NONPARAMETRIC METHOD OF RECONSTRUCTING PROBABILITY DENSITY ACCORDING TO THE OBSERVATIONS OF A RANDOM VARIABLE
https://doi.org/10.32362/2500-316X-2018-6-3-31-38
Abstract
About the Authors
A. D. KryzhanovskyRussian Federation
A. A. Pastushkov
Russian Federation
References
1. Kulikov V.B. Reconstruction of multimodal probability densities from experimental data in structures with stochastic properties // Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. Matematicheskoye modelirovaniye. Optimal'noye upravleniye (Vestnik of Lobachevsky University of Nizhniy Novgorod. Mathematic Modeling. Optimal Control). 2014. V. 1 (1). P. 248–256. (in Russ.).
2. Vapnik V.N., Stefanyuk A.R. Nonparametric methods for recovering the probability density // Avtomatika i telemehanika (Automation and Remote Control). 1978. № 8. P. 38–52. (in Russ.).
3. Lapko A.V., Lapko V.A. The analysis of efficiency of decomposition methods of measurements interval of the random variable at a probability density estimation // Informatika i sistemy upravleniya (Information Science and Control Systems). 2015. V. 3 (45). P. 84–88. (in Russ.).
4. Vapnik V.N., Glazkova T.G., Kosheev V.A. Algorithms and programs for recovering dependencies / Ed. V.N. Vapnik. Moscow: Nauka Publ., 1984. 815 p. (in Russ.).
5. Chentsov N.N. Estimation of the unknown distribution density by observations // Doklady Akademii Nauk SSSR. 1962. V. 147. № 1. P. 45–48. (in Russ.).
6. Kropotov Yu.A. Methods of estimation models of acoustic signals probability density in telecommunications audio-exchange systems // Sistemy upravleniya, svyazi i bezopasnosti (Systems of Control, Communications and Security). 2017. V. 1. P. 26–39. (in Russ.).
7. Kolmogorov A.N., Fomin S.I. Elements of the theory of functions and functional analysis. M.: Nauka Publ., 1976. 542 p.
8. Kulikov V.B. Reconstruction of multimodal probability densities from experimental data in structures with stochastic properties // Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. Matematicheskoye modelirovaniye. Optimal'noye upravleniye (Vestnik of Lobachevsky University of Nizhniy Novgorod. Mathematic Modeling. Optimal Control). 2014. V. 1 (1). P. 248–256. (in Russ.).
9. Il'yin V.A., Sadovnichii V.A., Sendov Bl.X. Mathematical analysis. The initial course. Moscow: Publishing House of Moscow State University, 1985. 662 p.
10. Lapko A.V., Lapko V.A. The analysis of efficiency of decomposition methods of measurements interval of the random variable at a probability density estimation // Informatika i sistemy upravleniya (Information Science and Control Systems). 2015. V. 3 (45). P. 84–88. (in Russ.).
11. Khurgin Ya.I., Yakovlev V.P. Finite functions in physics and engineering. Moscow: Nauka Publ., 1971. 408 p.
12. Trynin A.Yu. Necessary and sufficient conditions for the uniform on a segment sinkapproximations functions of bounded variation // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Matematika. Mekhanika. Informatika (Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics). 2016. V. 16. № 3. P. 288–298. (in Russ.).
13. Chentsov N.N. Estimation of the unknown distribution density by observations // Doklady Akademii Nauk SSSR. 1962. V. 147. № 1. P. 45–48. (in Russ.).
14. Smirnov V.I. Course of Higher Mathematics: in fives vols. V. 5. Moscow: Nauka Publ., 1974. 600 p. (in Russ.).
15. Kolmogorov A.N., Fomin S.I. Elements of the theory of functions and functional analysis. M.: Nauka Publ., 1976. 542 p.
16. Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. Moscow: Nauka Publ., 1978. 206 p. (in Russ.).
17. Il'yin V.A., Sadovnichii V.A., Sendov Bl.X. Mathematical analysis. The initial course. Moscow: Publishing House of Moscow State University, 1985. 662 p.
18. Tanana V.P. Methods for solving operator equations. Moscow: Nauka Publ., 1981. 156 p. (in Russ.).
19. Khurgin Ya.I., Yakovlev V.P. Finite functions in physics and engineering. Moscow: Nauka Publ., 1971. 408 p.
20. Pastushkov A.A. Nonparametric method for recovering the probability density from observations of a random variable // Nauchnyi vestnik MIREA (Scientific Bulletin of MIREA). 2009. № 1(6). P. 50–61. (in Russ.).
21. Trynin A.Yu. Necessary and sufficient conditions for the uniform on a segment sinkapproximations functions of bounded variation // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Matematika. Mekhanika. Informatika (Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics). 2016. V. 16. № 3. P. 288–298. (in Russ.).
22. Volper A.I., Khudyaev S.I. Analysis in classes of discontinuous functions and equations of mathematical physics. Moscow: Nauka Publ., 1975 395 p. (in Russ.).
23. Smirnov V.I. Course of Higher Mathematics: in fives vols. V. 5. Moscow: Nauka Publ., 1974. 600 p. (in Russ.).
24. Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. Moscow: Nauka Publ., 1978. 206 p. (in Russ.).
25. Tanana V.P. Methods for solving operator equations. Moscow: Nauka Publ., 1981. 156 p. (in Russ.).
26. Pastushkov A.A. Nonparametric method for recovering the probability density from observations of a random variable // Nauchnyi vestnik MIREA (Scientific Bulletin of MIREA). 2009. № 1(6). P. 50–61. (in Russ.).
27. Volper A.I., Khudyaev S.I. Analysis in classes of discontinuous functions and equations of mathematical physics. Moscow: Nauka Publ., 1975 395 p. (in Russ.).
Review
For citations:
Kryzhanovsky A.D., Pastushkov A.A. NONPARAMETRIC METHOD OF RECONSTRUCTING PROBABILITY DENSITY ACCORDING TO THE OBSERVATIONS OF A RANDOM VARIABLE. Russian Technological Journal. 2018;6(3):31-38. (In Russ.) https://doi.org/10.32362/2500-316X-2018-6-3-31-38