Mathematical modeling of hot isotatic pressing of tubes from powder materials
https://doi.org/10.32362/2500-316X-2025-13-2-74-92
EDN: KPQMI
Abstract
Objectives. The work set out to create a mathematical model to investigate the process of hot isostatic pressing (HIP) process of long tubes from powder materials in metal capsules. By analyzing the stress-strain state in the areas far from the top and bottom borders in the cylindrical system of coordinates, the axial strain rate at every moment of the process can be considered to be constant through the entire volume.
Methods. Mathematical modeling methods were used to describe mechanical properties in the process of HIP deformation by Green’s model of porous compressible media. The HIP capsule material, which is considered to be non-compressible, is described by the ideal plasticity model. The temperature field is assumed to be uniform over the volume and constant during the time of deformation.
Results. The hypothesis of the uniform density over the cross section at each moment of the process was considered during analysis to the extent that the wall thickness of the tube is substantially less than its diameter. This hypothesis allowed us to reduce the task of determining the strain rates at every step of the process to a solution comprising two equations having two variables. When the strain rates are determined, the deformation field is built to obtain the final dimensions of the tube when the powder material is fully consolidated at the end of the HIP process.
Conclusions. The proposed model for describing the process hot isostatic pressing of long tubes from powder materials takes all the features of this process into account depending on the system parameters. The possibility of using tubular samples to determine the functions included in the Green’s condition is demonstrated.
About the Authors
Vasiliy A. GoloveshkinRussian Federation
Vasiliy A. Goloveshkin, Dr. Sci. (Eng.), Professor, Higher Mathematics Department, Institute of Cybersecurity and Digital Technologies; Leading Researcher
78, Vernadskogo pr., Moscow, 119454; 7-1, Leningradskii pr., Moscow,
125040
Scopus Author ID 6602872377
Competing Interests:
The authors declare no conflicts of interest.
Artem A. Nickolaenko
Russian Federation
Artem A. Nickolaenko, Student
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
Victor N. Samarov
Russian Federation
Victor N. Samarov, Dr. Sci. (Eng.), Technical Director
15, Simferopol’skii bul., Moscow, 117556
Scopus Author ID 6603606878
Competing Interests:
The authors declare no conflicts of interest.
Gerard Raisson
France
Gerard Raisson, Retired Consultant
Scopus Author ID 6603152593
Competing Interests:
The authors declare no conflicts of interest.
Daria M. Fisunova
Russian Federation
Daria M. Fisunova, Student
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
References
1. Anokhina A.V., Goloveshkin V.A., Samarov V.N., Seliverstov D.G., Raisson G. A Mathematical model for calculating the process of hot isostatic pressing of parts of complex-shaped parts in the presence of a periodic structure of embedded elements. Mekhanika kompozitsionnykh materialov i konstruktsii = Mechanics of Composite Materials and Structures. 2002;8(2):245–254 (in Russ.). https://elibrary.ru/jwpwnd
2. Ilyushin A.A. Plastichnost’. Osnovy obshchei matematicheskoi teorii (Plasticity. Fundamentals of General Mathematical Theory). St. Petersburg: Lenand; 2020. 272 p. (in Russ.). ISBN 978-5-9710-7092-4
3. Ilyushin A.A. Mekhanika sploshnoi sredy (Continuum Mechanics). Moscow: MSU; 1990. 310 p. (in Russ.). ISBN 5-211-00940-1
4. Cundall P.A., Strack O.D.L. A discrete numerical model for granular assemblies. Geotechnique. 1979;29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47
5. Gordon V.A., Shorkin V.S. The nonlocal theory of the near-surface layer of a solid. In: Results of the Development of Mechanics in Tula. International Conference: Abstracts of the Reports. Tula; 1998. P. 24 (in Russ.).
6. Gordon V.A., Shorkin V.S. The nonlocal theory of the near-surface layer of a solid. Izvestiya Tul’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika = Bulletin of Tula State University. Series: Mathematics. Mechanics. Computer Science. 1998;4(2):55–57 (in Russ.).
7. Lomakin V.A. Statisticheskie zadachi mekhaniki tverdykh deformiruemykh tel (Statistical Problems of Mechanics of Solid Deformable Bodies). Moscow: Nauka; 1970. 138 p. (in Russ.).
8. Bаlshin M.Yu., Kiparisov S.S. Osnovy poroshkovoi metallurgii (Fundamentals of Powder Metallurgy). Moscow: Metallurgiya; 1978. 184 p. (in Russ.).
9. Bаlshin M.Yu. Nauchnye osnovy poroshkovoi metallurgii i metallurgii volokna (Scientific Foundations of Powder Metallurgy and Fiber Metallurgy). Moscow: Metallurgiya; 1972. 336 p. (in Russ.).
10. Fedorchenko I.M., Andrievskii R.A. Osnovy poroshkovoi metallurgii (Fundamentals of Powder Metallurgy). Kiev: Publishing House of the Academy of Sciences of the Ukrainian SSR; 1963. 420 p. (in Russ.).
11. Ilyushin A.A. Plastichnost’. Ch. 1. Uprugo-plasticheskie deformatsii (Plasticity. Part 1. Elastic-plastic deformations). Moscow; Leningrad: Gostekhizdat; 1948. 376 p. (in Russ.).
12. Kachanov L.M. Osnovy teorii plastichnosti (Fundamentals of the Theory of Plasticity). Moscow: Nauka; 1969. 420 p. (in Russ.).
13. Sokolovskii V.V. Teoriya plastichnosti (Theory of Plasticity). Moscow: Vysshaya Shkola; 1969. 608 p. (in Russ.).
14. Hill R. Matematicheskaya teoriya plastichnosti (Mathematical Theory of Plasticity): transl. from Engl. Moscow: Gostekhizdat; 1956. 408 p. (in Russ.). [Hill R. The Mathematical Theory of Plasticity. Oxford: Clarendon Press; 1950. 356 p.]
15. Frost H.J., Ashby M.F. Karty mekhanizmov deformatsiy (Deformation Mechanism Maps): transl. from Engl. Chelyabinsk: Metallurgiya; 1989. 327 p. (in Russ.). [Frost H.J., Ashby M.F. Deformation Mechanism Maps. Oxford: Pergamon Press; 1982.]
16. Arzt E., Ashby M.F., Easterling K.E. Practical application of Hot-Isostatic Pressing diagrams: four case studies. Metall. Trans. 1983;14A(1):211–221. https://doi.org/10.1007/BF02651618
17. Ashby M.F. A first report of sintering diagrams. Acta Metall. 1974;22(3):275–289. https://doi.org/10.1016/0001-6160(74)90167-9
18. Helle A.S., Easterling K.E., Ashby M.F. Hot Isostatic Pressing diagrams: New development. Acta Metall. 1985;33(12): 2163–2174. https://doi.org/10.1016/0001-6160(85)90177-4
19. Druyanov B.A. Prikladnaya teoriya plastichnosti poristykh tel (Applied Theory of Plasticity of Porous Bodies). Moscow: Mashinostroenie; 1989. 168 p. (in Russ.).
20. Green R.J. A plasticity theory for porous solids. Int. J. Mech. Sci. 1972;14(4):215–224. https://doi.org/10.1016/0020-7403(72)90063-X
21. Shtern M.B., Serdyuk G.G., Maksimenko L.A., et al. Fenomenologicheskie teorii pressovaniya poroshkov (Phenomenological Theories of Powder Pressing). Kiev: Naukova dumka; 1982. 140 p. (in Russ.).
22. Skorokhod V.V. Reologicheskie osnovy teorii spekaniya (Rheological Foundations of Sintering Theory). Kiev: Naukovadumka; 1972. 152 p. (in Russ.).
23. Goloveshkin V.A., Kazberovich A.M., Samarov V.N., Seliverstov D.G. New Regularities of the Shape-Changing of Hollow Parts During HIP. In: Koizumi M. (Ed.). Hot Isostatic Pressing Theory and Applications. Springer; 1992. P. 281–287. https://doi.org/10.1007/978-94-011-2900-8_43
24. Anokhina A.V., Goloveshkin V.A., Pirumov A.R., Flaks M.Ya. Investigation of the initial process of pressing pipes made of powder materials, taking into account vertical shrinkage. Mekhanika kompozitsionnykh materialov i konstruktsii = Mechanics of Composite Materials and Structures. 2003;9(2):123–132 (in Russ.).
25. Dutton R.E., Shamasundar S., Semiatin S.L. Modeling the Hot Consolidation of Ceramic and Metal Powders. Metall. Mater. Trans. A. 1995;26A:2041–2051. https://doi.org/10.1007/BF02670676
26. Vlasov A.V., Seliverstov D.G. Determination of the plasticity functions of powder materials used in HIP. In: Research in the Field of Theory, Technology and Equipment for Stamping Production: Collection of Scientific Papers. Tula; 1998. P. 46–49 (in Russ.).
27. Raisson G., Goloveshkin V., Samarov V. Identification of Porous Materials Rheological Coefficient Using Experimental Determination of the Radial and Longitudinal Strain Rate Ratio. In: Hot Isostatic Pressing – HIP’22. Materials Research Proceedings. 2023. V. 38. Р. 150–159. https://doi.org/10.21741/9781644902837-21
28. Raisson G., Goloveshkin V., Khomyakov E., Samarov V. Effect of Experimental Determination Process on Shear Stress Coefficient of Green Equation Describing HIP. In: Hot Isostatic Pressing – HIP’22. Materials Research Proceedings. 2023. V. 38. Р. 172–176. https://doi.org/10.21741/9781644902837-24
29. Bochkov A., Kozyrev Yu., Ponomarev A., Raisson G. Theoretical Evaluation of Capsule Material Strain Hardening on the Deformation of Long Cylindrical Blanks During HIP Process. In: Hot Isostatic Pressing – HIP’22. Materials Research Proceedings. 2023. V. 38. Р. 177–183. https://doi.org/10.21741/9781644902837-25
Supplementary files
|
1. Area of finding the minimum | |
Subject | ||
Type | Исследовательские инструменты | |
View
(30KB)
|
Indexing metadata ▾ |
- The process of hot isostatic pressing of long tubes from powder materials in metal capsules was investigated using mathematical modeling. By analyzing the stress-strain state in the areas far from the top and bottom borders in the cylindrical system of coordinates, the axial strain rate at every moment of the process can be considered to be constant through the entire volume.
- The proposed model takes all the features of this process into account depending on the system parameters.
- The possibility of using tubular samples to determine the functions included in the Green’s condition is demonstrated.
Review
For citations:
Goloveshkin V.A., Nickolaenko A.A., Samarov V.N., Raisson G., Fisunova D.M. Mathematical modeling of hot isotatic pressing of tubes from powder materials. Russian Technological Journal. 2025;13(2):74-92. https://doi.org/10.32362/2500-316X-2025-13-2-74-92. EDN: KPQMI