1. Norton P. HgCdTe infrared detectors. Opto-Electron. Rev. 2002;10(3):159-174.
2. Kopytko M., Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes. Sensors and Actuators A: Physical. 2022;339:113511. https://doi.org/10.1016/j.sna.2022.113511
3. Józwikowska A., Józwikowski K., Rogalski A. Performance of mercury cadmium telluride photoconductive detectors. Infrared Phys. 1991;31(6):543-554. https://doi.org/10.1016/0020-0891(91)90141-2
4. Rogalski A. Commentary on the Record-Breaking Performance of Low-Dimensional Solid Photodetectors. ACS Photonics. 2023;10(3):647-653. https://doi.org/10.1021/acsphotonics.2c01672
5. Кульчицкий Н.А., Наумов А.Б., Старцев В.В. Охлаждаемые фотоприемные устройства ИК-диапазона на кадмий- ртуть-теллуре: состояние и перспективы развития. Электроника: наука, технология, бизнес. 2020;6(197): 114-121. https://doi.org/10.22184/1992-4178.2020.197.6.114.121
6. Hansen G.L., Schmit J.L., Casselman T.N. Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J. App. Phys. 1982;53(10):7099-7101. https://doi.org/10.1063/1.330018
7. Lawson W., Nielsen S., Putley E., Young A. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids. 1959;9(3-4):325-329. https://doi.org/10.1016/0022-3697(59)90110-6
8. Schmit J.L., Stelzer E.L. Temperature and Alloy Compositional Dependences of the Energy Gap of Hg1−xCdxTe. J. Appl. Phys. 1969;40(12):4865-4869. https://doi.org/10.1063/1.1657304
9. Scott M.W. Energy Gap in Hg1−xCdxTe by Optical Absorption. J. Appl. Phys. 1969;40(10):4077-4081. https://doi.org/10.1063/1.1657147
10. Elliott C., Melngailis J., Harman T., Kafalas J., Kernan W. Pressure Dependence of the Carrier Concentrations in p-Type Alloys of Hg1−xCdxTe at 4.2 and 77°K. Phys. Rev. B. 1972;5(8):2985. https://doi.org/10.1103/PhysRevB.5.2985
11. McCombe B.D., Wagner R.J., Prinz G.A. Far-Infrared Observation of Electric-Dipole-Excited Electron-Spin Resonance in Hg1−xCdxTe. Phys. Rev. Lett. 1970;25(2):87-90. https://doi.org/10.1103/PhysRevLett.25.87
12. Xin W., Zhong W., Shi Y., Shi Y., Jing J., Xu T., Guo J., Liu W., Li Y., Liang Z., Xin X., Cheng J., Hu W., Xu H., Liu Y. Low-Dimensional-Materials-Based Photodetectors for Next-Generation Polarized Detection and Imaging. Adv. Mater. 2024;36(7):2306772. https://doi.org/10.1002/adma.202306772
13. Xue X., Chen M., Luo Y., Qin T., Tang X., Hao Q. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light: Sci. Appl. 2023;12(1):2. https://doi.org/10.1038/s41377-022-01014-0
14. Agarwal H., Nowakowski K., Forrer A., Principi A., Bertini R., Batlle-Porro S., Reserbat-Plantey A., Prasad P., Vistoli L., Watanabe K., Taniguchi T., Bachtold A., Scalari G., Krishna Kumar R., Koppens F.H.L. Ultra-broadband photoconductivity in twisted graphene heterostructures with large responsivity. Nat. Photon. 2023;17(12):1047-1053. https://doi.org/10.1038/s41566-023-01291-0
15. Lau J.A., Verma V.B., Schwarzer D., Wodtke A.M. Superconducting single-photon detectors in the mid-infrared for physical chemistry and spectroscopy. Chem. Soc. Rev. 2023;52:921-941. https://doi.org/10.1039/d1cs00434d
16. Rogalski A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 2005;68(10):2267. https://doi.org/10.1088/0034-4885/68/10/R01
17. Kimchi J., Frederick J.R., Wong T.T.S. Low-frequency noise in photoconductive HgCdTe detectors. Proc. SPIE. 1996;2812. 12 p. https://doi.org/10.1117/12.254098
18. Johnson J.B. The Schottky Effect in Low Frequency Circuits. Phys. Rev. 1925;26(1):71-85. https://doi.org/10.1103/PhysRev.26.71
19. Schottky W. Small-Shot Effect and Flicker Effect. Phys. Rev. 1926;28(1):74-103. https://doi.org/10.1103/PhysRev.28.74
20. Dutta P., Horn P.M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 1981;53(3):497-516. https://doi.org/10.1103/RevModPhys.53.497
21. Voss R.F., Clarke J. 1/f noise in music and speech. Nature. 1975;258(5533):317. https://doi.org/10.1038/258317a0
22. Press W.H. Flicker noises in astronomy and elsewhere. Comments Astrophys. 1978;7(4):103-119.
23. Milotti E. 1/f noise: a pedagogical review. 2002; ArXiV_0204033v1. https://arxiv.org/pdf/physics/0204033
24. Рытов С.М. Введение в статистическую радиофизику. Часть 1. Случайные процессы. М.: Наука; 1976. 496 с.
25. Morikawa M., Nakamichi A. A simple model for pink noise from amplitude modulations. Sci. Rep. 2023;13(1):8364. https://doi.org/10.1038/s41598-023-34816-2
26. Zenhausern F., O’Boyle M.P., Wickramasinghe H.K. Apertureless near-field optical microscope. Appl. Phys. Lett. 1994;65(13):1623-1625. https://doi.org/10.1063/1.112931
27. Zenhausern F., Martin Y., Wickramasinghe H.K. Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution. Science. 1995;269(5227):1083-1085. https://doi.org/10.1126/science.269.5227.1083
28. Keilmann F., Hillenbrand R. Near-Field Microscopy by Elastic Light Scattering from a Tip. Philos. Trans.: Math., Phys. Eng. Sci. 2004;362(1817):787-805. https://doi.org/10.1098/rsta.2003.1347
29. Казанцев Д.В., Казанцева Е.А. Предусилитель для CdHgTe-фотодетектора. Приборы и техника эксперимента. 2020;1:144-150. https://doi.org/10.31857/S0032816220010218
30. Shockley W. The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors. Bell System Tech. J. 1949;28(3): 435-489. https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
31. Казанцев Д.В., Казанцева Е.А. Цифровое детектирование оптического сигнала в микроскопе ближнего оптического поля. Приборы и техника эксперимента. 2022;2:79-98. URL: https://sciencejournals.ru/view-article/?j=pribory&y=2022&v=0&n=2&a=Pribory2202014Kazantsev
32. Cooley J.W., Tukey J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 1965;19(90): 297-301. https://doi.org/10.1090/S0025-5718-1965-0178586-1
33. Stephens D.R., Diggins C., Turkanis J., Cogswell J. C++ Cookbook. O’Reilly Media, Inc.; 2005. 592 p. ISBN 978-059-600761-4