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Abstract

Objectives. The purpose of this work was to create an effective iterative algorithm for the tomographic reconstruction
of objects with large volumes of initial data. Unlike the convolutional projection algorithm, widely used in commercial
industrial and medical tomographic devices, algebraic iterative reconstruction methods use significant amounts
of memory and typically involve long reconstruction times. At the same time, iterative methods enable a wider range
of diagnostic tasks to be resolved where greater accuracy of reconstruction is required, as well as in cases where
a limited amount of data is used for sparse-view angle shooting or shooting with a limited angular range.

Methods. A feature of the algorithm thus created is the use of a polar coordinate system in which the projection
system matrices are invariant with respect to the rotation of the object. This enables a signification reduction of the
amount of memory required for system matrices storage and the use of graphics processors for reconstruction.
Unlike the simple polar coordinate system used earlier, we used a coordinate system with a dichotomous division
of the reconstruction field enabling us to ensure invariance to rotations and at the same time a fairly uniform
distribution of spatial resolution over the reconstruction field.

Results. A reconstruction algorithm was developed on the basis of the use of partial system matrices corresponding
to the dichotomous division of the image field into partial annular reconstruction regions. A 2D and 3D digital phantom was
used to show the features of the proposed reconstruction algorithm and its applicability to solving tomographic problems.
Conclusions. The proposed algorithm allows algebraic image reconstruction to be implemented using standard
libraries for working with sparse matrices based on desktop computers with graphics processors.
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Pe3iome

Llenun. Llenb paboTkl cocTosna B co3aaHnm apPekTUBHOINO UTEPALMOHHOIO anropuTtma ans Tomorpaduyeckomn pe-
KOHCTPYKLMN OOBEKTOB C OOMbLLIMMU 06bEMAMU NCXOOHbIX AAHHBIX. B 0OTnnyYmMe OT CBEPTOYHOro anropmTMa npoe-
LMPOBAHMS, LWMPOKO MCMOIb3YEMOro B KOMMEPYECKMX MPOMBbILLSIEHHbLIX U MEAULMHCKUX TOMOorpadax, anredbpau-
yeckme nTepaurioHHble MeTOObl PEKOHCTPYKLIMN NCNONb3YIOT 3HAUYNTENbHbIE 0ObEMBI MAMSTU 1 XapakTepusyloTcs
00NbLLUMMY BPEMEHHBIMW 3aTpaTaMn Ha PEKOHCTPYKLMIO. B TO e Bpems nTepalmoHHbie METOAbI MO3BONSIOT pe-
waTtb 6onee WMPOKUA KPyr ANAarHOCTUYECKUX 3a4ad, rae TpebyeTcs 00/bLIas TOYHOCTb PEKOHCTPYKLMM, @ Takke
B CJly4asix MCMOJIb30BAHUS OrPaHNYEHHOro 06bemMa AaHHbIX MPY ManiopPaKypPCHON CbEMKE UM CbEMKE C OFrPaHUYEH-
HbIM YrNOBbIM ANaNa30HOM.

MeTtopabl. OCOGEHHOCTBIO CO34aHHOIO aNIrOPUTMa ABASIETCHA NCMNOIb30BAHME NONSIPHON CUCTEMbI KOOPAMHAT, B KO-
TOPOW NPOEKLIMOHHbBIE CUCTEMHbIE MATPULbI MHBAPUAHTHbBI MO OTHOLLIEHMIO K BpaLLeHM0 06bekTa. 3TO AaeT BO3-
MO>XHOCTb 3HAYUTESIbHO COKPATUTh OOBbEMbI MAMATU AJ1 XPAHEHUST MPOEKLIMOHHbBIX MaTpUL, U MCNOMIb30BaTb ANS
PEKOHCTPYKUUN rpadurydeckme npoueccopsbl. B oTnnyume ot NnpoCcTor NoOAspHOM CUCTEMbI KOOPAVHAT, UCMONIb3yeMOM
paHee, Hamu1 Gbl1a NCNONB30BaHA CUCTEMA KOOPAMHAT C AUXOTOMUYECKUM OENEHNEM MOJS PEKOHCTPYKLMN, HTO
no3BonsieT 06ecneynTb UHBAPUAHTHOCTb K BPALLLEHMSIM U B TOXE BPEMS [OCTATOYHO PABHOMEPHOE pacnpeneneHne
NPOCTPAHCTBEHHOI0 pa3peLLeHns Mo NOJI PEKOHCTPYKLNN.

Pe3ynbTathl. bbin pa3dpaboTaH anroputM peEKOHCTPYKLMK, OCHOBAHHbIV Ha MCMOJIb30BaHUM NapLMaibHbIX CUCTEM-
HbIX MaTpuL, COOTBETCTBYIOLUUX AUXOTOMUYECKOMY AENEHUIO MO N300paxeHns Ha napuuanbHblie KONbLEBbLIE
obnacTtu pekoHCTpykuuun. C ncnonb3oBaHmeM LMdpoBbix daHToMmoB Lenna — Jlorana n e dpusa 6binm nccne-
[0BaHbl 0COOEHHOCTU PaboThl NPEASIOKEHHOrO anropuTMa PEKOHCTPYKLUMN U NMoKa3aHa ero npuMeHUMOCTb Ans
peLueHns Tomorpaduryeckmx 3agay.
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BbiBoAbI. [TpeanoxXeHHbIn anroputm gaeT BO3MOXHOCTb peann3oBaTth airebpanyeckyto peKoHCTPYKLMIO n3obpa-
XEHWS C UCMONb30BaAHNEM CTaHOAPTHbLIX 61GNMoTeK Ans paboTbl C pa3pexXeHHbIMU MaTpuLaMmn Ha 6a3e HacToNb-

HbIX KOMMbIOTEPOB C rpadn4ecKnMm NPoLLECCOPaMU.

KnioueBble cnoea: HepaspyLualoLLMii KOHTPOJIb, KOMMbIOTEPHas TOMOrpadus, TEPaLMOHHbIN anropuT™M, CUCTEM-

Hasa MatTpuua

* Moctynuna: 11.12.2023 » flopa6oTaHa: 06.03.2024 e MpuHaTa k onyo6nukoBaHuio: 22.05.2024

Ang umtupoBanusa: ManywkuH A.A., MoTpaxos H.H., CtenaHos A.B., YcaueB E.lO. PeweHne Tomorpadpuyeckoii 3a-
Jays C MUCNoNb30BaHMEM AMXOTOMUYECKON CXeMbl AMCKPETU3aLMU B MONAPHbIX KOOPAMHATAX M napumanbHbIX CU-
CTEMHbIX MaTpuL, WHBAPWaHTHbLIX K BpaweHuam. Russ. Technol. J. 2024;12(4):51-58. https://doi.org/10.32362/2500-

316X-2024-12-4-51-58

Mpo3payHocTb GMHAHCOBOW AEeATENIbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOW 3aMHTEPECOBAHHOCTN B NPEACTABNEH-

HbIX MaTepunanax nin Mmetogax.

ABTOpr 3asBng10T 00 OTCYTCTBUA KOHq)J'II/lKTa NHTEepPEeCOB.

INTRODUCTION

There are two main approaches for resolving
tomographic tasks of object reconstruction from projection
data. The first approach is based on the application of
analytical reconstruction formulation in a fan beam for 2D
or a cone beam for 3D geometry [1-3]. This assumes the
acquisition of a complete data set in the scanning angular
range larger than 180° with a small angular scanning
step. The second approach involves the use of a matrix
formulation of the tomographic task using regularizing
functionals and iterative reconstruction algorithms.

The advantage of the second approach consists
in the possibility of using an incomplete dataset for
tomosynthesis tasks with limited angular range [4, 5], or
for resolving tomography tasks with a limited number
of projections [6—11]. Another advantage of algebraic
reconstruction is the ability to reduce the influence of
metallic artifacts. This is achieved by allowing incorrect
tomographic data to be excluded from the reconstruction
without the need to find a suitable interpolation to
replace them [12].

At present, graphic processors are widely used for
tomographic reconstruction, accelerating calculations
by dozens of times. In the case of 3D tomography, the
use of a system matrix in a Cartesian coordinate system,
containing all information about the survey geometry,
is difficult. This is due to the huge data volume, which
makes its storage in the graphics processor memory
impossible. Therefore, in iterative reconstruction,
multiple ray tracing is applied online using special
means of programming parallel computational threads
of the graphics processor, as, for example, in 7/GRE
software package [13].

When using the system matrix, optimized libraries
of sparse matrix computations can be used on a graphics
processor, greatly simplifying software development.
The development of software tools for image processing
and artificial intelligence tasks is based on libraries of

algebraic procedures for working with matrices and
vectors. They are constantly updated to work on various
stationary and mobile computing platforms.

A number of industrial 3D tomographs utilize a
circular imaging geometry in which the object, located
between the X-ray source and the high-resolution matrix
detector, rotates on a stage. If we use a polar coordinate
system centered on the object’s rotation axis, it can easily
be seen that by proper selection of the radial line pitch
corresponding to the angular rotation pitch, the imaging
geometry and its corresponding system matrix become
invariant with respect to rotation with discrete pitch.
This enables the use of a single system matrix computed
for only one angular position, instead of computing
anew for tens or hundreds of different angular positions
in the case of a Cartesian coordinate system. Thus, the
system matrix can be entered into the limited memory of
the graphics processor and accelerate calculations.

RESEARCH METHODS

In order to calculate the system matrix in the polar
coordinate system, we used the Siddon algorithm [14].
Here the lengths of the segments of its intersection
with the coordinate lines are calculated for each ray. A
disadvantage of the conventional polar coordinate system
is that the azimuthal size of the voxel increases as it moves
away from the center of rotation. In order to minimize this
undesirable effect, a dichotomous division of the image
reconstruction field was used in accordance with Fig. 1.
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Fig. 1. Simple polar (a) and dichotomous (b) schemes
for discretization of the reconstruction area
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In the dichotomous image discretization scheme,
each doubling of the radius of polar lines doubles the
number of azimuthal lines. Thus, the object image
is constructed from a consecutive series of circular
segments with indices ind = 0, 1, 2, ..., N, the outer
radius R,, ; of which is given by the formula:

— »ind
Rind =2 RO’

where R is the radius of the central segment with zero
index.

In each ring segment, pixels are indexed by two
indices, the polar string index i:

i=1,...,m,
m= 2ind _ o(ind — 1)’
and azimuthal column index j:
j=1,...,n,
n=6x2ind

In accordance with known system matrix formalism,
two-dimensional indexing is replaced by a one-
dimensional one using the column index J given by the
formula:

J=(— m+i.

Thus, in this discretization scheme, each image can
be represented as a set of concentric ring images, each
of which is a matrix vectorizable in the above-mentioned
way. As a result, each image can be represented as a vector
X composed of vectors X, ;, for each of which there is a
different matrix A, , partial matrix of direct projection of
the fan bundle, carried out using the formula:

Bind - AindXind’
where B, , is the partial projection. The resulting
tomographic projection B is the sum of projections from
all annular segments:
B=ZB,,
B =AX,

where the resulting projection matrix A is a horizontal
concatenation of the matrices A, :

The wvector X, respectively, is the vertical

concatenation of the vectors X,

In order to take angular scanning into account, the
total system matrix needs to be vertically increased,
and, accordingly the partial matrices according to the
number of selected angles. In this case, there is no need
to create new partial matrices if the radial lines of the
corresponding partial annular segment coincide during
angular rotation by a discrete angle Af. If the angle
of alternation of the radial lines of the ring segment
coincides with the angle A0 of the scanning step, a single
partial matrix is sufficient. For example, a 1° step scan
over a 360° interval using Cartesian discretization would
require at least 90 different partial matrices for each
angular position of the object. Thus, in the case of polar
discretization, the memory size required to store a single
system matrix would be reduced by almost 2 orders of
magnitude. When moving to previous ring segments of
smaller radius, the number of partial matrices grows
dichotomously. However, it can easily be seen that the
number of columns of these matrices corresponding to
the number of elements of the ring segment decreases
proportionally to the degree of number 4. Based on this,
we can conclude that when using dichotomous polar
discretization of the object, the memory size required
to store the system matrix in comparison with Cartesian
discretization decreases in proportion to the number of
the aspect views.

RESEARCH RESULTS

The standard Shepp—Logan phantom was chosen
for the numerical experiment. Due to the distinct
features of the dichotomous division of the image
radius, the phantom size in Cartesian pixels was chosen
as 512 x 512. In terms of matching their information
capacity, the size of the reconstruction area in pixels
roughly corresponds to the format of digital panel
detectors. Using this phantom and the equal-angle
distribution of 780 rays in the fan beam, projection data
were generated for 6 x 27 = 768 projections at Cartesian
pixel partitioning of the phantom. Then, partial system
matrices for 8 segments were generated and used to
iteratively reconstruct the object in the polar coordinate
system using the classical Landweber algorithm for
gradient descent on a quadratic inviscid functional [15].
The iterative procedure was accelerated using the
method of moments.

Figure 2 shows the reconstructed images of the
digital phantom for different number of iterations.
Reconstruction in the dichotomous system provides an
acceptable image quality. However, the reconstructed
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image shows ring artifacts caused by the fact that
during iterations the ring regions have different
convergence rates to their limit. Increasing the number
of iterations from 50 to 500 made the artifacts almost
indistinguishable.

(a) (b)

Fig. 2. Phantom reconstructions: (a) 50 iterations,
(b) 500 iterations

In order to verify the possibility of using the
dichotomous scheme for 3D tomographic reconstruction
with a large volume of data, a numerical experiment
was performed using the de Vries digital phantom,
used in modeling volumetric reconstruction with a
wide conical beam. The modeling was performed in
MATLAB' environment for circular imaging geometry.
The parameters are specified in the table below.

Reconstruction results of the de Vries digital
phantom are shown in Fig. 3.

A comparison of the original and reconstructed
phantoms shows that reconstruction by the algebraic
method, as well as Feldkamp’s algorithm, does not
fully restore the shape of the outermost disks. This is
apparently due to the violation of the Kirillov—Tuy
condition, occurring in circular imaging geometry with
a wide cone beam [16].

Accelerated gradient descent using Nesterov’s
method of moments was used for image reconstruction.
In total, 40 iterations and 440 s were required for their
implementation in MATLAB environment when using
GeForce RTX 2080 graphics card (NVIDIA, USA).
Analysis of the reconstruction program operation showed
that the distinct features of the MATLAB environment
interpreter are associated with large calculation time
required to organize the iterative process independently
ofthe user. This can include MATLAB system procedures
in addition to computational iterative procedures. In our
case, the operation of projecting a vector by a partial
matrix with the maximum index takes 0.0004 s. At
optimal organization of the computational process, one
iteration should take no more than 2 s. For 40 iterations,
the total reconstruction time should not exceed 2 min
which is comparable to the reconstruction time of this

I https://www.mathworks.com/products/matlab.html.
Accessed June 14, 2024.

Table. Shooting geometry parameters for digital
phantom

Distance from the radiation source to the

. 300
center of rotation, mm

Distance from the center of rotation to the

detector, mm 138

Registration Izield size on the flat panel 600 x 220
detector, mm:

Detector pixels size, mm? 1x1

Reconstruction field size, mm?

(length x width x height) 236256 128

Angular range of rotation, ° 0-359

Number of rotation steps 768

Phantom size, mm?>

(length x width x height) 256256 < 128

(c)

Fig. 3. De Vries phantom: (a) volumetric image,
(b) cross-section and its reconstruction result
(c) volumetric image, (d) cross-section

digital phantom by the conjugate gradient method using
the TIGRE package.

When implementing the proposed algorithm at
a lower level in C++ with CUDA extension, a 32-bit
data storage format is acceptable instead of the 64-bit
representation allowed in MATLAB for sparse matrices.
Moreover, top gaming video cards have 24 GB of
allocated graphics memory. If we take into account that
algebraic reconstruction enables the use of less data
volume for reconstruction, we can conclude that the
proposed algorithm enables applying computational
capabilities of a personal computer for solving a wide
range of tomographic tasks. Based on this algorithm,
desktop computing systems can feasibly be created for
training and modeling the operation of CT scanners in
order to optimize their parameters [17, 18].

Thus, the paper proposes a workable discretization
scheme combining the advantages of the polar system
(invariance to rotations) and the Cartesian system
(approximately equal pixel density). The application
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of the polar coordinate system without dichotomous
pixel division used in [19] can result in a different
correspondence between the number of pixels of the ring
segments and the number of pixels of their corresponding
detector segments. While this correspondence will
be correct for the outer segments, i.e., the number of
corresponding pixels will be approximately the same,
the information capacity for the inner regions of the
corresponding detector region will be insufficient.
This will lead to underdetermination of the system of
linear equations, and consequently to the need to use
regularization, in order to avoid the appearance of
various artifacts typical for tomography with limited
data. On the other hand, if the number of corresponding
detector pixels for the inner regions is sufficient, the
number of data for the outer regions will be excessive.
In this case binning must be used for the outer regions
of the detector, in order to save memory and speed up
reconstruction.

CONCLUSIONS

When using a desktop computer with modern
video cards, the use of a dichotomous polar scheme
of image division into pixels creates possibilities of
iterative algebraic image reconstruction with minimal

memory consumption. Applied to a range of tasks of
X-ray nondestructive testing, these possibilities will
be investigated in numerical simulations on digital
phantoms and experimental studies on a desktop
microtomograph with a microfocus X-ray source and
a large-format digital detector.?
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