Preview

Russian Technological Journal

Advanced search

CALCULATION OF ELASTICALLY STRESSED QUANTUM WELLS HETEROSTRUCTURE AlXGaYIn1-X-YAs/InP FOR EFFICIENT DIODE LASERS

https://doi.org/10.32362/2500-316X-2018-6-2-46-55

Abstract

The compositions of epitaxial layers forming quantum-well heterostructures AlxGayIn1-x-yAs / InP for laser diodes with the radiation wavelength of 1.55 μm are calculated. When carrying out the calculations, the problem was to provide the maximum height of the energy barriers for effective limitation of charge carriers in the quantum wells. Along with taking care of the effects of the dimensional quantization of the energy of free charge carriers in allowed zones, the effect of elastic stress in epitaxial layers on the displacement of the edges of the energy bands were taken into account in the calculation. It is shown that in order to solve the posed problems it is necessary to form heterostructures with elastic compression stress in a quantum well and elastic tensile stress in the barrier layers. As a result of the calculations the authors suggest a structure that includes a barrier layer of Al0.28Ga0.30In0.42As with a thickness of 110 Å and a quantum well Al0.03Ga0.23In0.74As in a layer with a thickness of 55Å (with the mismatch between the parameters of the crystal lattice and the InP substrate - 0.8% and + 1.4 %, respectively). According to the calculation results, the indicated thicknesses of epitaxial layers do not exceed the critical values that can lead to the formation of imperfect dislocations at heterointerfaces.

About the Authors

V. N. Svetogorov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation


R. Kh. Akchurin
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation


A. A. Marmalyuk
JSC “Sigm Plyus”
Russian Federation


M. A. Ladugin
JSC “Sigm Plyus”
Russian Federation


I. V. Yarotskaya
JSC “Sigm Plyus”
Russian Federation


References

1. Qing K., Shaoyang T., Dan L., Ruikang Z., Wei W., Chen J. High power 1550 nm InGaAsP/ InP lasers with optimized carrier injection efficiency // Proceed. of the 14th Int. Conf. on Optical Communications and Networks (ICOCN). Nanjing, China. July 3, 2015. Institute of Electrical and Electronics Engineers, Inc. (IEEE), 2015. P. 1-3.

2. Kuo Y.K., Yen S.H., Yao M.W., Chen M.L., Liou B.T. Numerical study on gain and optical properties of AlGaInAs, InGaNAs, and InGaAsP material systems for 1.3-μm semiconductor lasers // Optic Commun. 2007. V. 275. P. 156-164.

3. Gladyshev A.G., Novikov I.I., Karachinsky L.Y., Denisov D.V., Egorov A.Y., Kurochkin A.S., Blokhin S.A., Blokhin A.A., Nadtochiy A.M. Optical properties of InGaAs/InGaAlAs quantum wells for the 1520-1580 nm spectral range // Semiconductors. 2016. V. 50. № 9. P. 1186-1190.

4. Veselov D.A., Shashkin I.S., Bakhalow K.V., Lyutetskiy A.V., Pikhtin N.A., Rastegaeva M.G., Slipchenko S.O., Bechvay E.A., Strelets V.A., Shamakhov V.V., Tarasov I.S. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solution // Semiconductors. 2016. V. 50. № 9. Р. 1225-1230.

5. Liou B.T., Yen S.H., Yao M.W., Chen M.L., Kuo Y., Chang S.H. Numerical study for 1.55-μm AlGaInAs/InP semiconductor lasers // Proceed. of SPIE. 2006. V. 6368. 636814. doi: 10.1117/12.685959

6. Hou L., Avrutin E.A., Haji M., Dylewicz R., Bryce A.C., Mars J.H. 160 GHz passively mode-locked algainas 1.55 μm strained quantum-well lasers with deeply etched intracavity mirrors // IEEE Journal of Selected Topics in Quantum Electronics. 2013. V. 19. № 4.

7. Takemasa K., Munakata T., Kobayashi M., Wada H., Kamijoh T. 1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer // IEEE Photonics Teсhnology Lett. 1998. V. 10. № 4. Р. 495-497.

8. Springer Handbook of Electronic and Photonic materials / Eds. S. Kasap, P. Capper. Springer Science+Business Media, Inc., 2006. 1438 p.

9. Jia H., Yin J., Zhu T., Rao L. Study of strain-compensated for 1310 nm AlGaInAs/InP multi-quantum-well laser // Proceed. of the 15th Int. Conf. on Optical Communications and Networks (ICOCN 2016). Hangzhou, China. September 24-27, 2016. Institute of Electrical and Electronics Engineers, Inc. (IEEE), 2016. P. 760-763.

10. Vurgaftman I., Meyer J.R. Band parameters for III-V compound semiconductors and their alloys // J. Appl. Phys. 2001. V. 89. № 11. P. 5916-5875.

11. Яковлева Н.И., Болтарь К.О., Седнев М.В. Исследование фотодиодных лавинных элементов матричных фотоприемных устройств на основе гетероэпитаксиальных структур InGaAs // Успехи прикладной физики. 2014. Т. 2. № 4. С. 374-382.

12. Soma T., Satoh J., Matsuo H. Thermal expansion coefficient of GaAs and InP // Solid State Commun. 1982. V. 42. № 12. Р. 889-892.

13. Adhikari J., Kumar A. Study of structural and thermodynamic properties of GaAs and InAs using Monte Carlo simulations // Molecular Simulation. 2007. V. 33(8). Р. 623-628.

14. Adachi S. GaAs, AlAs and AlxGa1-xAs: Material parameters for use in research and device applications // J. Appl. Phys. 1985. V. 58(3). P. 1-29.

15. Liu Q., He Q. Elastic constants for various classes of solids at high temperature // Acta Physica Polonica. Series A. 2007. V. 112. № 1. P. 69-76. doi: 10.12693/APhysPolA.112.69

16. Ledbetter H.M., Reed R.P. Elastic properties of metals and alloys. Naval Research Laboratory, Colorado, 1973.

17. Zhang Y., Ning Y., Zhang L., Zhang J., Zhang J., Wang Z., Zhang J., Zeng Y., Wang L. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs. // Optics Express. 2011. V. 19. № 13. Р. 12569-12581.

18. Максимов М.В., Крестников И.Л., Иванов С.В., Леденцов Н.Н., Сорокин С.В. Расчет уровней размерного квантования в напряженных ZnCdSe/ZnSe квантовых ямах // Физика и техника полупроводников. 1997. Т. 31. № 8. Р. 939-943.


Review

For citations:


Svetogorov V.N., Akchurin R.Kh., Marmalyuk A.A., Ladugin M.A., Yarotskaya I.V. CALCULATION OF ELASTICALLY STRESSED QUANTUM WELLS HETEROSTRUCTURE AlXGaYIn1-X-YAs/InP FOR EFFICIENT DIODE LASERS. Russian Technological Journal. 2018;6(2):46-55. (In Russ.) https://doi.org/10.32362/2500-316X-2018-6-2-46-55

Views: 594


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)