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Abstract

Objectives. Determining the patterns of dispersion properties of waveguide modes of the optical range in layered
media with distributed optical properties is a both a pressing and significant matter for study. It has fundamental and
applied importance in nonlinear optics and optoelectronics. The combination of a nonlinear response and graded-
index distributions of the optical properties of adjacent layers of a layered structure enables the desired values of the
output characteristics using a wide range of control parameters to be selected easily. This renders such waveguides
the most promising from the point of view of possible technical applications. The aim of this paper is to develop the
theory of three-layer planar waveguide structures with a graded-index core and nonlinear optical liners with arbitrary
profiles. By doing so it may be possible to find exact analytical solutions to nonlinear stationary wave equations
describing explicitly the transverse electric field distribution of waveguide modes.

Methods. The analytical methods of mathematical physics and the theory of special functions applied to nonlinear
and waveguide optics are used herein.

Results. The study provides a theoretical description of transverse stationary waves propagating along a symmetrical
three-layer planar waveguide structure consisting of the inner graded-index layer sandwiched between nonlinear
optical plates. Itassumes an arbitrary spatial profile of the interlayer dielectric constant and the nature of the nonlinear
response of the liner medium. The mathematical model of this waveguide structure formulated herein is based
on nonlinear equations with distributed coefficients. The solutions obtained describe in general terms the transverse
distribution of the amplitude of the electric field envelope. The transverse symmetry of the three-layer waveguide
structure enables even and odd stationary modes corresponding to symmetric and antisymmetric transverse field
profiles to be excited in it. A method was developed for constructing even (symmetric) and odd (antisymmetric)
solutions which exist at certain discrete values of the effective refractive index/propagation constant. These discrete
spectra were obtained in layers with graded-index linear, parabolic, and exponential profiles. The symmetrical three-
layer waveguide structure with inner graded-index layer characterized by parabolic spatial profile and outer liners
as Kerr nonlinear optical media is analyzed in detail, as an example of the application of the formulated theory.
Analysis of the resulting exact analytical solution indicates that the electric field strength for the fundamental and
first-order modes increases with increasing parabolic profile parameter, characterizing the relative change of the
dielectric constant in the interlayer, while decreasing for higher order modes.

Conclusions. The theory developed in this paper supports the unambiguous description of the transverse
distributions of the stationary electric field in planar symmetrical three-layer waveguides in an explicit analytical form.
The results extend the understanding of the physical properties of nonlinear waves and the localization patterns
of light beams in distributed media, and may be useful in the design of various optical waveguide devices.

Keywords: layered structure, layered waveguide, optical waveguide, nonlinear optics, optical nonlinearity, graded-
index layer, nonlinear waves, Kerr nonlinear optical media, guided waves, waveguide mode
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Pesiome

Llenu. BeisiBneHne 3akOHOMEPHOCTEN ANCNEPCUMOHHBIX CBOCTB BOSIHOBOHbIX MOZ, ONTUYECKOro AmManas3oHa B CIOUC-
TbIX Cpefax C pacrnpeneneHHbIMU ONTUYECKMMN XapakTePUCTUKaMM NPeacTaBnseT co00M akTyanbHY0 1 BXHYIO 3a-
[ady, umeloLLyto GyHAAMEHTaNbHOE 1 NPUKIaAHOE 3HAYEHME B HEIMHENHOW ONTUKE W ONTO3NEKTPOHMKE. CoveTaHme
HENVMHENHOrO OTKJIMKA U TPaAMEHTHbIX pacnpeneneHnini OoNTUYEeCKMX CBOMCTB COCEHMX CIOEB CIIONCTOM CTPYKTYpbI
[aeT BO3MOXHOCTb JIerko nogobpatb Tpebyemble 3HaYEHNUST BbIXOAHbIX XapakTePUCTUK C MOMOLLBIO LLMPOKOro psaa
yNpasnsiowmx napaMmeTpoB, YTO AeNaeT Takne BOMHOBOAb!I Hanbonee NepcrnekTUBHBIMU C TOYKN 3PEHMS BO3MOXHbIX
TEXHUYECKNX NpUnoxeHnii. Llenb paboTbl — pa3BuUTUE TEOPUM TPEXCIIOMHbBIX MIOCKUX BOTHOBOAHBIX CTPYKTYP C rpaau-
€HTHOW CepALEBUHON N HENMHENHO-ONTUYECKMMM 00KNaaKkamMum C NPOn3BOJIbHLIMU NPODUISMU, B pamMKax KOTOPOIA
NpeaCcTaBASAETCS BOSMOXHbIM HAaX0XAEHWNE TOYHbIX aHATUTUYECKNX PELLEHWNIA HENIMHENHBIX CTaLMOHAPHbIX BOSTHOBbIX
YPaBHEHWIA, ONNCbIBAIOLLMX B SBHOM BUZE MOMNEPEYHOE pacnpeaeneHme afekTpru4eckoro nos BONHOBOAHbIX MOJ,
MeTopabl. VIcnonb30BaHbl aHANUTUYECKNE METOAbI MaTemMaTUieckor GU3MKM 1N Teopumn creumanbHbiX QYHKLNNA
NPUMEHUTESNIBHO K HEJIMHENHOW 1 BOSIHOBOLHOW ONTUKE.

PesynbTatbl. [1IpoBEAEHO TEOPETUYECKOE OMMCAHWE MOMEPEYHbIX CTALUMOHAPHBLIX BOJIH, PaCMpPOCTPaHSIOLLMXCS
BJ0J1b MJIOCKON CUMMETPUYHOW TPEXCIIONHOW BOTHOBOAHOW CTPYKTYPbl, COCTOSILLEN N3 BHYTPEHHErO rPagNeHTHOro
C0s1, 3aXaToro Mexay HeNMHeNHO-oNTUYeCKMMIN 0OKNaakamMu, NPUYEM NPOCTPAHCTBEHHBIN NPOodUb AN3NEKTPU-
4eCKOW NPOHULLEAEMOCTM NPOCNONKN U BUL, HEIMHENHOrO OTKMKA cpeabl 0OKNaaAoK NpeanonaraoTcs Npon3Boib-
HbiMn. ChopMynmMpoBaHa MaTemaTMyeckas Moesb TakoW BOSIHOBOLHOW CTPYKTYPbl HA OCHOBE HENIHEHbIX YpaB-
HEHWIA C pacnpeneneHHbiMn koadduumeHTamu. MNMonyyeHbl peLleHns, onuceialowme B 06LLEM BUAE NOnepeyHoe
pacrnpeneneHve aMnauTyabl orubaiolein anekTpru4eckoro nonsg. B cuny nonepeyHon cCUMMETPUN TPEXCITONHOMN
BOJIHOBOJHOW CTPYKTYPbI B HEV MOTYT BO30YXAaThCS YETHbBIE U HEYETHbIE CTALMOHAPHbIE MOObl, COOTBETCTBYIOLLME
CUMMETPUYHBIM N @HTUCUMMETPUYHBIM MoMNepeyHbIM Npodunam nosns. PaspabotaH MeTon, NMOCTPOEHUS YETHbIX
(CMMMETPUYHbBIX) U HEYETHBIX (AHTUCUMMMETPUYHbIX) PELUEHUIA, CYLLECTBYIOLMX NPU ONPenEeNeHHbIX ANCKPETHBbIX
3HaYyeHuaxX 9GDEKTMBHOIO NokasaTens NPenoMeHNs / KOHCTaHTbl pacnpocTpaHeHus. Takme AMCKPETHbIE CMEKTPbI
NoJly4eHbl B CNOSIX C FPagNEHTHLIMUY JIMHEHbIM, Napabonn4yecknM 1 3KCMOHEHLManbHbIM Nnpodunamu. B kavecTse
npumMepa npuMeHeHns chopMyNMpPOBaHHOM TEOPUN OeTanbHO MPOoaHaNM3nPOBaH ClyyYah CUMMETPUYHOW Tpex-
C/OVHOI BOJSIHOBOAHOW CTPYKTYPbl, BHYTPEHHWI rPaaneHTHbI CIO KOTOPOK XxapakTepmnayeTcs napabonmyeckmm
NPOCTPaHCTBEHHbLIM NPOdUNEM, a BHELLHNE 0OKNaakn NpeacTaBnsioT cOO0M KEPPOBCKME HENMHEIHO-ONTUYECKNE
cpenpl. Ha ocHoBe aHanm3a nosly4eHHOro TOYHOrO aHaNIUTUYECKOro PELUEHUs] YCTAaHOBIEHO, YTO HaMpPs>XKEHHOCTb
3/1EKTPMYECKOro Nosst AN OCHOBHOW MOAbl U MOAbI MEPBOro NOpPsAKka yBEMYMBAETCS C POCTOM napameTpa na-
pabonmnyeckoro nNpoduss, xapakTepuayioLero 0THOCUTENIbHOE U3MEHEHWE OU3NEKTPUYECKON MPOHULAEMOCTHU
B NMPOCOIiKe, 0AHAKO YMEHbLUIAeTCs 4S9 Mo, 60onee BbICOKMX MOPSAKOB.
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BbiBoabl. Pa3sutas B jaHHOM paboTe Teopusi MO3BOJISIET HArfIiAHO ONMcaTh B SBHOM aHaIMTUYECKOM BUAE rorne-
peyHble pacnpeneneHns CTauMoHapHOro 3/1IEKTPUYECKOro NOJis B MOCKUX CUMMETPUYHBIX TPEXCIIOMHBIX BOJTHOBO-
nax. MonyyeHHble pe3ynbTaThbl pacLUMPSOT NPeacTaBieHns 0 GU3NYECKNX CBOMCTBAX HENMHENHbLIX BOJTH U 3aKOHO-
MEPHOCTSIX JIOKann3auunm CBETOBbIX MYy4KOB B PacrnpenefieHHbIX Cpefax U MoryT ObiTb NONE3HbIMU A5 pa3paboTkm

Pa3NINYHbIX ONTUYECKNX BOJTHOBOOHbIX yCTpOI7ICTB.

KnioueBble cnoBa: cnonctas CTpykTypa, CNoMCThbii BOSIHOBOA, ONTUYECKUIA BOSTHOBOS,, HENMHENHAs ONTnKa, ONTnU-
yeckasi HEJIMHENHOCTb, FPAAVEHTHbIN COW, HEIMHENHbIE BOJHbI, KEPPOBCKNE HENNHENHO-ONTUYECKME Cpeabl, yrnpaB-

ngaemMble BOJIHbI, BOJIHOBOAHAA Moda

* Moctynuna: 01.03.2024 » Aopa6oTaHa: 29.03.2024  MpuHgaTa k onyonukoeaHuio: 05.08.2024

Ana untupoBaHua: CasoTtyeHko C.E. Mogenn CUMMMETPUYHBIX TPEXCOMHbBIX BOIHOBOAHbLIX CTPYKTYP C rpagueHT-
HOI CepAaLeBUHON N HeNMHenHo-onTuieckumn obknagkamun. Russ. Technol. J. 2024;12(5):77-89. https://doi.

org/10.32362/2500-316X-2024-12-5-77-89

Mpo3payHocTb GUHAHCOBOW AeATeNbHOCTU: ABTOP HE UMeeT PGMHAHCOBOIM 3aMHTEPECOBAHHOCTM B NPEACTaBNEH-

HbIX MaTepunanax nin metogax.

ABTOp 3asB155€T 06 OTCYTCTBUM KOHGDINKTA UHTEPECOB.

INTRODUCTION

The development of optical waveguides with desired
characteristics is an important applied problem in the area
of nonlinear optics [1-3]. The successful resolution of
this issue requires theoretical modeling of the designed
systems which will enable their properties to be described,
characteristics to be predicted and the development
process optimized. Thus, much attention is paid in
scientific literature to the development of theoretical
foundations for modeling the processes of excitation,
propagation, and localization of electromagnetic waves
in a variety of optical media [4, 5].

The requisite and often unique characteristics of
fields in waveguide structures can be obtained most
effectively in a combination of media with different
optical properties [6, 7]. Classes of media where optical
properties depend significantly on the spatial distribution
of the refractive index (or dielectric permittivity) [8] or
can be characterized by a nonlinear optical response in
which the dielectric permittivity depends on the electric
field intensity [9] are in particular considered promising
and possessed of a wide variety of properties. The first
group of media is called graded-index [10] while the
second group is called nonlinear [11].

The dependence of optical characteristics on the
quantities mentioned above may differ, and may be
determined by the physical properties of real crystals. In
particular, the most common form of nonlinear response
is the linear dependence of dielectric permittivity
on the square of amplitude (intensity) of the electric
field (light), referred to as Kerr nonlinearity [12]. Waves
and other localized disturbances in such media have been
quite well studied in various modifications [13, 14].
This includes analytical methods [15, 16] which assume
that exact solutions be obtained for the nonlinear wave
equation used in various models [17, 18].

In order to describe the experimentally dependencies
of the spatial distribution of optical characteristics as
described above, a variety of functions (profiles) are used
to model the change of the refractive index with distance
from the optical media interface [19]. Certain profiles,
such as linear [20], parabolic [21], exponential [22], and
others [23, 24], allow exact analytical solutions to be
established.

The theoretical study of waveguide properties of
interfaces between graded-index and nonlinear media
has in recent times intensified [25, 26]. In particular,
solutions have been developed which describe the
localization of light along the interface between the
nonlinear Kerr medium and medium with linear [27, 28]
and exponential refractive index profiles [29].

In terms of technical application, the studies on
waveguide properties of multilayer media [30] including
three-layer structures [31] are of great importance.
Nonlinear waves in three-layer structures have been
a focus of theoretical study for many years [32, 33],
including in layered graded-index media [34]. In recent
times, analytical solutions have been obtained for
symmetric three-layer structures in which the inner layer
is described by a symmetric linear graded-index profile.
The outer layers are characterized by photorefractive
nonlinear response [35], Kerr nonlinearity [36], and
step nonlinearity [37]. The symmetric structure with
a parabolic graded-index inner layer placed between
media with Kerr nonlinearity has also been considered.

Due to the emerging variety of possible
combinations of nonlinearities and graded-index layer
profiles, it would be useful to construct a generalized
model of a symmetric waveguide structure. This paper
proposes a generalization of the model for the three-
layer symmetric planar structure, in which the inner
layer and the outer layers are characterized by an
arbitrary graded-index profile and a nonlinear optical

Russian Technological Journal. 2024;12(5):77-89

79


https://doi.org/10.32362/2500-316X-2024-12-5-77-89
https://doi.org/10.32362/2500-316X-2024-12-5-77-89

Models of symmetric three-layer waveguide structures
with graded-index core and nonlinear optical liners

Sergey E. Savotchenko

response, respectively. Substituting the particular type of
dielectric permittivity profiles and the shape of nonlinear
response into model equations allows analytical
solutions to be obtained which describe the amplitude
spatial distribution of the envelope perpendicular to
structure layers. The resulting analytical expressions,
in turn, allow localization patterns of light beams to be
determined in layered waveguide structures.

1. THEORETICAL MODELING OF THREE-LAYER
WAVEGUIDE STRUCTURE

1.1. Model formulation

We consider a three-layer planar structure which is
symmetric about the center. It is made of nonmagnetic
materials with optically homogeneous properties in the
longitudinal direction. The interfaces between layers
are assumed to be planar. We place the origin of the
coordinates in the middle of the inner layer (core or
interlayer), in the yz plane; with the x-axis perpendicular
to the planes of interfaces and the z-axis along the layers
in the direction of wave propagation. Let layer interfaces
be located in planes x = ta (then the thickness of the
layer is assumed to be 2a). The media in all layers are
considered with no allowance for dielectric losses.

In the model considered herein, the inner
layer is characterized by spatial inhomogeneity of
optical properties in the direction transverse to the
plane of the layers (graded-index layer), while the
outer adjacent layers (liners) are characterized by
optical nonlinearity (nonlinear layers), i.e., by the
dependence of the refractive index (or dielectric
permittivity) on the light intensity. In this case, the
interlayer thickness is considered to be much less than
the thicknesses of the outer liners. Therefore, when
studying the distribution of the electric field localized
near the core, the liners can be considered to be semi-
limited media, neglecting the influence of boundaries
located at a further distance when compared to the
value of a. This consideration is acceptable provided
that the field rapidly decreases at a distance from
interfaces and becomes negligible before reaching the
outer boundaries of thick liners.

Let a transverse electric wave (TE wave) propagate
along interfaces of a three-layer waveguide structure
whose electric field strength component can be written
in the following form:

E, (x,2) = y(x)e!(Pzo0), (M

wherein y(x) is spatial distribution of electric field
strength in the transverse layer direction (envelope
amplitude), o is frequency, p = kn is the propagation
constant, n = ck/w is effective refractive index, c is the

speed of light in vacuum, &k = 2w/A is wave number, A is
wavelength, and ¢ is time.

It is known [4, 5] that field y(x) is defined as
the solution for the stationary equation (magnetic
permeability is equal to unity):

2
% e, 1) = n2 2y (x) = 0, ?)

wherein dielectric permittivity of the three-layer
waveguide structure can be written as follows:

e ]) = {SG (x), |x| <a, 3

exn (), x| >a,

wherein function €g(x) defines the dependence of the
dielectric permittivity on the spatial coordinate in the
direction perpendicular to layers (dielectric permittivity of
the graded-index layer), while function €y (/) defines the
dependence of the dielectric permittivity on the light intensity
I= |E : , wherein E stands for the amplitude of the electric
field strength (dielectric permittivity of the nonlinear layers).

We can represent the transverse field distribution in
the following form:

\yg)(x), x<-a,
v =), [<a, )

v (), x>a,

Then the following equations may be derived
from (2):

2,
LIN e ()~ () =0, x<-a. (5)
dx?
2
d-y g (x) oG () -2} kY6 (0 =0, [ <a, (6)
dx?
2, ()
YN {en (D) - n2 32y (x) =0, x>a, (7)
dx?

which are supplemented by boundary conditions
corresponding to the requirements of continuity of field
components at layer interfaces:

vy (Ea0) =y (#a+0),

) (3
dyy(ta£0) dy§)(zat0)

dx dx
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as well as to the field vanishing condition at infinity:

|\u§‘r)(x)| -0, |x| —> o0,

In terms of physics, the requirement of limitation
of the solution should be considered an obvious
supplement. Thus, the set of Egs. (5)—(7) and boundary
conditions (8) represent a mathematical formulation
of the proposed model for the three-layer waveguide
structure with a dielectric permittivity profile described
by means of the distributed expression (3).

1.2. The dispersion equation in the general case

In the inner layer, the solution to Eq. (6) can be
represented as follows:

Vg (X) = CF(x)+ G F(x), 9)

wherein C |, 2 are the values depending on optical and
geometrical parameters of the system and determined
by boundary conditions (8). F y(x) are special
functions which are linearly independent solutions to
Eq. (6) at the given dielectric permittivity profile €g(x).
Since (6) is a linear homogeneous differential equation
of the second order with a coefficient depending on
variable x, its solutions are often expressed in the most
general form through hypergeometric functions. In
certain types of dielectric permittivity profiles, the
solutions can be expressed through other pairs of
linearly independent special functions, such as Bessel
functions, Airy functions, and others. The main
requirements for /' 1, ,(x) are continuity and limitation
on the interval —a < x < a of these functions, as well as
their derivatives F 1. 2().

In the outer liners, the solutions to Egs. (5) and (7)
can be represented as follows:

¥ (x)

(i) X)= (i)—
VN (X)) =wy ‘P%)(ia),

(10)

wherein \Ilgi) is field amplitudes at layer interfaces in

planes x = *a. ‘P%) (x) are solutions to nonlinear
Egs. (5) and (7) are limited in regions x < —a and x > a,
respectively, while satisfying requirement

¥ (0)| 0, x| > 0. The explicit form of functions

‘{’%) (x) is determined by the type of nonlinearity model
of the outer liner medium. For example, for the most

common Kerr nonlinearity, ‘I’g‘r) (x) are expressed
through hyperbolic functions depending on the nonlinear
response sign.

Substituting solutions (9) and (10) into boundary
conditions (8) results in the following system of algebraic

equations for values C, , and amplitudes v

ng) = C,F (£a) + C,F, (*a), an
vy = CF(Ea)+ CyF; (+a),
where we denote
1 d¥P) (+a)
e = N . (12)

‘PS) (xa) ' dx

The solvability condition of the system (11) allows
the dispersion equation to be obtained which determined
the values of the propagation constant for waveguide
modes of the considered three-layer structure in the
general case:

AIAS) = A7ASY, (13)

wherein

+ + ,
A%z) = Fi z(ia)'g%\]e)ff - F] »(fa). (14)

This dispersion equation defines the relationship
between propagation constant , wave number £, the
optical characteristics of the layers (unperturbed values
of dialectic constants and parameters of dielectric
permittivity dependencies in graded-index and nonlinear
layers as determined by a certain type of model). The
geometric parameter of the three-layer structure is
considered the half-width of interlayer a.

The amplitude at one interface can be chosen as
an independent characteristic, through which other
parameters of solutions (9) and (10) can be expressed.
In particular, the following ratio of amplitudes at the
left and right interlayer boundaries may be derived
from (11):

A+
ng) _ Ag IAG)
ng) Af) AG)

(15)

wherein

A®) = F (+a)F)(+a) - Fy (+a)F/(za).  (16)

Then values C, , can be written in the following
form:

A(+) A(_)
— gy b2 L2
C1,2 \Va A(+) \Va A(’)' (17)

Taking into account (15), field distribution in the
inner layer can be rewritten in the following form:
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v
AD)

Vo) =LA R+ AR (0] (18)

Thus, the resulting expressions (10) and (18)
determine the field distribution in the transverse layer
direction. The parameters thereof are determined by
expressions (12), (14), and (16) while the propagation
constant is determined by dispersion Eq. (13).

1.3. Constructing waveguide modes
of a given symmetry and discrete spectrum

Due to the symmetry of the considered three-layer
waveguide structure, even and odd modes should
clearly exist therein. They are described by symmetric
and antisymmetric field distributions in the transverse
direction, respectively. The solution to problem (5)—(8)
can then be searched for on semiaxis x > 0. We continue
it in the even or odd direction for symmetric or
antisymmetric modes, respectively.

For symmetric distribution, the solutions should be even

functions: wﬁ) (-x)= \ll%\?) (x) and yg(=x)=yg(x),
while for antisymmetric distribution, they should be odd:

W (0 ==y () and w (=x) =y (x). The upper
indices (£) can be omitted due to the given symmetry chosen.

The mode with given symmetry can be described by
the following solution:

Fg(g(x)

s 19
“ o (g(a) (15

Vg () =v

where F;(g) is the special function selected in a certain
manner to resolve Eq. (6) on semiaxis x > 0, with
internal argument g(x). The explicit form thereof is
related to the spatial dependence profile type of the inner
layer dielectric permittivity. The argument g contains
propagation constant 3, as well as optical and geometric
parameters of the waveguide system.

For the symmetric mode, function F; should have
an extremum at the symmetry center of the three-layer
waveguide structure (at x = 0). This implies that the
derivative of function F; should go to zero at x = 0. For
the antisymmetric mode, function F; should go to zero
itself. Due to the necessity for symmetry of the desired
field profile, these requirements result in the spectrum
of propagation constant values (or effective refractive
index) becoming discrete.

In particular, it should be as follows for the
symmetric mode:

dF(g(%))

i = F5(g(0)g'(0)=0.

x=0

(20)

Thus, if g'(0) =0, then

g0)=¢; =1,2,..), 1)

wherein éj are zeros of the derivative of special
function F. Since argument g contains propagation
constant 3, resolving Eq. (21) with respect to it allows
a discrete spectrum of its values B=Pp(§ j) to be
obtained. This is determined by the sequence of zeros of
the derivative of special function F; solving Eq. (6).

Similarly, it should be as follows for antisymmetric
mode:

F5(g(0)) =0. (22)

Hence,

wherein { ; are zeros of special function F. Solving
Eq. (23) with respect to the propagation constant allows
a discrete spectrum of its values PB=p(E j) to be
obtained. This is determined by the sequence of zeros of
special function F; solving Eq. (6).

The solution to nonlinear Eq. (7) in the outer layer at
X > a can be represented in the following form:

\PN(‘]N(X_ a —xN))
PN (anrN)

N =v, ; 24

where the dependence of coefficient g on the system
parameters is known for a certain nonlinear response
model, while value xy; is determined by the boundary
conditions. Function ¥ should have parity coinciding
with that of function F,.

It should be noted that the solutions chosen in the
form of (19) and (24) automatically satisfy the continuity
conditions at interfaces of waveguide structure layers at
x=*a.

In order to meet the continuity condition of the field
derivative at the interface between the graded-index and
nonlinear layers, (19) and (24) should be substituted
into (8) atx = a whence the following equation is derived:

F5(8(@)g'(@) _gn'Yn(ann)
FG (g(a)) \PN(QNXN) ’

(25)

which allows value xy to be determined depending on
the optical and geometrical characteristics of the layered
structure.

This shows the possible existence of waveguide
modes of a given symmetry in the case when the
propagation constant is given by a discrete spectrum of
values.
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2. RESULTS AND DISCUSSION

2.1. Some analytically solvable profiles
of the graded-index layer

First, we consider the types of symmetric dielectric
permittivity profiles in the graded-index layer for which
exact analytical solutions are known. For comparison,
we also consider the case of a step structure with the inner
layer characterized by the constant dielectric permittivity
value, independent of spatial coordinate (Fig. 1a):
&g = €, — const. Then the solution to Eq. (6) is determined
by trigonometric functions and has the following form
for even modes:

cos( px)
Xx)= , 26
V() =v, cos(pa) (26)
while for odd modes:
sin( px)
X)= 5 27
V() =v, sin( pa) @7)
wherein p2 = k2 (g9 — nz). These modes exist for values
of effective refractive index n? <g,.

Symmetric graded-index profiles:
1) Linear (Fig. 1b):

X
eg(x)=¢, [I—AUJ, (28)
a
e(x) A
€
€, ey(h)
-a 0 a ;
(a)
gg(x) &

wherein g is the dielectric permittivity at the center of
the waveguide structure symmetry,and A = (g —€,) / g
is the change in dielectric permittivity from g, to the
value of dielectric permittivity at the interface of
layers €.

The solution to Eq. (6) on interval 0 < x < a with
linear profile (28) can be written as [36]:

Ai(x/ xg +9)

Vo) =Vam 7 3 +0) 29)

wherein F;=Ai(g)isthe Airy function, g(x) = x/xg +39,

8=—(gy —n*)(ak / gyA)*?, (30)

1/3
X =] =2 31)
G kzsoA '

When constructing the even solution (as noted
in Section 1.3), there is a necessary requirement that
function (29) has an extremum in the middle of the
waveguide at x = 0. Therefore, 6 = ij, j=12, .,
where for a linear profile, & are zeros of the derivative
of the Airy function: Ai’(?;j) =0: § = —1.018792972,
&, = —3.248197582, &, = —4.820099211, ... Then (30)
yields the following discrete spectrum of effective
refractive index values:

n? =g —[&,|(ggA / ak). (32)

€g(X) A

Fig. 1. Spatial symmetric profiles of dielectric permittivity of a three-layer waveguide structure:
constant (a), linear (b), parabolic (c), and exponential (d)
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When constructing an odd solution, there is
anecessary requirement that function (29) turns to zero in
the middle of the waveguide at x = 0. Therefore, 5 = { are
zeros of the Airy function: Ai(C/) =0:C,=-2.338107410,
G, =—4.087949444, C, = —5.520559828, ...

2) Parabolic (Fig. 1c¢):

2
eg(¥)=¢, [l—A[gj j

For parabolic profile (33), the limited solution
to Eq. (6) is known to be expressed through Hermite
polynomials Hj(x):

(33)

Hj(x/xo)‘{

_ (xzfaz)/ng
)=y, ——— ,
V6 (D=, Hj(a/xo)

(34)

wherein j = 2m for even modes and j = 2m + 1 for odd

modes, m=0, 1,2, ..., x3 =a/kJeyA, which exist at
discrete values of effective refractive index [38]:

n? =g, —(2/ +1),/eqA / ak. (35)
3) Exponential (Fig. 1d):
66 (x) =gy ll- Al —c /9y, (36)

The solution to Eq. (6) with exponential profile (36)
can be written as follows:

sz (2ve—‘x‘/2a )
Jy,,(2ve12)

wherein F; = J,, (g) is the first order Bessel function of

V() =v, , (37)

order w=ak(n? - g, W2, g=2v o rl/2a ,
v =ak(Ag W2 [4].
Even modes are defined by the dispersion

equation J', (2v) = 0. With the roots of the equation
J’éj(Zv) = 0 denoted by ﬁj, the following discrete
spectrum of effective refractive index values is obtained:
n?=¢ +(&./2ak)>. (38)
J " "a J
Odd modes are defined by the dispersion
equation J, (2v) = 0. With the roots of the equation
JQ-(ZV) =0 denoted be (;j, the following discrete spectrum
of effective refractive index values is obtained:
2 _ 2

nj—8a+(gj/2ak) . (39)
The analysis of roots of such equations and

corresponding spectra is given in [39].

It should be noted that there are exact analytical
Egs. (6) for other spatial profiles of dielectric permittivity.
These include a smooth step described by a hyperbolic
tangent [40], symmetric Epstein profile (inverted
symmetric Poschl-Teller potential) described by
a hyperbolic cosine [41]. Such rather complex solutions
are expressed through a hypergeometric function. They
cause difficulties for simple analysis, so they have not
been considered here.

Thus, the solutions quoted above are the exact
analytical solutions which describe the field distributions
for three different dielectric permittivity spatial profiles.

2.2. Some analytically solvable models of outer
liner nonlinearity

Now we consider some types of nonlinear medium
models of the outer liners in which the dielectric constant
depends on the electric field strength and for which
exact analytical solutions are known. For comparison,
we also consider the linear medium in which outer
layers are characterized by a constant value of
dielectric permittivity, independent of the field strength:
gy = &gy — const. Then the solution to Eq. (7) limited on
semiaxis x > ¢ may be written as follows form:

Y ()= e N, (40)
wherein g =k?(n? —g)). On the negative semiaxis,
such a solution obviously continues in an even or odd
way to describe symmetric and antisymmetric modes,
respectively. Using conditions (8) for functions (19)
and (40), the analog of dispersion Eq. (25) for
a waveguide with linear liners yg +¢gy =0 may be
derived. Here 4y =F;(g(a))g'(a)/ F5(g(a)), from
which the spectrum of the effective refractive index
values is obtained as follows:
n? =gy + (g k)% (41)

By relating (41) to the discrete spectrum obtained
for a particular graded-index profile of the inner layer,
constraints on the mode orders excited in the interlayer
of a given thickness can be obtained.

The simplest models of nonlinear media of the outer
liners are the following:

1) Kerr nonlinearity:

en()=¢g5y +al, (42)

where a is the Kerr nonlinearity coefficient, I = |E |2 is
field intensity. Then the even/odd solution to Eq. (7)
with dielectric permittivity (42) at |x| > a for self-
focusing nonlinearity at o > 0 has the following form:
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\,,N(x):i\ﬁ S
@ Teh(g T aT 1)

Using conditions (8) for functions (19) and (43), we
determine the following parameter value

1
xy =-——Arth| 1C (44)
N qN
and the field amplitude at the boundary of layers
2.9 2
Wa =4[ 7" ~Eon — (/1 A)7). (45)

The discrete spectrum obtained for a particular
graded-index profile of the inner layer should be
substituted into expressions (43)—(45).

2) Step nonlinearity:

&, I <,

aN(1)={ (46)

€y, 1>1,

wherein [ is a threshold level of intensity (a known
characteristic of the medium). When crossing this
threshold, a sharp change from dielectric constant value
g, to &, occurs [42, 43]. Thus, in the neighborhood of
the layer interface in a nonlinear medium where 7 > [,
a region (near-surface domain) of width x is formed
with dielectric constant £, Beyond it, further in the liners
where < I, the dielectric constant is &,. Such domains
arise symmetrically on both sides of the inner layer [37].
The position of the boundaries of the near-surface
domain is determined by x,, found from additional
field continuity requirements at domain boundaries, as
follows:

Yy (Ex +0) = yy (+x, —0) =112,

(47)
Yy (Fx +0) =y (Fx, —0).

In the step nonlinearity model, Eq. (7) with dielectric
constant (46) decomposes into two:

W () = (2 —eky (0) =0, T< I [x|>x, (48)

YR (X)) + (85 —nPk2y () =0, I> 1, a<|x|<x_ (49)

The solution to Eq. (48) at n® > g, for even/odd
modes may be written as follows:

YN () = £ 2eTOTR), (50)

wherein q12 =(n? - € )k2, while the solution to Eq. (49)
at n® < &, has the following form:

Y (@) =2y, cos(p, (x F a) F )/ cos(d),  (51)
wherein p% =(g, — n? )k2 while values x, ¢ are
determined from boundary conditions (8) and (47).

Substituting solutions (19), (50), and (51) into

boundary conditions (8) and (47), parameters of even
modes can be found (similar for odd modes), as follows:

o =arctg| 1S |, (52)
%)
_ 1 q
X, =a+— ¢ +arctg| — |, (53)
%) %)
1/2
2, .2
y, =12 2220 (54)
) Z 2l te!

The discrete values of effective refractive index obtained
for a certain spatial profile of the inner graded-index layer
should be substituted into expressions (50)—54).

Thus, exact analytical solutions for two models of
media nonlinearity are obtained.

2.3. Example of field distribution
in a symmetric waveguide structure

The case when the inner graded-index layer is
characterized by parabolic profile (33) and outer
layers by Kerr self-focusing nonlinearity (42) may
be considered as a particular example of the model of
a symmetric three-layer waveguide structure.

In this structure, the spatial distribution of the electric
field in the transverse layer direction is determined
by expressions (34) and (43). The discrete spectrum
of effective refractive index values is determined by
expression (35) [38]. Limited by considering even modes
for which j = 2m, m =0, 1, 2, ..., the field distribution
symmetric about the waveguide structure center can be
written in the following form:

y(x)=

(2 ) ff)e(a2—x2)/2x§ Hzm(X/xo)’
pm ¢ H,, (a/xy)

¥ <a, (55)
=y, npm

cosh(kn,,, (xF a F xy)) ’

|x|> a,
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where nzm =gy — gy — (@m+1)\/gyA /ak and
1 |H5 (a/x)) a
NGeft N —Hzm 0= — b (56)
@l xg) X,

Thus, expression (55) represents an analytical
solution to problem (5)—(8), when selecting symmetry,
the parabolic profile of inner layer (33), and the self-
focusing nonlinearity of liners (42).

The characteristic profiles of the solution (55) are
shown in Fig. 2. It illustrates the impact of the relative
change of dielectric constant in interlayer A on the electric
field distribution at fixed values of other waveguide
parameters for the main mode at m = 0 (Fig. 2a): even
first-order mode m = 1 (Fig. 2b), and even second-order
mode m = 2 (Fig. 2c¢).

The results show that the electric field strength
increases with growing value of A for the main (Fig. 2a)
andfirst(Fig. 2b) modes. However, the intensity decreases
with increasing A for higher-order modes (Fig. 2c).
Thus, the dependence of the field strength on A is not
monotonic. Increasing the thickness of interlayer a gives
the same effect.

v}
40
m=0 2
20 1
10
‘4 a -2 0 2 a 4 «x
(a)
)
m=1 4
1 2-
1
——
-4 -a -2
2]
(b)
1}
m=2 ! 1
| 1
| 14 2/
1 1
1 1
4 “a \§ 0 a 4 x
~1
1
2]

Fig. 2. Field distribution (55) at parameter values (in
conventional units): k= 0.65, a =6, g5, =0.1, g, =30,
a =3, and various A =5 (line 1), A =8 (line 2) for the first
three even modes: m=0(a), m=1(b), m=2(c)

The existence of a discrete spectrum of effective
refractive index values indicates the ability of waveguide
modes to propagate at certain values of parabolic profile
parameters. The propagation constant is related to the
incidence angle of the beam exciting the waveguide
mode. Thus, a discrete set of incidence angles should be
taken into account since a waveguide mode of a certain
order in the considered system can be excited only at
a certain incidence angle. This depends on the dielectric
permittivity at layer boundaries and the change in
dielectric permittivity inside the graded-index layer.

Thus, the study obtained and analyzed the exact
analytical solution which describes the field distribution
in a symmetric three-layer waveguide structure where
the inner graded-index layer and outer layers are
characterized by parabolic profile and Kerr self-focusing
nonlinearity.

CONCLUSIONS

This paper proposes a model of a symmetric
three-layer planar waveguide structure with adjacent
layers characterized by physically different optical
properties. In particular, the inner layer is characterized
by the dependence of dielectric permittivity on a spatial
coordinate in the direction perpendicular to the interface
plane. Outer layers are characterized by the dependence
of dielectric permittivity on the electric field amplitude.
In other words, the considered three-layer structure
consists of the inner graded-index layer sandwiched
between nonlinear optical liners. The spatial profile
of the interlayer dielectric permittivity and the type of
nonlinear response of the liner medium are assumed to
be arbitrary.

The propagation of transverse electric waves with no
losses taken into account is described from a theoretical
point of view. The paper also formulates equations and
boundary conditions for the transverse field distribution
in a three-layer waveguide structure.

Solutions describing spatial distribution of the
electric field transversely to layers are obtained in
general form. The study shows that due to the transverse
symmetry of the three-layer waveguide structure, even
and odd stationary modes corresponding to symmetric
and antisymmetric transverse field profiles can
propagate along it. The paper also proposes a method of
constructing even (symmetric) and odd (antisymmetric)
solutions resulting in the existence of a discrete spectrum
of the effective refractive index value.

Particular cases of specific spatial profiles of the
inner layer dielectric permittivity with exact analytical
solutions to the wave equation are considered. In
particular, solutions for linear, parabolic, and exponential
profiles described by corresponding special functions
are given. The study also determined discrete spectra
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of the effective refractive index values in layers with
considered graded-index profiles.

In addition, specific models of media nonlinearity,
such as Kerr and step nonlinearities, are also considered.
For such nonlinearities, exact analytical solutions are
given to the nonlinear wave equation describing the
dependencies of the stationary electric field amplitude
on the distance from layer interfaces in nonlinear optical
media.

The study provides a detailed analysis of symmetric
three-layer waveguide structure, where the inner graded-
index layer is characterized by a parabolic spatial
profile and the outer liners represent Kerr nonlinear
optical media. The exact analytical solution to the

formulated boundary value problem describing the
transverse symmetric field distribution for self-focusing
nonlinearity is obtained and analyzed. The main mode
intensity significantly exceeds the intensity of higher-
order modes. The electric field strength grows with the
increasing relative change of dielectric permittivity in
the interlayer for the main mode and first-order modes.
However, it decreases with an increase of its value for
higher-order modes.

The results obtained can be useful in developing
various optical waveguide devices. The proposed theory
also expands understanding of physical properties of
nonlinear waves and localization patterns of light beams
in distributed media.
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