Distribution of temperature field strength on the surface of graphene inclusions in a matrix composite
https://doi.org/10.32362/2500-316X-2025-13-2-46-56
EDN: TNQTWK
Abstract
Objectives. The study sets out to obtain an analytical expression for the distribution of the temperature field strength on the surfaces of anisotropic graphene inclusions taking the form of thin disks in the matrix composite and to use the obtained expressions to predict the strength of the temperature field on the surface of inclusions from the matrix side.
Methods. An inclusion taking the form of a thin circular disk represents a special limit case of an ellipsoidal inclusion. To obtain the corresponding analytical expressions, the authors use their previously derived more general expression for the operator of the concentration of the electric field strength on the surface of ellipsoidal inclusion. The approach is justified by the mathematical equivalence of problems of finding the electrostatic and temperature field in the stationary case. The operator relates the field strength on the inclusion surface from the matrix side to the average field strength in the composite sample; the corresponding expression is obtained in a generalized singular approximation.
Results. Analytical expressions were obtained for the operator of the concentration of the temperature field strength on the surface of the inclusion taking the form of a thin disk of multilayer graphene in a matrix composite. The expressions take into account inclusion anisotropy, the position of the point on the inclusion surface, the volume fraction of inclusions in the material, and the inclusion orientation. Two types of inclusion orientation distributions were considered: equally oriented inclusions and uniform distribution of inclusion orientations. Model calculations of the value for the temperature field strength at the points of the inclusion disk edge as a function of the angle between the radius vector of this point and the direction of the applied field strength were carried out. Conclusions. In the case of graphene multilayer inclusions, it is shown that the field strength at points on their edges can exceed the applied field strength by several orders of magnitude.
About the Authors
Igor V. LavrovRussian Federation
Igor V. Lavrov, Cand. Sci. (Phys.-Math.), Assistant Professor, Senior Researcher
32A, Leninskii pr., Moscow, 119334
Scopus Author ID 35318030100;
ResearcherID D-1011-2017
Competing Interests:
The authors declare no conflicts of interest.
Vladimir V. Bardushkin
Russian Federation
Vladimir V. Bardushkin, Dr. Sci. (Phys.-Math.), Assistant Professor, Chief Researcher
32A, Leninskii pr., Moscow, 119334
Scopus Author ID 55620242900;
ResearcherID D-1010-2017
Competing Interests:
The authors declare no conflicts of interest.
Victor B. Yakovlev
Russian Federation
Victor B. Yakovlev, Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Scientific Secretary
32A, Leninskii pr., Moscow, 119334
Scopus Author ID 7201907574;
ResearcherID E-7995-2017
Competing Interests:
The authors declare no conflicts of interest.
References
1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. https://doi.org/10.1126/science.1102896
2. Novoselov K.S. Graphene: Materials in the Flatland. Uspekhi Fizicheskikh Nauk. 2011;181(12):1299–1311 (in Russ.). https://doi.org/10.3367/UFNr.0181.201112f.1299
3. Bunch J.S., Van der Zande A.M., Verbridge S.S., Frank I.W., Tanenbaum D.M., Parpia J.M., Craighead H.G., McEuen P.L. Electromechanical resonators from graphene sheets. Science. 2007;315(5811):490–493. https://doi.org/10.1126/science.1136836
4. Yan Zh., Nika D.L., Balandin A.A. Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circuits, Devices & Systems. 2015;9(1):4–12. https://doi.org/10.1049/iet-cds.2014.0093
5. Tkachev S.V., Buslaeva E.Y., Gubin S.P. Graphene: a novel carbon nanomaterial. Neorg. Mater. 2011;47(1):1–10. https://doi.org/10.1134/S0020168511010134 [Original Russian Text: Tkachev S.V., Buslaeva E.Y., Gubin S.P. Graphene: a novel carbon nanomaterial. Neorganicheskie materialy. 2011;47(1):5–14 (in Russ.).]
6. EletskiiA.V., Iskandarova I.M., KnizhnikA.A., Krasikov D.N. Graphene: fabrication methods and thermophysical properties. Phys.-Usp. 2011;54(3):227–258. https://doi.org/10.3367/UFNe.0181.201103a.0233 [Original Russian Text: Eletskii A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphene: fabrication methods and thermophysical properties. Uspekhi Fizicheskikh Nauk. 2011;181(3):233–268 (in Russ.).]
7. Kolesnikov V.I. Teplofizicheskie protsessy v metallopolimernykh tribosistemakh (Thermophysical Processes in MetalPolymeric Tribosystems). Moscow: Nauka, 2003. 279 p. (in Russ.). ISBN 5-02-002843-6
8. Kolesnikov V.I., Kozakov A.T., Sidashov A.V., Kravchenko V.N., Sychev A.P. Diffusion and segregation processes in metalpolymer tribosystem. Trenie i iznos = Friction and Wear. 2006;27(4):361–365 (in Russ.).
9. Lavrov I.V., Bardushkin V.V., Yakovlev V.B. Prediction of the effective thermal conductivity of composites with graphene inclusions. Teplovye protsessy v tekhnike = Thermal Processes in Engineering. 2023;15(7):299–308 (in Russ.).
10. Zarubin V.S., Zimin V.N., Kuvyrkin G.N., Savelyeva I.Y., Novozhilova O.V. Two-sided estimate of effective thermal conductivity coefficients of a textured composite with anisotropic ellipsoidal inclusions. Z. Angew. Math. Phys. (ZAMP). 2023;74(4):139. https://doi.org/10.1007/s00033-023-02039-0
11. Bonfoh N., Dinzart F., Sabar H. New exact multi-coated ellipsoidal inclusion model for anisotropic thermal conductivity of composite materials. Appl. Math. Modell. 2020;87(12):584–605. https://doi.org/10.1016/j.apm.2020.06.005
12. Shalygina T.A., Melezhik A.V., Tkachev A.G., et al. The Synergistic Effect of a Hybrid Filler Based on Graphene Nanoplates and Multiwalled Nanotubes for Increasing the Thermal Conductivity of an Epoxy Composite. Tech. Phys. Lett. 2021;47(7):364–367. https://doi.org/10.1134/S1063785021040143 [Original Russian Text: Shalygina T.A., Melezhik A.V., Tkachev A.G., Voronina S.Yu., Voronchikhin V.D., Vlasov A.Yu. The Synergistic Effect of a Hybrid Filler Based on Graphene Nanoplates and Multiwalled Nanotubes for Increasing the Thermal Conductivity of an Epoxy Composite. Pis’ma v Zhurnal tekhnicheskoi fiziki. 2021;47(7):3–5 (in Russ.). https://doi.org/10.21883/PJTF.2021.07.50789.18609 ]
13. Kolesnikov V.I., Lavrov I.V., Bardushkin V.V., Sychev A.P., Yakovlev V.B. A method of the estimation of the local thermal fields’ distribution in multicomponent composites. Nauka Yuga Rossii = Science in the South Russia. 2017;13(2):13–20 (in Russ.). https://doi.org/10.23885/2500-0640-2017-13-2-13-20
14. Kolesnikov V.I., Yakovlev V.B., Lavrov I.V., et al. Distribution of Electric Fields on the Surface of Inclusions in a Matrix Composite. Dokl. Phys. 2023;68(11):370–375. https://doi.org/10.1134/S1028335823110058 [Original Russian Text: Kolesnikov V.I., Yakovlev V.B., Lavrov I.V., Sychev A.P., Bardushkin A.V. Distribution of Electric Fields on the Surface of Inclusions in a Matrix Composite. Doklady Rossiiskoi akademii nauk. Fizika, tekhnicheskie nauki. 2023;513(1):34–40 (in Russ.). https://doi.org/10.31857/S2686740023060093 ]
15. Milton G. The Theory of Composites. Cambridge: Cambridge University Press; 2004. 719 p.
16. Lykov A.V. Teoriya teploprovodnosti (Theory of Thermal Conductivity). Moscow: Vysshaya shkola; 1967. 600 p. (in Russ.).
17. Kartashov E.M., Kudinov V.A. Analiticheskie metody teorii teploprovodnosti i ee prilozhenii (Analytical Methods of the Theory of Thermal Conductance and its Applications). Moscow: Lenand; 2018. 1072 p. (in Russ.). ISBN 978-5-9710-4994-4
18. Kartashov E.M. New energy effect in non-cylindrical domains with a thermally insulated moving boundary. Russian Technological Journal. 2023;11(5):106–117 (in Russ.). https://doi.org/10.32362/2500-316X-2023-11-5-106-117
19. Benveniste Y., Miloh T. The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int. J. Eng. Sci. 1986;24(9):1537–1552. https://doi.org/10.1016/0020-7225(86)90162-X
20. Benveniste Y. On the effective thermal conductivity of multiphase composites. Z. Angew. Math. Phys. (ZAMP). 1986;37: 696–713. https://doi.org/10.1007/BF00947917
21. Stroud D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B. 1975;12(8):3368–3373. https://doi.org/10.1103/PhysRevB.12.3368
22. Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred (Micromechanics of Inhomogeneous Medium). Moscow: Nauka; 1977. 399 p. (in Russ.).
23. Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. A Method of Analysis of Distributions of Local Electric Fields in Composites. Dokl. Phys. 2016;61(3):124–128. https://doi.org/10.1134/S1028335816030101 [Original Russian Text: Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. A Method of Analysis of Distributions of Local Electric Fields in Composites. Doklady akademii nauk. 2016;467(3): 275–279 (in Russ.). https://doi.org/10.7868/S0869565216090097 ]
24. Lavrov I.V. Permittivity of composite material with texture: ellipsoidal anisotropic inclusions. Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation. 2009;1:52–58 (in Russ.).
25. Grigor’ev I.S., Meilikhov E.Z. Fizicheskie velichiny: spravochnik (Physical Quantities: A Handbook). Moscow: Energoatomizdat; 1991. 1232 p. (in Russ.).
26. Lee H., Neville K. Spravochnoe rukovodstvo po epoksidnym smolam (Handbook of Epoxy Resins): transl. from Engl. Moscow: Energiya; 1973. 415 p. (in Russ.). [Lee H., Neville K. Handbook of Epoxy Resins. N.-Y.: McGraw-Hill; 1967. 922 p.]
27. Sheinerman A.G., Krasnitskii S.A. Modeling of the Influence of Graphene Agglomeration on the Mechanical Properties of Ceramic Composites with Graphene. Tech. Phys. Lett. 2021;47(12):873–876. https://doi.org/10.1134/S106378502109011X [Original Russian Text: Sheinerman A.G., Krasnitskii S.A. Modeling of the Influence of Graphene Agglomeration on the Mechanical Properties of Ceramic Composites with Graphene. Pis’ma v Zhurnal tekhnicheskoi fiziki. 2021;47(17):37–40 (in Russ.). https://doi.org/10.21883/PJTF.2021.17.51385.18844 ]
Supplementary files
|
1. Dependencies of the H(M)/H0 ratio on the angle between the radius vector to the point M and the projection of the vector H0 onto the disk plane for different values of the angle α between the vector H0 and the inclusion plane. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(564KB)
|
Indexing metadata ▾ |
- Analytical expressions were obtained for the operator of the concentration of the temperature field strength on the surface of the inclusion taking the form of a thin disk of multilayer graphene in a matrix composite. The expressions take into account inclusion anisotropy, the position of the point on the inclusion surface, the volume fraction of inclusions in the material, and the inclusion orientation.
- Two types of inclusion orientation distributions were considered: equally oriented inclusions and uniform distribution of inclusion orientations.
- In the case of graphene multilayer inclusions, it is shown that the field strength at points on their edges can exceed the applied field strength by several orders of magnitude.
Review
For citations:
Lavrov I.V., Bardushkin V.V., Yakovlev V.B. Distribution of temperature field strength on the surface of graphene inclusions in a matrix composite. Russian Technological Journal. 2025;13(2):46-56. https://doi.org/10.32362/2500-316X-2025-13-2-46-56. EDN: TNQTWK