systems, Information Technologies and Innovations). Collection of Scientific Papers of the 11th International Scientific and Practical Conference: in 4 v. Kursk: Universitetskaya kniga; 2014. P. 219–220 (in Russ.).

60. Gordeev A., Voitovich V., Svyatets G. Promising photonic and phonon domestic technologies for terahertz microprocessors, RAM and interface with ultra-low power consumption. Sovremennaya elektronika = Modern Electronics. 2022;2:65–72 (in Russ.).

61. Rawat U., Anderson J.D., Weinstein D. Design and Applications of Integrated Transducers in Commercial CMOS Technology. Front. Mech. Eng. 2022;8:902421. https://doi.org/10.3389/fmech.2022.902421

62. Taishev S.R., Krainova K.Yu. Optimization of polarization conditions in nanoscale ferroelectrics for further application in sensors and MEMS. Molodoi uchenyi = Young Scientist. 2016;1(105):224–227 (in Russ.).

63. Vorotilov K.A., Mukhortov V.M., Sigov A.S. Integrirovannye segnetoelektricheskie ustroistva (Integrated Ferroelectric Devices). Moscow: Energoatomizdat; 2011. 175 p. (in Russ.).

64. Li S., Wang Y., Yang M., et al. Ferroelectric thin films: performance modulation and application. Mater. Adv. 2022;3(14): 5735–5752. https://doi.org/10.1039/D2MA00381C

65. Tadigadapa S. Piezoelectric microelectromechanical systems – challenges and opportunities. Procedia Eng. 2010;5:468–471. https://doi.org/10.1016/j.proeng.2010.09.148

66. Mukhortov V.M., Golovko Yu.I., Biryukov S.V., Masychev S.I., Pavlenko A.V., Stryukov D.V., Zinchenko S.P., Kovtun A.P., Tolmachev G.N. Nanoscale ferroelectric films – a new active medium for microelectronics. Nauka Yuga Rossii = Science in the South of Russia. 2022;18(4):33–43 (in Russ.). https://doi.org/10.7868/S25000640220404

67. Rabe K.M., Ahn C.H., Triscone J.M. (Eds.). Fizika segnetoelektrikov: sovremennyi vzglyad (Physics of Ferroelectrics: A Modern Perspective): transl. from Engl. Moscow: Laboratoriya znanii; 2020. 443 p. (in Russ.). ISBN 978-5-00101-827-8 [Rabe K.M., Ahn C.H., Triscone J.M. (Eds.). Physics of Ferroelectrics. A Modern Perspective. Berlin, Heidelberg: Springer; 2007. 402 p.]

68. Vorotilov K.A., Sigov A.S., Romanov A.A., Mashevich P.R. Nanomaterials and structures in electronics. Nanomaterialy i nanostruktury – 21 vek = Nanomaterials and Nanostructures – 21st Century. 2010;1(1):45–53 (in Russ.).


Supplementary files

1. Micromechanical transducers
Subject
Type Исследовательские инструменты
View (17KB)    
Indexing metadata ▾
  • A brief description of the design solutions of modern MEMS gyroscopes and their integration into mechatronic systems is presented.
  • The production technologies of MEMS gyroscopes and specifics of the technological equipment used are considered.
  • A separate section discusses the configuration and calibration aspects of these devices.
  • Promising directions for the development of MEMS gyroscopes with an emphasis on the use of microoptoelectromechanical converters and ferroelectric films are highlighted.

Review

For citations:


Kuznetsov P.S. Microelectromechanical systems for improved gyroscope design. Russian Technological Journal. 2025;13(3):103-121. https://doi.org/10.32362/2500-316X-2025-13-3-103-121. EDN: KBLENU

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)