Preview

Russian Technological Journal

Advanced search

Magneto-optical transverse Kerr effect in Cox(CoO)1−x nanocomposites

https://doi.org/10.32362/2500-316X-2025-13-1-115-121

EDN: OABAYG

Abstract

Objectives. The aim of this paper is to attain and investigate the spectra of the magneto-optical transverse Kerr effect (TKE) in Cox(CoO)1−x nanocomposites, to compare the obtained results with experimental data, and identify their specific features. Magneto-optical spectroscopy is a method for non-destructive testing and research of a wide class of nanostructures with promising and interesting properties, and such studies are essential in terms of both fundamental and practical aspects.

Methods. Computer modeling is used as part of the promising effective medium method. This is in the form of the Bruggeman approximation, according to which the structure under study is replaced by a medium with effective properties.

Results. TKE experimental spectra were studied and Kerr effect spectra in the range of 1.5–3.0 eV were obtained by computer modeling. In this case, the modeling is performed by means of two methods, ignoring and considering the quasiclassical size effect. The final result is the comparison of the model and experimental Kerr effect spectra, in which the influence of size effects on the appearance of the TKE spectra is shown. The reliability of methods is well confirmed by comparing the results obtained with empirical data. The value of the results obtained stems from the fact that all the calculated parameters of the nanocomposite under study and the shape of TKE spectral dependencies  are in good agreement with the observation results.

Conclusions. The optimal parameters of the sample under study are established as part of computer modeling: form factor, average granule size, and the anomalous Hall effect coefficient. The described approach allows the magneto-optical properties of promising nanomaterials to be studied in a non-contact and non-destructive manner. These results are useful for creating new types of devices as well as electronics and nanoelectronics elements.

About the Authors

Maxim M. Yashin
MIREA – Russian Technological University
Russian Federation

Maxim M. Yashin, Cand. Sci. (Phys.–Math.), Associate Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming,

78, Vernadskogo pr., Moscow, 119454.

ResearcherID: G-6809-2017,

Scopus AuthorID: 57210607470.


Competing Interests:

The authors declare no conflicts of interest.



Vitaly E. Ryabukhin
MIREA – Russian Technological University
Russian Federation

Vitaly E. Ryabukhin, Student, Institute for Advanced Technologies and Industrial Programming,

78, Vernadskogo pr., Moscow, 119454.


Competing Interests:

The authors declare no conflicts of interest.



Alexey N. Yurasov
MIREA – Russian Technological University
Russian Federation

Alexey N. Yurasov, Dr. Sci. (Phys.-Math.), Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming,

78, Vernadskogo pr., Moscow, 119454.

ResearcherID: M-3113-2016,

Scopus AuthorID: 6602974416.


Competing Interests:

The authors declare no conflicts of interest.



References

1. Gan’shina E.A., Golik L.L., Kun’kova Z.E., Zykov G.S., Rukovishnikov A.I., Markin Yu.V. Magnetic inhomogeneity manifestations in the magneto-optical spectra of (In-Mn)As layers. IEEE Magn. Lett. 2020;11:2502105. https://doi.org/10.1109/LMAG.2020.2982849

2. Gan’shina E.A., Pripechenkov I.M., Perova N.N., et al. Magneto-Optical Spectroscopy of GaSb–MnSb Composites. Bull. Russ. Acad. Sci. Phys. 2023;87(3):282–286. https://doi.org/10.3103/s1062873822701088 [Original Russian Text: Gan’shina E.A., Pripechenkov I.M., Perova N.N., Kanazakova E.S., Oveshnikov L.N., Dzhaloliddinzoda M., Ril’ A.I., Granovskii A.B., Aronzon B.A. Magneto-optical spectroscopy of composites GaSb–MnSb. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2023;87(3):328–332 (in Russ.). https://doi.org/10.31857/S0367676522700570 ]

3. Granovsky A.B., Khanikaev A.B., Kioussis N., Kalitsov A.V. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys. J. Magn. Magn. Mater. 2003;258–259:87–89. https://doi.org/10.1016/S03048853(02)01119-8

4. Zvezdin A.K., Kotov V.A. Magnitooptika tonkikh plenok (Magneto-Optics of Thin Films). Moscow: Nauka; 1988. 192 p. (in Russ.).

5. Ganshina E.A., Garshin V.V., Pripechenkov I.M., Ivkov S.A., Domashevskaya E.P., Sitnikov A.V. Effect of phase transformations of a metal component on the magneto-optical properties of thin-films nanocomposites (CoFeZr)x(MgF2)100−x. Nanomaterials. 2021;11(7):1666. https://doi.org/10.3390/nano11071666

6. Yurasov A.N., Yashin M.M., Gladyshev I.V., Ganshina E.A., Kanazakova E.S., Saifulina D.A., Simdyanova M.A. Granule size distribution influence on the nanocomposite magneto-optical properties. Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye nauki = Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2023;110(5):63–72 (in Russ.). Available from URL: https://vestniken.bmstu.ru/catalog/phys/cryst/1111.html

7. Blinov M.I., Chernenko V., Prudnikov V.N., Aseguinolaza I.R., Barandiaran J.M., Lahderanta E., Granovsky A.B. Anomalous hall effect in Ni47.3Mn30.6Ga22.1/Mg O(001) thin films. Phys. Rev. B. 2020;102(6):064413. https://doi.org/10.1103/PhysRevB.102.064413

8. Domashevskaya E.P., Ivkov S.A., Sitnikov A.V., et al. Influence of the relative content of the metal component in the dielectric matrix on the formation and size of cobalt nanocrystals in Coх(MgF2)100−х film composites. Phys. Solid State. 2019;61(2):71–79. https://doi.org/10.1134/S1063783419020112

9. Gan’shina A., Garshin V.V., Perova N.N., et al. Magnetooptical Kerr Spectroscopy of Nanocomposites. J. Exp. Theor. Phys. 2023;137(4):572–581. https://doi.org/10.1134/S1063776123100151 [Original Russian Text: Gan’shina A., Garshin V.V., Perova N.N., Pripechenko I.M., Yurasov A.N., Yahin M.M., Rylkov V.V., Granovskii A.B. Magnetooptical Kerr Spectroscopy of Nanocomposites. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2023;164(4):662–772 (in Russ.). https://doi.org/10.31857/S0044451023100188 ]

10. Yurasov A.N., Yashin M.M. Methods of effective media as optimal methods for modeling the physical properties of nanostructures. Rossiiskii tekhnologicheskii zhurnal. 2020;8(5):68–77 (in Russ.). https://doi.org/10.32362/2500316X-2020-8-5-68-77

11. Aleshnikov A.A., Kalinin Yu.E., Sitnikov A.V., Fedosov A.G. Magnetic properties of multilayer structures based on (Co45Fe45Zr10)x(Al2O3)100−x nanocomposites. Perspektivnye Materialy. 2012;5:68–75 (in Russ.).

12. Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B. Magnetic, magnetoresistive and structural properties of Сox(СoО)100−x thin film composites. J. Magn. Magn. Mater. 2023;587(39):171154. https://doi.org/10.1016/j.jmmm.2023.171154

13. Fadeev E.A., Blinov M.I., Garshin V.V., et al. Magnetic properties of (Сo40Fe40B20)x(SiO2)100−x nanocomposites near the percolation threshold. Bull. Russ. Acad. Sci. Phys. 2019;83(7):835–837. https://doi.org/10.3103/S1062873819070153 [Original Russian Text: Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B. Magnetic properties of (Сo40Fe40B20)x(SiO2)100−x nanocomposites near the percolation threshold. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2019;83(7):917–920 (in Russ.). https://doi.org/10.1134/S0367676519070159 ]

14. Mikhailovsky Yu.O., Mettus D.E., Kazakov A.P., et al. Anomalous Hall effect in (Сo41Fe39B20)x(Al–O)100–x nanocomposites. JETP Lett. 2013;97(8):473–477 https://doi.org/10.1134/S0021364013080110 [Original Russian Text: Mikhailovsky Yu.O., Mettus D.E., Kazakov A.P., Prudnikov V.N., Kalinin Yu.E., Sitnikov A.S., Gerber A., Bartov D., Granovsky A.B. Anomalous Hall effect in (Сo41Fe39B20)x(Al–O)100−x nanocomposites. Pis’ma v Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2013;97(7–8):544–548 (in Russ.).]

15. Manoharan S.S., Elefant D., Reiss G., Goodenough J.B. Extrinsic giant magne-toresistance in chromium (IV) oxide, CrO2. Appl. Phys. Lett. 1998;72(8):984–986. https://doi.org/10.1063/1.120616


Supplementary files

1. Kerr effect in polar (a), meridional (b), and equatorial (c) geometries
Subject
Type Исследовательские инструменты
View (41KB)    
Indexing metadata ▾
  • Experimental spectra of the magneto-optical transverse Kerr effect in Cox(CoO)1−x nanocomposites were studied and Kerr effect spectra in the range of 1.5–3.0 eV were obtained by computer modeling.
  • The optimal parameters of the sample under study are established: form factor, average granule size, and the anomalous Hall effect coefficient.
  • The described approach allows the magneto-optical properties of promising nanomaterials to be studied in a non-contact and non-destructive manner.

Review

For citations:


Yashin M.M., Ryabukhin V.E., Yurasov A.N. Magneto-optical transverse Kerr effect in Cox(CoO)1−x nanocomposites. Russian Technological Journal. 2025;13(1):115-121. https://doi.org/10.32362/2500-316X-2025-13-1-115-121. EDN: OABAYG

Views: 250


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)