MODIFIED ALGORITHM FOR DETERMINATION OF FULL STABILITY AREAS IN NONSTATIONARY NONLINEAR SYSTEMS
https://doi.org/10.32362/2500-316X-2018-6-3-39-53
Abstract
References
1. Berdnikov V.P. Algorithm of determination of non-stationary nonlinear systems full stability areas // Rossiiskiy tekhnologicheskiy zhurnal (Russian Technological Journal). 2017. V. 5. № 6. P. 55–72. (in Russ.).
2. Molchanov A.P., Pyatnitskiy E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems I // Avtomatika i telemekhanika (Automation and Remote Control). 1986. № 3. P. 63–73. (in Russ.).
3. Molchanov A.P., Pyatnitskiy E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems II // Avtomatika i telemekhanika (Automation and Remote Control). 1986. № 4. P. 5–15. (in Russ.).
4. Molchanov A.P., Pyatnitskiy E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems III // Avtomatika i telemekhanika (Automation and Remote Control). 1986. № 5. P. 38–49. (in Russ.).
5. Chesi G., Garulli A., Tesi A., Vicino A. Homogeneous polynomial forms for robustness analysis of uncertain systems. London: Springer-Verlag, 2009. 198 p.
6. Barber C. B., Dobkin D. P., Huhdanpaa H. The Quickhull algorithm for convex hulls // ACM Transactions on Mathematical Software.1995. V. 22. Iss. 4. P. 469–483.
7. Farin G. Triangular Bernstein-Bezier patches // Computer Aided Geometric Design. 1986. V. 3. № 2. P. 83–127.
8. Prautzsch H., Boehm W., Paluszny M. Bezier and B-Spline techniques. Berlin: SpringerVerlag, 2002. 304 p.
9. Farin G. Curves and surfaces for CAGD: A practical guide (5th Edition). San Francisco: Morgan Kaufmann, 2001. 520 p.
10. Sun W., Yuan Y. Optimization theory and methods: Nonlinear programming. New York: Springer, 2010. 687 p.
11. Bonnans J., Gilbert J.C., Lemarechal C., Sagastizabal C.A. Numerical optimization: Theoretical and practical aspects. Berlin: Springer, 2006. 490 p.
12. DeRose T.D. Necessary and sufficient conditions for tangent plane continuity of Bezier surfaces // Computer Aided Geometric Design. 1990. № 7. P. 165–179.
Review
For citations:
Berdnikov V.P. MODIFIED ALGORITHM FOR DETERMINATION OF FULL STABILITY AREAS IN NONSTATIONARY NONLINEAR SYSTEMS. Russian Technological Journal. 2018;6(3):39-53. (In Russ.) https://doi.org/10.32362/2500-316X-2018-6-3-39-53