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Abstract
Objectives. To build neural network models of time series (LSTM, GRU, RNN) and compare the results of forecasting 
with their mutual help and the results of standard models (ARIMA, ETS), in order to ascertain in which cases a certain 
group of models should be used.
Methods. The paper provides a review of neural network models and considers the structure of RNN, LSTM, and 
GRU models. They are used for modeling time series in Russian macroeconomic statistics. The quality of model 
adjustment to the data and the quality of forecasts are compared experimentally. Neural network and standard 
models can be used both for the entire series and for its parts (trend and seasonality). When building a forecast for 
several time intervals in the future, two approaches are considered: building a forecast for the entire interval at once, 
and step-by-step forecasting. In this way there are several combinations of models that can be used for forecasting. 
These approaches are analyzed in the computational experiment.
Results. Several experiments have been conducted in which standard (ARIMA, ETS, LOESS) and neural network 
models (LSTM, GRU, RNN) are built and compared in terms of proximity of the forecast to the series data in the test 
period.
Conclusions. In the case of seasonal time series, models based on neural networks surpassed the standard ARIMA 
and ETS models in terms of forecast accuracy for the test period. The single-step forecast is computationally less 
efficient than the integral forecast for the entire target period. However, it is not possible to accurately indicate which 
approach is the best in terms of quality for a  given series. Combined models  (neural networks for trend, ARIMA 
for seasonality) almost always give good results. When forecasting a non-seasonal heteroskedastic series of share 
price, the standard approaches (LOESS method and ETS model) showed the best results.
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НАУЧНАЯ СТАТЬЯ

Анализ нейросетевых моделей  
для прогнозирования временных рядов

Б. Пашшоев,  
Д.А. Петрусевич @

МИРЭА — Российский технологический университет, Москва, 119454 Россия
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Резюме 
Цели. Основная цель работы – построить нейросетевые модели временных рядов (LSTM, GRU, RNN) и срав-
нить результаты прогнозирования с их помощью между собой и с результатами стандартных моделей (ARIMA, 
ETS), чтобы выяснить, в каких случаях следует пользоваться определенной группой моделей.
Методы. Проведен обзор нейросетевых моделей, рассмотрена структура моделей RNN, LSTM, GRU. Они ис-
пользуются для моделирования временных рядов российской макроэкономической статистики. Качество под-
стройки моделей под данные и качество прогнозов сравниваются в эксперименте. Нейросетевые и стандартные 
модели могут применяться как для всего ряда целиком, так и для его частей (тренд и сезонность). При построе-
нии прогноза на несколько временных промежутков вперед рассматриваются два подхода: построение прогноза 
сразу на весь промежуток и пошаговый прогноз. Так появляется несколько комбинаций моделей, которые могут 
использоваться для прогнозирования. Эти подходы проанализированы в вычислительном эксперименте.
Результаты. Проведено несколько экспериментов, в которых построены и сравниваются по близости про-
гноза к данным ряда в тестовом периоде стандартные (ARIMA, ETS, LOESS) и нейросетевые модели (LSTM, 
GRU, RNN).
Выводы. Для сезонных временных рядов модели на основе нейронных сетей превзошли по точности про-
гноза на тестовый период времени стандартные модели ARIMA, ETS. Одношаговый прогноз вычислительно 
менее эффективен, чем интегральный прогноз на весь целевой период, но точно указать, для каких рядов 
какой именно подход оказывается лучшим по качеству, не удается. Комбинированные модели (нейронные 
сети для тренда, ARIMA – для сезонности) почти всегда дают хороший результат. При прогнозировании не-
сезонного гетероскедастичного ряда курса акций лучшие результаты показали стандартные подходы (метод 
LOESS и модель ETS).

Ключевые слова: динамические ряды, макроэкономическая статистика, GRU, LSTM, RNN, DNN, временные 
ряды
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INTRODUCTION

This article analyzes the application of common 
neural network models for time series forecasting. Much 
research has been devoted to the topic of time series 
forecasting. In fact, several off-the-shelf approaches 
are used in practice, such as: ARIMA (autoregressive 
integrated moving average) models, ETS (exponential 
smoothing) models  [1,  2], construction of regressions 
reflecting dependencies between time-varying parameters. 
These can be referred to statistical models  [3]. GARCH 
(generalized autoregressive conditional heteroskedasticity) 
models are used when establishing the phenomenon of 
heteroskedasticity  [1,  2]. Ready-made neural network 
models LSTM (long short-term memory) and GRU (gated 
recurrent unit) can be trained using available time series 
data. There are many publications where several models of 
different types are built at once to describe a certain temporal 
process and their forecasts are used together (they are 
specified below in the description of models). Estimation 
of forecast accuracy when applying a  combination of 
ARIMA models is discussed [4, 5]. Due to the availability 
of a multitude of models, the question of which of them 
should be used for modeling the time process depending 
on its properties becomes essential [6]. The experimental 
part of the work considers the representation of seasonal 
monthly time series of personal income (HHI), and the real 
agricultural production index (AGR).1 Non-seasonal time 
series is represented by stock prices and stock indices (in 
particular, the SberBank stock price).2 The main objective 
of the paper is to determine which models should be used 
for modeling time processes.

The experimental section considers the construction 
of time series models ARIMA, neural network models 
LSTM, GRU, recurrent neural networks (RNN), and 
full-connected neural networks. Their forecasts for the 
test period are compared. The quality of neural network 
models built on such data is compared with the quality of 
ARIMA/ETS statistical models by information criteria 
and the quality of forecasts for the test period.

CONSIDERED APPROACHES  
TO TIME SERIES SIMULATION

When forecasting a  time series, a  model can be 
built in many ways. In particular, it is possible to train 
a neural network or build a statistical model based on the 

1  Unified archive of economic and sociological data. 
Dynamic series of macroeconomic statistics of the Russian 
Federation. Indices of wages, monetary incomes of the population; 
real volume of agricultural production. https://web.archive.org/
web/20230317111717/http://sophist.hse.ru/hse/nindex.shtml 
(in Russ.). Accessed June 01, 2024.

2  SberBank share price (SBER). https://www.moex.com/
ru/issue.aspx?board=TQBR&code=SBER (in Russ.). Accessed 
June 01, 2024.

initial values of the time series. However, on the other 
hand, it is possible to use the division of the series into 
a seasonal component and a trend.

Usually, the trend Tt is a  deterministic part of the 
time series yt with a seasonal component St (it may not 
exist), and noise Rt, where t  is time. The series can be 
represented in an additive  or multiplicative  form:

	 ,= + +t t t ty S T R  � (1)

	 .= × ×t t t ty S T R  � (2)

These approaches are equivalent.
In this case, one of the most common models for 

describing a  time series that does not rely on neural 
networks is ARIMA(p, d, q). This consists of the 
autoregressive part (for a model of order p the values of 
the series X are made dependent on p of their previous 
values):

1 1 ... ,− −= + ϕ + + ϕt t p t pX c X X

where , 1,ϕ =i i p  are the coefficients of the function; 
and from the moving average part of the order q [1]:

1 1 ... .−−= ε + θ ε + + θ εt t q t qtX

where , 1,=θi i q  are the coefficients of the function. The 
order d  denotes the number of differentiations of the 
series.

In fact, when building a model, the trend is overcome 
by switching to a  stationary time difference (by 
repeatedly differentiating the series until the statistical 
test confirms stationarity)  [1,  6]. The work is carried 
out with the transformed stationary time series. As part 
of the computational part of the study, we compare its 
results with the forecasts of the other models.

Since, according to decompositions (1), (2), the 
parts responsible for seasonal fluctuations and noise 
can be separated during modeling, the neural network 
can be trained both on the basis of original data and 
separately on the basis of trend. Because such separation 
is possible, several approaches to training data for neural 
network training are presented in the computational 
experiment. Neural network models enable forecasting 
both trend and seasonality, so trend and seasonality can 
be separately predicted using their own models and 
the results combined. In the second approach the data 
is not separated (used, for example, in ARIMA, ETS 
models). When modeling the trend, the time series is 
first separated into trend, seasonal component and noise. 
A neural network model is trained on the basis of trend 
data, except that the trend is predicted after training. Then 
the final forecast is collected from the trend forecast, as 
well as the seasonal component and noise models. The 

https://web.archive.org/web/20230317111717/http://sophist.hse.ru/hse/nindex.shtml 
https://web.archive.org/web/20230317111717/http://sophist.hse.ru/hse/nindex.shtml 
https://www.moex.com/ru/issue.aspx?board=TQBR&code=SBER
https://www.moex.com/ru/issue.aspx?board=TQBR&code=SBER
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separation into trend, noise and seasonality is done using 
LOESS (STL)3 [1].

In addition, forecasting itself can also be done 
in two ways. Researchers are usually interested in 
forecasting not one step ahead, but for several or for the 
entire season (if the series is seasonal). In this way, it 
is possible to assess how well the model describes the 
data of the series. However, the forecast for several steps 
ahead can be made either at once (integral forecast) or 
one step at a time (one-step forecast). In the second case, 
each predicted value becomes a new part of the training 
sample, on the basis of which the model is constantly 
adjusted, while the forecast itself is made only one step 
ahead at each iteration. Both approaches are compared 
in a computational experiment in the form of single-step 
and multi-step forecasting.

Several models are involved in the computational 
experiment: dense neural networks (DNN), recurrent 
neural networks (RNN), long short-term memory 
networks (LSTM), and guided recurrent unit (GRU).

Fully connected neural networks are a widely known 
neural network architecture  [7]. Each neuron receives 
a signal from all neurons of the previous layer (except 
for the network inputs), applies an activation function to 
their weighted combination and transmits the result to the 
neurons of the next layer. Various optimization methods 
are used to train fully-connected neural networks, such 
as gradient descent and its modifications. However, 
due to the large number of parameters, fully-connected 

3  LOESS—locally estimated scatterplot smoothing; STL 
(seasonal and trend decomposition using LOESS)—method of 
decomposition of time series into trend, seasonality, and residuals.

networks can be prone to overtraining. Regularization 
methods such as L1  and L2  and dropout methods are 
used to combat overtraining. The structure of the 
network is shown in Fig. 1.

Recurrent neural networks RNN [9, 10] are used to 
simulate functional relationships between input features 
in the recent past, and the target variable in the future. 
As shown in Fig. 2, an RNN is periodically trained on 
a historical dataset, focusing on internal (hidden) state 
transitions from time state t  −  1  to the cutoff t. The 
resulting model is defined by two weight matrices Wxs 
and Wy, and two bias vectors bs and by. The output yt 
depends on the internal state St, which depends on both 
the current input xt and the previous state St−1:

1 sth[ ( ) ],
( ).

−= ⊕ +

= s +
t xs t t

t y t y

S W x S b
y W S b  

Here xt is the input vector at time t, σ(x) is a sigmoid 
function, and the operation ⊕  is a concatenation. The 
main disadvantage of RNN is the problem of gradient 
decay, due to which the gradient becomes smaller over 
time. This is expressed by the fact that RNN memorizes 
information for only short periods of time.

Long Short Term Memory (LSTM) networks [11–26] 
are a variant of RNNs which partially resolve the fading 
gradient problem and learn longer term dependencies in 
time series. They are described at time t in terms of the 
internal (hidden) state St and the cell state Сt. The state 
Сt depends on three parameters: the previous cell state 
Сt–1; the previous internal state St–1; and the input at the 
current time xt. The process depicted in Fig. 3, enables 

Fig. 1. DNN structure [8]. x
  is the input vector, iy

  is the vector at the output of the ith layer of the network,  
y
  is the output vector of the entire network (result), g(.) is the activation function, j

iz  is the input of the jth neuron  
in the ith layer is the weighted linear combination of the results of the previous layer (weights are adjusted  

during training)
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moving/filtering, multiplying/uniting, and adding 
information using forget, input, addition, and output 
gates implemented by the functions xt, it, 



tC , and Ot, 
respectively. This enables more precise control of 
learning long-term dependencies.

These functions are related as follows:

1

1

1

1

1 0

( ( ) + ),

( ( ) ),

th( ( ) ),

,
( ( ) ),

th( ),
( ),

−

−

−

−

−

= s ⊕

= s ⊕ +

= ⊕ +

= +

= s ⊕ +

=

= s +





t f t t f

t i t t i

t c t t c

t t t t t

t O t t

t t t

t y t y

f W x S b

i W x S b

C W x S b

C f C i C
O W x S b

S O C
y W S b

where Wf, Wi, Wc, WO, Wy are various weight matrices 
involved in the training. The functions are used for 
forecasting both independently (e.g., the spread of 
coronavirus in [12, 19, 26] is modeled based on LSTM) 
and in combination with other models in  [14,  15]. 
A  combination of the forecast of this model with the 
results of other models can be applied. In [12, 16, 24, 26], 
deep learning is used to tune LSTM-based models. 
In [11, 13, 19, 20], LSTM-based models are compared 

Ws Ws Ws Ws

Wy

Wy
Wy

yt–1

xt–1

St–1

yt+1

xt+1

St+1th

yt

xt

St

Wx WxWx

Fig. 2. RNN structure [8]

xt–1 xt+1xt

yt–1 yt+1yt

Ct–1, St–1 Ct+1, St+1

St–1

ft
it

th

th σσσ

Ct–1

C~t

Ct

St

St

Ot

Fig. 3. LSTM structure [8]

with other commonly used models in forecasting 
a certain time process.

Guided recurrence units (GRU) [13, 25, 27–29] are 
a variant of LSTM which can resolve the fading gradient 
problem even better. As can be seen from Fig.  4, the 
novelty of this method lies in the use of update, reset, 
and third gates implemented by functions zt,, rt, 



tS  Each 
element has a different role in controlling the filtering, 
utilization, and merging of the previous information. 
The first term in the expression for the following state 

1(1 ) −− t tz S  enables configuration of what to keep from 
the past, while the element 

t tz S  determines what to use 
from current memory contents.

These functions are related as follows:

1

1

1

1

( ( ) ),
( ( ) ),

th( ( ) ),

(1 ) ,
( ).

−

−

−

−

= s ⊕ +

= s ⊕ +

= ⊕ +

= − +

= s +





t r t t r

t z t t z

t s t t t s

t t t t t

t y t y

r W x S b
z W x S b

S W x S r b

S z S z S
y W S b

Both applications of the GRU element connects 
with other neural networks (in  [27,  28] with CNN 
networks  [7]) and cascaded element construction  [29] 
can be found in the literature.

COMPUTATIONAL EXPERIMENT

This work presents the results of three experiments 
on the representation of monthly time series: household 
income (HHI); the index of the real agricultural 
production (AGR) (the indices have dimensionless 
units); and the daily time series of the SberBank of the 
Russian Federation share price measured in rubles.

The fully connected neural network has the structure 
shown in the Table 1.
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time series; ts(t) is the forecast of the mathematical 
model; N is the length of the forecasting segment (most 
often, it coincides with seasonality, and here we are 
talking about time series with annual seasonality, so 
N = 12).

The RNN network architecture chosen for integral 
trend forecasting with a step of 12 consists of three RNN 
layers (each containing 64 neurons), as well as a single 
layer of fully-connected neurons (i.e., 12  neurons in 
terms of the number of predicted values). A time window 
of size w is fed to the input of the model. As a result of 
experiments, it was found that a single layer is unable to 
detect seasonality. Adding more than three layers does 
not significantly improve the quality of the forecast. For 
this reason, three layers are chosen. The total number of 
trained parameters in the model is 21516.

A simpler model containing only one RNN layer 
with 64 neurons and an input layer with a single neuron 
was chosen for single-step trend forecast. This resulted 
in a  significant reduction in the number of trained 

In single-step forecasting, the network makes 
a forecast 1 step ahead. This data then becomes part of 
the training data, and the next step is made (one neuron 
in the output layer). In the integral approach, the forecast 
is made for 12 steps forward at once (for a year, since 
a series with annual seasonality is considered; there are 
12 neurons in the output layer). 

In order to evaluate model forecasts, measures of the 
closeness of the forecast vector and the vector of real 
values of the quantity are considered [1, 2]:

	

2( ( ) ( ))
RMSE ,

| ( ) ( ) |
MAE .

τ −

=

τ −

=

∑

∑

t

t

t ts t

N
t ts t

N

 � (3)

Here RMSE is a  root mean square error; MAE is 
a  mean absolute error; ( )τ t  are the real values of the 

xt–1 xt+1xt

St–1 St+1

St–1

rt
Zt

thσσ
S~t

1–

St

St

yt–1 yt+1yt

Fig. 4. GRU structure [8]

Table 1. Structure of a fully connected DNN neural network

Forecast type Layer number Number of neurons

Single-step

Input layer, 0 6

Layers 1, 5 64

Layers 2–4 128

Output layer, 6 1

Integral (forecast for 12 time periods 
ahead)

Input layer, 0 24

Layers 1, 5 64

Layers 2–4 128

Output layer, 6 12
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parameters to 4289, since additional layers did not 
noticeably improve the forecast quality. 

LSTM and GRU architectures were chosen to be 
identical in terms of the structure of the RNN network 
model described above. However, the number of trained 
parameters of LSTM for the two different architectures 
is 83724 and 16961, respectively, while for GRU it is 
63564 and 12929.

The classical ARIMA and ETS models are involved 
in the experiments [1, 2]. In the LOESS method, a trend 
is extracted based on the STL decomposition. It is then 

Table 2. Money income index models according to macroeconomic statistics of the Russian Federation 
and their forecasts for the test period

Time series model МАЕ RMSE

Polynomial of degree 4 + seasonality ARIMA(1, 1, 2) 3.42 4.52

LOESS method 3.49 4.57

ARIMA(6, 1, 5) with the seasonality (0, 1, 1)12 5.86 7.01

ETS 6.57 8.47

DNN model for trend, single-step forecast 4.21 5.58

DNN model for trend, integral forecast 3.88 4.58

DNN model for trend and seasonality, single-step forecast 2.44 3.06

DNN model for trend, ARIMA(1, 1, 2) for seasonality, single-step forecast 1.73 1.97

DNN model for trend and seasonality, integral forecast 2.48 3.36

DNN model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 2.29 2.62

RNN model for trend, single-step forecast 6.25 7.68

RNN model for trend, integral forecast 4.65 5.86

RNN model for trend and seasonality, single-step forecast 4.32 4.72

RNN model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.82 3.3

RNN model for trend and seasonality, integral forecast 3.88 4.45

RNN model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 2.35 2.95

LSTM model for trend, single-step forecast 23.43 30.68

LSTM model for trend, integral forecast 18.97 30.09

LSTM model for trend and seasonality, single-step forecast 3.83 4.25

LSTM model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.42 2.79

LSTM model for trend and seasonality, integral forecast 5.91 6.63

LSTM model for trend, ARIMA model for seasonality, integral forecast 5.03 5.40

GRU model for trend, single-step forecast 19.00 29.28

GRU model for trend, integral forecast 20.05 27.30

GRU model for trend and seasonality, single-step forecast 3.81 4.24

GRU model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.40 2.76

GRU model for trend and seasonality, integral forecast 3.94 4.36

GRU model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 2.41 2.89

forecast for the test period using the ARIMA model. 
A seasonality model is superimposed on the forecast for 
the test period. In addition, the trend was estimated using 
a polynomial. Seasonality was estimated using ARIMA, 
and the results were combined.

Experiment 1 considers the index of money income of 
the Russian population for 2000–2020. All the considered 
models were adapted for the 2000–2020 training period 
(the crisis years 2008 and 2014 were removed and the 
data agglomerated). The results of their forecasts for the 
test period (2021) are compared in Table 2.
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Based on an analysis of ACF/PACF4 functions, 
a conclusion was drawn about the presence of seasonality 
in 12 months (which is confirmed by statistical tests) and 
ARIMA(p,  d,  q) mathematical models were selected. 
Their selection and analysis are detailed in [3, 30].

Note that the best forecasts are obtained for 
a  combination of models (neural network model for 
trend, ARIMA for seasonality). Practically any model 
for the trend gives good results (the best results are 
obtained by the full-link network). The LSTM model 

4   ACF—autocorrelation function; PCF—partial autocorrela-
tion function.

performed better for single-step forecasts, the RNN and 
DNN models performed better for integral forecasts, 
while the GRU model worked well for both approaches. 
In this experiment, neural network models outperformed 
standard time series models.

Experiment 2  considers the index of real 
agricultural production in Russia for 2000–2020  (a 
detailed analysis of the series is presented in  [30]). 
All the models considered were adapted for the 
2000–2020  training period (the crisis years 2008 and 
2014  were removed and the data agglomerated). The 
results of their forecasts for the test period (2021) are 
compared in Table 3. 

Table 3. Models of the index of real volume of agricultural production according to macroeconomic statistics 
of the Russian Federation and their forecasts for the test period

Time series model МАЕ RMSE

Polynomial of degree 1 + ARIMA(2, 0, 1) with seasonality (2, 1, 1)12 67.04 77.76

Logarithmic function y = a0 + a1lnx 55.04 80.92

Exponential function  y = exp(a0 + a1x)  53.00 90.48

ARIMA(3, 0, 1) with a seasonality (2, 1, 2)12 13.24 18.51

ETS 17.22 25.40

DNN model for trend, single-step forecast 15.97 29.70

DNN model for trend, integral forecast 14.63 26.61

DNN model for trend and seasonality, single-step forecast 9.75 16.18

DNN model for trend, ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, single-step forecast 8.71 11.94

DNN model for trend and seasonality, integral forecast 9.09 15.31

DNN model for trend, ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, integral forecast 6.81 10.90

RNN model for trend, single-step forecast 17.02 23.72

RNN model for trend, integral forecast 13.94 16.66

RNN model for trend and seasonality, single-step forecast 8.37 14.67

RNN model for trend, ARIMA model for seasonality, single-step forecast 6.72 10.53

RNN model for trend and seasonality, integral forecast 10.51 16.17

RNN model for trend, модель ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, single-step forecast 8.95 11.81

LSTM model for trend, single-step forecast 26.56 38.00

LSTM model for trend, integral forecast 23.35 31.07

LSTM model for trend and seasonality, single-step forecast 8.39 14.76

LSTM model for trend, ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, single-step forecast 6.87 10.58

LSTM model for trend and seasonality, integral forecast 8.78 15.41

LSTM model for trend, ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, integral forecast 7.30 11.13

GRU model for trend, single-step forecast 24.82 34.09

GRU model for trend, integral forecast 21.47 26.67

GRU model for trend and seasonality, single-step forecast 8.90 15.48

GRU model for trend, модель ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, single-step forecast 7.88 11.24

GRU model for trend and seasonality, integral forecast 10.11 16.34

GRU model for trend, модель ARIMA(2, 0, 1) × (2, 1, 1)12 model for seasonality, integral forecast 8.87 12.09
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According to ACF/PACF functions, it can be concluded 
that there is seasonality in 12 months (which is confirmed 
by statistical tests). Also, due to the presence of a spike in 
the PACF diagram, all ARIMA(p, d, q) models with orders 
p, q from 1 to 6 were tested. The ARIMA(2, 0, 1) model 
with annual seasonality of the form (2, 1, 1)12 is used for 
a combination of models in which the standard ARIMA 
model is used to describe seasonality and the trend is 
specified using a neural network model or polynomial.

Note that the best forecasts are obtained for 
a  combination of models (neural network model for 
trend, ARIMA for seasonality). At the same time, not all 
models give good results for the trend (RNN, DNN and 
LSTM give the best results). RNN and LSTM models 
performed better for single-step forecast, and DNN—
for integral forecast. In this experiment, neural network 
models outperformed standard time series models.

Let us separately consider a  series of exchange 
rate of exchange-traded shares: the shares of SberBank 
of the Russian Federation. It has heteroskedasticity: 
its mathematical expectation and dispersion change 
with time. This is confirmed by the McLeod–Li test 
(all components of the resultant vector are zero with 
an accuracy of 0.01)  [31]. Due to the fact that it is 
non-seasonal, only two approaches are possible for each 
neural network system: to make a forecast for the entire 
test period at once (integral) or to make step-by-step 
forecasts, declaring each new step as part of the training 
sample, in order to move to the next point in time. They 
clearly indicate the absence of seasonality and the need 
to test second-order models. ARIMA(2, 1, 3) model was 
chosen for the series (the analysis of the series is given 
in [30]).

The forecasting results are presented in Table 4.

The best results are obtained by classical methods 
of series modeling: LOESS, ETS, and ARIMA models. 
Among neural network methods, the best result was 
shown by GRU model. In all cases, forecasts made one 
step ahead several times are better than a single forecast 
for a given period.

CONCLUSIONS

For seasonal time series, neural network-based 
models outperform standard models in terms of forecast 
accuracy for the test time period. The forecast accuracy 
of neural network models in all experiments was better 
than that of ARIMA/ETS models. The single-step 
forecast appears to be computationally less efficient 
than the integral forecast for the entire target period at 
once. However, it is not possible to specify precisely for 
which series the single-step or integral forecast is better 
in terms of quality.

Combined models, in which neural network models 
are used to model trend, and ARIMA model is used to 
model seasonality (when decomposed into trend, noise 
and seasonality, for example, using STL), almost always 
give a good result. More often than not, it is this model 
which provides the best result. At the same time, since 
the results are approximately equal, due to the lower 
complexity of construction and training, the RNN and 
full-link DNN models appear preferable.

When forecasting non-seasonal series, one-step 
forecasting is recommended (each predicted value 
is announced as part of the training sample to predict 
the next value). When forecasting the share price of 
SberBank of the Russian Federation, the best results 
were shown by the standard models and RNN.

Table 4. SberBank of the Russian Federation share price time series models

Time series model МАЕ RMSE

LOESS method 0.004 0.006

ARIMA (2, 1, 3) 11.23 42.11

ETS 4.95 20.68

DNN model for trend, single-step forecast 23.49 27.22

DNN model for trend, integral forecast 51.00 62.80

RNN model for trend, single-step forecast 16.42 21.69

RNN model for trend, integral forecast 80.53 86.39

LSTM model for trend, single-step forecast 49.74 59.32

LSTM model for trend, integral forecast 76.95 81.40

GRU model for trend, single-step forecast 7.14 29.28

GRU model for trend, integral forecast 24.66 85.05
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When building neural networks modeling, the 
behavior of time series, several layers should be 
used (5–6  layers were used in this work). Networks 
with 1–2  layers do not extract features useful for 

forecasting even when the number of neurons in 
a layer is increased.
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