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Abstract

Objectives. To build neural network models of time series (LSTM, GRU, RNN) and compare the results of forecasting
with their mutual help and the results of standard models (ARIMA, ETS), in order to ascertain in which cases a certain
group of models should be used.

Methods. The paper provides a review of neural network models and considers the structure of RNN, LSTM, and
GRU models. They are used for modeling time series in Russian macroeconomic statistics. The quality of model
adjustment to the data and the quality of forecasts are compared experimentally. Neural network and standard
models can be used both for the entire series and for its parts (trend and seasonality). When building a forecast for
several time intervals in the future, two approaches are considered: building a forecast for the entire interval at once,
and step-by-step forecasting. In this way there are several combinations of models that can be used for forecasting.
These approaches are analyzed in the computational experiment.

Results. Several experiments have been conducted in which standard (ARIMA, ETS, LOESS) and neural network
models (LSTM, GRU, RNN) are built and compared in terms of proximity of the forecast to the series data in the test
period.

Conclusions. In the case of seasonal time series, models based on neural networks surpassed the standard ARIMA
and ETS models in terms of forecast accuracy for the test period. The single-step forecast is computationally less
efficient than the integral forecast for the entire target period. However, it is not possible to accurately indicate which
approach is the best in terms of quality for a given series. Combined models (neural networks for trend, ARIMA
for seasonality) almost always give good results. When forecasting a non-seasonal heteroskedastic series of share
price, the standard approaches (LOESS method and ETS model) showed the best results.
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Pe3iome

Llenu. OcHoBHas Lenb paboTbl — MOCTPOUTL HEMPOCEeTEBbLIE MOAENN BpeMeHHbIX psaoB (LSTM, GRU, RNN) n cpas-
HUTb Pe3yYNbTaTbl MPOrHO3MPOBAHUS C UX MOMOLLLbIO MeXy COO0I 1 ¢ pedynbTataMmu CTaHAapTHeIX Moaenei (ARIMA,
ETS), 4TO6bI BLISICHUTb, B KAKUX CNy4asix CrieayeT NoJib30BaThCs ONPeAeeHHON rpynno Moaeneii.

MeToabl. MpoBeneH 0630p HelpoceTeBbIX Moaenel, paccmoTpeHa ctpykTypa moaeneii RNN, LSTM, GRU. OHu uvc-
MONbL3YTCA 419 MOOENMPOBaHUSA BPEMEHHbIX PAO0B POCCUINCKOM MakpO3KOHOMMYECKOM CTaTUCTUKN. KayecTBO noa-
CTPOVIKM MOAENEN Mo, AaHHbIE 1 Ka4eCTBO NPOrHO30B CPaBHMBAIOTCA B 9KCMEPUMEHTE. HerpoceTeBble 1 CTaHAaPTHbIE
MOZEeNN MOryT NPUMEHATLCA Kak AJ1s1 BCEero psaa LennkoMm, Tak 1 1A ero Yactemn (TpeHa, 1 Ce30HHOCTL). [Mpu nocTpoe-
HUM MPOrHO3a Ha HECKOJIbKO BPEMEHHbIX MPOMEXYTKOB Briepe, pacCMaTpmBatoTCA ABa Noaxona: noCcTpoeHme NporHosa
cpasy Ha BeCb NMPOMEXYTOK 1 MoLIAaroBblii NPOrHo3. Tak NosBASETCA HECKOIbKO KOMOMHALUMIA MOAenen, KoTopble MOoryT
MCMNONb30BAaTLCS 4719 MPOrHO3UPOBAHUS. OTU NOAXOAbI MPOAHANIM3MPOBAHbI B BbIYUCIUTENIbHOM 3KCNEPUIMEHTE.
PesynbTatbl. [1pOBEAEHO HECKO/BLKO SKCMEPMMEHTOB, B KOTOPbIX MOCTPOEHbI U CPaBHMBAOTCS MO 6AM30CTH NPo-
rHO3a K JaHHbIM psiga B TeCTOBOM nepuoae ctaHgapTtHele (ARIMA, ETS, LOESS) n HelipoceTeBble mogenn (LSTM,
GRU, RNN).

BbiBoAbI. 115 CE30HHbLIX BDEMEHHbIX PSAA0B MOLENN HA OCHOBE HEMPOHHLIX CETEN NPEB30LUAN N0 TOYHOCTU MPO-
rHO3a Ha TECTOBLIV Nepuoa, BpemeHu ctaHaapTHele mogenu ARIMA, ETS. OgHowarosblii MPOrHO3 BbIYUCANTENBHO
MeHee 9P DEKTUBEH, YEM MHTErpasibHbl NPOrHO3 Ha BECH LLENIeBOM Nepunos, HO TOYHO yKasaTb, 419 Kakux psaoB
KaKoW MMEHHO MOAXO[, OKa3blBaeTCs Ny4YLUMM MO KavyecTBy, He ynaeTcsa. KoMOMHMpOBaHHbIE MOAENM (HEMPOHHbIE
cetn onqa TpeHaa, ARIMA — ans ce30HHOCTM) NoYTK BCerga AatoT Xopowunin pedynsTtart. [1py nporHo3npoBaHum He-
CE30HHOIro retepoCcKkefacTUYHOr o psaaa Kypca akuni nydiime pesynbTaTbl noKkasanan CTaHg4apTHble Noaxoabl (MeTon,
LOESS n mopgens ETS).

KnioueBble cnoBa: gnHaMmnyeckmne psabl, MakpoakoHoMmuyeckas ctatnctuka, GRU, LSTM, RNN, DNN, BpeMeHHble
paabl
e Moctynuna: 21.06.2023 ¢ Jopa6oTaHa: 15.02.2024 ¢ MpuHaTa K ony6nukoBaHuio: 26.05.2024

Ansa untuposanus: MNMawwoes b., MNeTpycesny [I.A. AHann3 HerMpoceTeBbIX MOAENEN A1 NPOrHO3MPOBAHUS BPEMEH-
HbIX pPaaoB. Russ. Technol. J. 2024;12(4):106—-116. https://doi.org/10.32362/2500-316X-2024-12-4-106-116

Mpo3payHocTb pUHAHCOBOMN AEATENIbHOCTU: ABTOPbLI HE UMEKDT PUHAHCOBOM 3aMHTEPECOBAHHOCTN B NPEACTaBNEH-
HbIX MaTepmanax uim MeToaax.

ABTOPbI 3a5BNSIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.
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INTRODUCTION

This article analyzes the application of common
neural network models for time series forecasting. Much
research has been devoted to the topic of time series
forecasting. In fact, several off-the-shelf approaches
are used in practice, such as: ARIMA (autoregressive
integrated moving average) models, ETS (exponential
smoothing) models [1, 2], construction of regressions
reflecting dependencies between time-varying parameters.
These can be referred to statistical models [3]. GARCH
(generalized autoregressive conditional heteroskedasticity)
models are used when establishing the phenomenon of
heteroskedasticity [1, 2]. Ready-made neural network
models LSTM (long short-term memory) and GRU (gated
recurrent unit) can be trained using available time series
data. There are many publications where several models of
different types are built at once to describe a certain temporal
process and their forecasts are used together (they are
specified below in the description of models). Estimation
of forecast accuracy when applying a combination of
ARIMA models is discussed [4, 5]. Due to the availability
of a multitude of models, the question of which of them
should be used for modeling the time process depending
on its properties becomes essential [6]. The experimental
part of the work considers the representation of seasonal
monthly time series of personal income (HHI), and the real
agricultural production index (AGR).! Non-seasonal time
series is represented by stock prices and stock indices (in
particular, the SberBank stock price).? The main objective
of the paper is to determine which models should be used
for modeling time processes.

The experimental section considers the construction
of time series models ARIMA, neural network models
LSTM, GRU, recurrent neural networks (RNN), and
full-connected neural networks. Their forecasts for the
test period are compared. The quality of neural network
models built on such data is compared with the quality of
ARIMAV/ETS statistical models by information criteria
and the quality of forecasts for the test period.

CONSIDERED APPROACHES
TO TIME SERIES SIMULATION

When forecasting a time series, a model can be
built in many ways. In particular, it is possible to train
aneural network or build a statistical model based on the

I Unified archive of economic and sociological data.
Dynamic series of macroeconomic statistics of the Russian
Federation. Indices of wages, monetary incomes of the population;
real volume of agricultural production. https://web.archive.org/
web/20230317111717/http://sophist.hse.ru/hse/nindex.shtml
(in Russ.). Accessed June 01, 2024.

2 SberBank share price (SBER). https://www.moex.com/
ru/issue.aspx?board=TQBR&code=SBER (in Russ.). Accessed
June 01, 2024.

initial values of the time series. However, on the other
hand, it is possible to use the division of the series into
a seasonal component and a trend.

Usually, the trend 7, is a deterministic part of the
time series y, with a seasonal component S, (it may not
exist), and noise R, where ¢ is time. The series can be
represented in an additive or multiplicative form:

v, =8, +T, + R, (1)
Y, =8, xT, xR,. 2)

These approaches are equivalent.

In this case, one of the most common models for
describing a time series that does not rely on neural
networks is ARIMA(p,d,q). This consists of the
autoregressive part (for a model of order p the values of
the series X are made dependent on p of their previous
values):

X, =c+o X, +...+<prt_p,
where @;,i=1p are the coefficients of the function;
and from the moving average part of the order ¢ [1]:

X, =g, +0g,_ | +...+ qut—q'

where 0;,i =1,¢ are the coefficients of the function. The
order d denotes the number of differentiations of the
series.

In fact, when building a model, the trend is overcome
by switching to a stationary time difference (by
repeatedly differentiating the series until the statistical
test confirms stationarity) [1, 6]. The work is carried
out with the transformed stationary time series. As part
of the computational part of the study, we compare its
results with the forecasts of the other models.

Since, according to decompositions (1), (2), the
parts responsible for seasonal fluctuations and noise
can be separated during modeling, the neural network
can be trained both on the basis of original data and
separately on the basis of trend. Because such separation
is possible, several approaches to training data for neural
network training are presented in the computational
experiment. Neural network models enable forecasting
both trend and seasonality, so trend and seasonality can
be separately predicted using their own models and
the results combined. In the second approach the data
is not separated (used, for example, in ARIMA, ETS
models). When modeling the trend, the time series is
first separated into trend, seasonal component and noise.
A neural network model is trained on the basis of trend
data, except that the trend is predicted after training. Then
the final forecast is collected from the trend forecast, as
well as the seasonal component and noise models. The
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Fig. 1. DNN structure [8]. X is the input vector, ¥, is the vector at the output of the jth layer of the network,
y is the output vector of the entire network (result), g(.) is the activation function, z,f is the input of the jth neuron
in the jith layer is the weighted linear combination of the results of the previous layer (weights are adjusted
during training)
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separation into trend, noise and seasonality is done using
LOESS (STL)? [1].

In addition, forecasting itself can also be done
in two ways. Researchers are usually interested in
forecasting not one step ahead, but for several or for the
entire season (if the series is seasonal). In this way, it
is possible to assess how well the model describes the
data of the series. However, the forecast for several steps
ahead can be made either at once (integral forecast) or
one step at a time (one-step forecast). In the second case,
each predicted value becomes a new part of the training
sample, on the basis of which the model is constantly
adjusted, while the forecast itself is made only one step
ahead at each iteration. Both approaches are compared
in a computational experiment in the form of single-step
and multi-step forecasting.

Several models are involved in the computational
experiment: dense neural networks (DNN), recurrent
neural networks (RNN), long short-term memory
networks (LSTM), and guided recurrent unit (GRU).

Fully connected neural networks are a widely known
neural network architecture [7]. Each neuron receives
a signal from all neurons of the previous layer (except
for the network inputs), applies an activation function to
their weighted combination and transmits the result to the
neurons of the next layer. Various optimization methods
are used to train fully-connected neural networks, such
as gradient descent and its modifications. However,
due to the large number of parameters, fully-connected

3 LOESS—Iocally estimated scatterplot smoothing; STL
(seasonal and trend decomposition using LOESS)—method of
decomposition of time series into trend, seasonality, and residuals.

networks can be prone to overtraining. Regularization
methods such as L1 and L2 and dropout methods are
used to combat overtraining. The structure of the
network is shown in Fig. 1.

Recurrent neural networks RNN [9, 10] are used to
simulate functional relationships between input features
in the recent past, and the target variable in the future.
As shown in Fig. 2, an RNN is periodically trained on
a historical dataset, focusing on internal (hidden) state
transitions from time state ¢+ — 1 to the cutoff 7. The
resulting model is defined by two weight matrices W,
and W , and two bias vectors b, and b . The output y,
depends on the internal state S,, which depends on both
the current input x, and the previous state S,_;:

S, = th[W_ (x, ®S, )+ b,],
¥, =o(W,S, +b ).

Here x, is the input vector at time 7, 6(x) is a sigmoid
function, and the operation @ is a concatenation. The
main disadvantage of RNN is the problem of gradient
decay, due to which the gradient becomes smaller over
time. This is expressed by the fact that RNN memorizes
information for only short periods of time.

Long Short Term Memory (LSTM) networks [11-26]
are a variant of RNNs which partially resolve the fading
gradient problem and learn longer term dependencies in
time series. They are described at time ¢ in terms of the
internal (hidden) state S, and the cell state C,. The state
C, depends on three parameters: the previous cell state
C,_; the previous internal state S, |; and the input at the
current time x,. The process depicted in Fig. 3, enables
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moving/filtering, multiplying/uniting, and adding
information using forget, input, addition, and output
gates implemented by the functions x,, i, C,, and 0,

respectively. This enables more precise control of
learning long-term dependencies.
These functions are related as follows:

f,=c(W,(x,®S, )+b ),
i, =c(W,(x, ®S,_|)+b,),
C, =th(W.(x, ®S, |)+b,),
C=1fC+ itét’
0, =c(W,(x, ®S, |)+b,),
S, =0,th(C,),
y, = G(WySt + by),

where W, W, W _, W, W are various weight matrices
involved in the training. The functions are used for
forecasting both independently (e.g., the spread of
coronavirus in [12, 19, 26] is modeled based on LSTM)
and in combination with other models in [14, 15].
A combination of the forecast of this model with the
results of other models can be applied. In[12, 16, 24, 26],
deep learning is used to tune LSTM-based models.
In [11, 13, 19, 20], LSTM-based models are compared

with other commonly used models in forecasting
a certain time process.

Guided recurrence units (GRU) [13, 25, 27-29] are
a variant of LSTM which can resolve the fading gradient
problem even better. As can be seen from Fig. 4, the
novelty of this method lies in the use of update, reset,

and third gates implemented by functions z, r, St Each
element has a different role in controlling the filtering,
utilization, and merging of the previous information.
The first term in the expression for the following state
(I-%,)S,_; enables configuration of what to keep from

the past, while the element ztgt determines what to use
from current memory contents.
These functions are related as follows:

r,=c(W,.(x, ®S, ) +b,),
z,=c(W,(x, ®S, ) +b,),
S, = th(W,(x, ®S,_r,)+b,),
S, =(1-2,)S, , +2,S,,
Y, =o(W,S,+b ).

Both applications of the GRU element connects
with other neural networks (in [27, 28] with CNN
networks [7]) and cascaded element construction [29]
can be found in the literature.

COMPUTATIONAL EXPERIMENT

This work presents the results of three experiments
on the representation of monthly time series: household
income (HHI); the index of the real agricultural
production (AGR) (the indices have dimensionless
units); and the daily time series of the SberBank of the
Russian Federation share price measured in rubles.

The fully connected neural network has the structure
shown in the Table 1.

Yi-1 \A Yi+1
A A
A
Ciq R Nz T ~ C;
If L A B U,
...... —>»C, .,S t r_’«w X C..,, S,  —Pu
-1 ¥t-1 + 2 ‘0: t+10 P+
A ol o] [th] |o S 4
St J J J
T(
X1 X Xt+1

Fig. 3. LSTM structure [8]
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Fig. 4. GRU structure [8]
Table 1. Structure of a fully connected DNN neural network
Forecast type Layer number Number of neurons
Input layer, 0 6
Layers 1, 5 64
Single-step
Layers 24 128
Output layer, 6 1
Input layer, 0 24
L 1,5 64
Integral (forecast for 12 time periods avers &
head
ahead) Layers 24 128
Output layer, 6 12

In single-step forecasting, the network makes
a forecast 1 step ahead. This data then becomes part of
the training data, and the next step is made (one neuron
in the output layer). In the integral approach, the forecast
is made for 12 steps forward at once (for a year, since
a series with annual seasonality is considered; there are
12 neurons in the output layer).

In order to evaluate model forecasts, measures of the
closeness of the forecast vector and the vector of real
values of the quantity are considered [1, 2]:

D (x(0) ~ 15(1))*

N

D) ~s(0)|
MAE = -

)

Here RMSE is a root mean square error; MAE is
a mean absolute error; t(¢) are the real values of the

time series; ts(¢) is the forecast of the mathematical
model; N is the length of the forecasting segment (most
often, it coincides with seasonality, and here we are
talking about time series with annual seasonality, so
N=12).

The RNN network architecture chosen for integral
trend forecasting with a step of 12 consists of three RNN
layers (each containing 64 neurons), as well as a single
layer of fully-connected neurons (i.e., 12 neurons in
terms of the number of predicted values). A time window
of size w is fed to the input of the model. As a result of
experiments, it was found that a single layer is unable to
detect seasonality. Adding more than three layers does
not significantly improve the quality of the forecast. For
this reason, three layers are chosen. The total number of
trained parameters in the model is 21516.

A simpler model containing only one RNN layer
with 64 neurons and an input layer with a single neuron
was chosen for single-step trend forecast. This resulted
in a significant reduction in the number of trained
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parameters to 4289, since additional layers did not
noticeably improve the forecast quality.

LSTM and GRU architectures were chosen to be
identical in terms of the structure of the RNN network
model described above. However, the number of trained
parameters of LSTM for the two different architectures
is 83724 and 16961, respectively, while for GRU it is
63564 and 12929.

The classical ARIMA and ETS models are involved
in the experiments [1, 2]. In the LOESS method, a trend
is extracted based on the STL decomposition. It is then

forecast for the test period using the ARIMA model.
A seasonality model is superimposed on the forecast for
the test period. In addition, the trend was estimated using
a polynomial. Seasonality was estimated using ARIMA,
and the results were combined.

Experiment 1 considers the index of money income of
the Russian population for 2000-2020. All the considered
models were adapted for the 2000—2020 training period
(the crisis years 2008 and 2014 were removed and the
data agglomerated). The results of their forecasts for the
test period (2021) are compared in Table 2.

Table 2. Money income index models according to macroeconomic statistics of the Russian Federation

and their forecasts for the test period

Time series model MAE RMSE
Polynomial of degree 4 + seasonality ARIMAC(1, 1, 2) 3.42 4.52
LOESS method 3.49 4.57
ARIMA(6, 1, 5) with the seasonality (0, 1, 1), 5.86 7.01
ETS 6.57 8.47
DNN model for trend, single-step forecast 4.21 5.58
DNN model for trend, integral forecast 3.88 4.58
DNN model for trend and seasonality, single-step forecast 2.44 3.06
DNN model for trend, ARIMA(1, 1, 2) for seasonality, single-step forecast 1.73 1.97
DNN model for trend and seasonality, integral forecast 2.48 3.36
DNN model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 2.29 2.62
RNN model for trend, single-step forecast 6.25 7.68
RNN model for trend, integral forecast 4.65 5.86
RNN model for trend and seasonality, single-step forecast 4.32 4.72
RNN model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.82 33
RNN model for trend and seasonality, integral forecast 3.88 4.45
RNN model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 2.35 2.95
LSTM model for trend, single-step forecast 23.43 30.68
LSTM model for trend, integral forecast 18.97 30.09
LSTM model for trend and seasonality, single-step forecast 3.83 4.25
LSTM model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.42 2.79
LSTM model for trend and seasonality, integral forecast 591 6.63
LSTM model for trend, ARIMA model for seasonality, integral forecast 5.03 5.40
GRU model for trend, single-step forecast 19.00 29.28
GRU model for trend, integral forecast 20.05 27.30
GRU model for trend and seasonality, single-step forecast 3.81 4.24
GRU model for trend, ARIMA(1, 1, 2) model for seasonality, single-step forecast 2.40 2.76
GRU model for trend and seasonality, integral forecast 3.94 436
GRU model for trend, ARIMA(1, 1, 2) model for seasonality, integral forecast 241 2.89
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Table 3. Models of the index of real volume of agricultural production according to macroeconomic statistics
of the Russian Federation and their forecasts for the test period

Time series model MAE RMSE
Polynomial of degree 1 + ARIMA(2, 0, 1) with seasonality (2, 1, 1), 67.04 77.76
Logarithmic function y = a,, + a,Inx 55.04 80.92
Exponential function y = exp(a, + a,x) 53.00 90.48
ARIMA(3, 0, 1) with a seasonality (2, 1, 2),, 13.24 18.51
ETS 17.22 25.40
DNN model for trend, single-step forecast 15.97 29.70
DNN model for trend, integral forecast 14.63 26.61
DNN model for trend and seasonality, single-step forecast 9.75 16.18
DNN model for trend, ARIMA(2, 0, 1) x (2, 1, 1),, model for seasonality, single-step forecast 8.71 11.94
DNN model for trend and seasonality, integral forecast 9.09 15.31
DNN model for trend, ARIMA(2, 0, 1) x (2, 1, 1);, model for seasonality, integral forecast 6.81 10.90
RNN model for trend, single-step forecast 17.02 23.72
RNN model for trend, integral forecast 13.94 16.66
RNN model for trend and seasonality, single-step forecast 8.37 14.67
RNN model for trend, ARIMA model for seasonality, single-step forecast 6.72 10.53
RNN model for trend and seasonality, integral forecast 10.51 16.17
RNN model for trend, momens ARIMA(2, 0, 1) x (2, 1, 1), model for seasonality, single-step forecast 8.95 11.81
LSTM model for trend, single-step forecast 26.56 38.00
LSTM model for trend, integral forecast 23.35 31.07
LSTM model for trend and seasonality, single-step forecast 8.39 14.76
LSTM model for trend, ARIMA(2, 0, 1) % (2, 1, 1);, model for seasonality, single-step forecast 6.87 10.58
LSTM model for trend and seasonality, integral forecast 8.78 15.41
LSTM model for trend, ARIMA(2, 0, 1) x (2, 1, 1),, model for seasonality, integral forecast 7.30 11.13
GRU model for trend, single-step forecast 24.82 34.09
GRU model for trend, integral forecast 21.47 26.67
GRU model for trend and seasonality, single-step forecast 8.90 15.48
GRU model for trend, monens ARIMA(2, 0, 1) x (2, 1, 1),, model for seasonality, single-step forecast 7.88 11.24
GRU model for trend and seasonality, integral forecast 10.11 16.34
GRU model for trend, monens ARIMA(2, 0, 1) x (2, 1, 1),, model for seasonality, integral forecast 8.87 12.09

Based on an analysis of ACF/PACF* functions,
a conclusion was drawn about the presence of seasonality
in 12 months (which is confirmed by statistical tests) and
ARIMA(p, d, q) mathematical models were selected.
Their selection and analysis are detailed in [3, 30].

Note that the best forecasts are obtained for
a combination of models (neural network model for
trend, ARIMA for seasonality). Practically any model
for the trend gives good results (the best results are
obtained by the full-link network). The LSTM model

4 ACF—autocorrelation function; PCF—partial autocorrela-
tion function.

performed better for single-step forecasts, the RNN and
DNN models performed better for integral forecasts,
while the GRU model worked well for both approaches.
In this experiment, neural network models outperformed
standard time series models.

Experiment 2 considers the index of real
agricultural production in Russia for 2000-2020 (a
detailed analysis of the series is presented in [30]).
All the models considered were adapted for the
2000-2020 training period (the crisis years 2008 and
2014 were removed and the data agglomerated). The
results of their forecasts for the test period (2021) are
compared in Table 3.
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According to ACF/PACF functions, it can be concluded
that there is seasonality in 12 months (which is confirmed
by statistical tests). Also, due to the presence of a spike in
the PACF diagram, all ARIMA(p, d, g) models with orders
p, g from 1 to 6 were tested. The ARIMA(2, 0, 1) model
with annual seasonality of the form (2, 1, 1), is used for
a combination of models in which the standard ARIMA
model is used to describe seasonality and the trend is
specified using a neural network model or polynomial.

Note that the best forecasts are obtained for
a combination of models (neural network model for
trend, ARIMA for seasonality). At the same time, not all
models give good results for the trend (RNN, DNN and
LSTM give the best results). RNN and LSTM models
performed better for single-step forecast, and DNN—
for integral forecast. In this experiment, neural network
models outperformed standard time series models.

Let us separately consider a series of exchange
rate of exchange-traded shares: the shares of SberBank
of the Russian Federation. It has heteroskedasticity:
its mathematical expectation and dispersion change
with time. This is confirmed by the McLeod-Li test
(all components of the resultant vector are zero with
an accuracy of 0.01) [31]. Due to the fact that it is
non-seasonal, only two approaches are possible for each
neural network system: to make a forecast for the entire
test period at once (integral) or to make step-by-step
forecasts, declaring each new step as part of the training
sample, in order to move to the next point in time. They
clearly indicate the absence of seasonality and the need
to test second-order models. ARIMA(2, 1, 3) model was
chosen for the series (the analysis of the series is given
in [30]).

The forecasting results are presented in Table 4.

The best results are obtained by classical methods
of series modeling: LOESS, ETS, and ARIMA models.
Among neural network methods, the best result was
shown by GRU model. In all cases, forecasts made one
step ahead several times are better than a single forecast
for a given period.

CONCLUSIONS

For seasonal time series, neural network-based
models outperform standard models in terms of forecast
accuracy for the test time period. The forecast accuracy
of neural network models in all experiments was better
than that of ARIMA/ETS models. The single-step
forecast appears to be computationally less efficient
than the integral forecast for the entire target period at
once. However, it is not possible to specify precisely for
which series the single-step or integral forecast is better
in terms of quality.

Combined models, in which neural network models
are used to model trend, and ARIMA model is used to
model seasonality (when decomposed into trend, noise
and seasonality, for example, using STL), almost always
give a good result. More often than not, it is this model
which provides the best result. At the same time, since
the results are approximately equal, due to the lower
complexity of construction and training, the RNN and
full-link DNN models appear preferable.

When forecasting non-seasonal series, one-step
forecasting is recommended (each predicted value
is announced as part of the training sample to predict
the next value). When forecasting the share price of
SberBank of the Russian Federation, the best results
were shown by the standard models and RNN.

Table 4. SberBank of the Russian Federation share price time series models

Time series model MAE RMSE
LOESS method 0.004 0.006
ARIMA (2,1, 3) 11.23 42.11
ETS 4.95 20.68
DNN model for trend, single-step forecast 23.49 27.22
DNN model for trend, integral forecast 51.00 62.80
RNN model for trend, single-step forecast 16.42 21.69
RNN model for trend, integral forecast 80.53 86.39
LSTM model for trend, single-step forecast 49.74 59.32
LSTM model for trend, integral forecast 76.95 81.40
GRU model for trend, single-step forecast 7.14 29.28
GRU model for trend, integral forecast 24.66 85.05

Russian Technological Journal. 2024;12(4):106-116

114



Neural network analysis Bakhtierzhon Pashshoev,
in time series forecasting Denis A. Petrusevich

When building neural networks modeling, the  forecasting even when the number of neurons in

behavior of time series, several layers should be a layer is increased.

used (5-6 layers were used in this work). Networks Authors’
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with 1-2 layers do not extract features useful for  contributed to the research work.
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