Russian Technological Journal. 2024;12(4):23-39 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMbl. UHdopmaruka. IIpodaembl nHGOpMALMOHHON 0€3011aCHOCTH

UDC 004.31
https://doi.org,/10.32362/2500-316X-2024- 12-4-23-39 ORI
EDN DRCIUV

RESEARCH ARTICLE

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
Tatyana A. Demenkova @,
Alexander O. Indrishenok,
Viladimir V. Filimonov

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: demenkova@mirea.ru

Abstract

Objectives. The development of computer technology and information systems requires the consideration of issues
of their security, various methods for detecting hardware vulnerabilities of digital device components, as well
as protection against unauthorized access. An important aspect of this problem is to study existing methods for
the possibility and ability to identify hardware errors or search for errors on the corresponding models. The aim
of this work is to develop approaches, tools and technology for detecting vulnerabilities in hardware at an early
design stage, and to create a methodology for their detection and risk assessment, leading to recommendations for
ensuring security at all stages of the computer systems development process.

Methods. Methods of semi-natural modeling, comparison and identification of hardware vulnerabilities, and stress
testing to identify vulnerabilities were used.

Results. Methods are proposed for detecting and protecting against hardware vulnerabilities: a critical aspect
in ensuring the security of computer systems. In order to detect vulnerabilities in hardware, methods of port
scanning, analysis of communication protocols and device diagnostics are used. The possible locations of hardware
vulnerabilities and their variations are identified. The attributes of hardware vulnerabilities and risks are also described.
In order to detect vulnerabilities in hardware at an early design stage, a special semi-natural simulation stand was
developed. A scanning algorithm using the Remote Bitbang protocol is proposed to enable data to be transferred
between OpenOCD and a device connected to the debug port. Based on scanning control, a verification method
was developed to compare a behavioral model with a standard. Recommendations for ensuring security at all stages
of the computer systems development process are provided.

Conclusions. This paper proposes newtechnical solutionsfor detectingvulnerabilitiesinhardware, based on methods
such as FPGA system scanning, semi-natural modeling, virtual model verification, communication protocol analysis
and device diagnostics. The use of the algorithms and methods thus developed will allow developers to take the
necessary measures to eliminate hardware vulnerabilities and prevent possible harmful effects at all stages of the
design process of computer devices and information systems.

Keywords: hardware vulnerability, digital components, half-life modeling, diagnostics, scanning, verification

© E.F. Pevtsov, T.A. Demenkova, A.O. Indrishenok, V.V. Filimonov, 2024
23

https://doi.org/10.32362/2500-316X-2024-12-4-23-39
https://elibrary.ru/DRCIUV
mailto:demenkova@mirea.ru

Identification of digital device hardware vulnerabilities Evgeniy F. Pevtsov,
based on scanning systems and semi-natural modeling etal.

e Submitted: 30.08.2023 ¢ Revised: 13.01.2024 ¢ Accepted: 03.06.2024

For citation: Pevtsov E.F., Demenkova T.A., Indrishenok A.O., Filimonov V.V. Identification of digital device hardware
vulnerabilities based on scanning systems and semi-natural modeling. Russ. Technol. J. 2024;12(4):23-39. https://doi.
org/10.32362/2500-316X-2024-12-4-23-39

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

HAYYHAA CTATbA

BoisiBjIeHHEe animapaTHbIX YA3BUMOCTEH HU(PPOBBLIX
YCTPOMCTB HA OCHOBE CUCTEM CKAHUPOBAHUS
U MOJIYHATYPHOI'0 MOAEJIMPOBAHUA

E.®. NeBuoB.,

T.A. JemeHkoBa @,
A.O. UHapULIEHOK,
B.B. ®unumoHoB

MUP3A — Poccuiickunii TexHosiormdeckuii yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp AN5 nepenvcku, e-mail: demenkova@mirea.ru

Pesiome

Llenu. Pazsutne BbIYMCAUTENBHOM TEXHUKN U MIHDOPMALMOHHbIX CUCTEM TPEBYEeT pacCMOTPEHMSI BONPOCOB NX 6e3-
OMacHOCTU, pasnnyHbIX METOAOB OOHapYXeHUs annapaTHbIX YSA3BMMOCTEN LMPPOBbLIX KOMMOHEHTOB YCTPOWCTB
M 3alnTbl OT HECAHKLMOHMPOBAHHOIO A0CTyna. BaxHbIM acnekToM AaHHbIX NpobnemM sIBAsieTcs MccnenoBaHue
CYLLECTBYIOLLIMX METOA0B HA BO3MOXHOCTb M CNOCOOHOCTL BbIIBUTL annapaTHble OWWOKN U NPOU3BECTUN MOUCK
owmnboK Ha cooTBETCTBYIOWMX Moaensix. Llenb paboTbl — pa3paboTka NoaxoaoB, MHCTPYMEHTOB 1 TEXHONIOMMN A1t
oBHapyXXeHus ya3BMMOCTE B annapaTHOM 06ecrnevyeHnn Ha paHHen cTaamm NPoekTUPOBaHNS, co3aaHne MeToan-
K1 nx 0OHApPY>XeHMs N OLLEHKN pUCKa, pekoMeHaaumin no obecneyeHnto 6€30MacHOCTK Ha BCex aTanax npouecca
pa3paboTKu BbIMUCINTENIbHBIX CUCTEM.

MeTopabl. Vicnonb3oBaHbl METOAbLI NOMYHATYPHOrO MOAENIMPOBAHNS, CPABHEHWNS! 1 BbISIBIEHUS annapaTHbIX Ys3BU-
MOCTEl, CTPeCcCc-TeCTUPOBAHUS 151 BbISIBIEHUSI YA3BUMOCTEN.

PesynbTtathbl. [1pensioxeHbl MeTOAbl 0OHAPYXEHMS U 3aLUMThI OT anmnapaTHbIX YI3BUMOCTEN, SABASIOLLMXCSA KpUTUYE-
CKWN BaXHbIM acnekTom B obecrnedyeHnn 6e30nacHOCTM BbIYMCINTENbHbLIX CUCTEM. s 0OHapyXeHUs yS3BMMOCTEN
B annapaTHOM obecrnevyeHnn UCMonb3oBaHbl MeToObl CKaHMPOBAHMS MOPTOB, aHaiM3a NPOTOKOJSIOB CBS3U U Ana-
FHOCTUKWN YCTPOMCTB. OnpeaeneHbl BO3MOXHbIE MeCcTa HaxoXAeHUs annapaTHbIX YA3BUMOCTEN, UX Bapuauuu, onm-
caHbl aTpubyTbl annapaTHbIX YSI3BUMOCTEN 1 puckn. [na obHapyXeHus ys3BMMOCTEN B annapaTHOM obecrnevyeHnm
Ha paHHel CTaamm NPoeKTUPOBaHMS pa3paboTaH cneunasnbHblii CTeH, MONyHATYPHOro MoaennmpoBaHms. MNpennoxex
anropuTM CKaHMPOBaHMS C UCMONb30BaHMeM npoTtokona Remote Bitbang, koTopblli no3BonsieT nepenasatb AaHHbIE
mexay OpenOCD v NoaKItoYEHHbIM K OTNaA04HOMY NMOPTY YCTPOCTBOM. Ha OoCHOBe ynpaBieHusi CKaHMPOBaHMEM

24

Russian Technological Journal. 2024;12(4):23-39

mailto:demenkova@mirea.ru
https://doi.org/10.32362/2500-316X-2024-12-4-23-39
https://doi.org/10.32362/2500-316X-2024-12-4-23-39

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

pa3paboTaH MeTof BepuduKaLmm, peannayoLmini CpaBHEHNE NOBEAEHUYECKO MOLENN C 3TasloHOM. [prBeaeHbI pe-
KoMeHaaumm no obecneveHnto 6e30MacHOCTM Ha BCeX aTanax npouecca pa3paboTky BbIYUCIUTESbHBIX CUCTEM.

BbiBoAbl. B naHHo paboTe NpeasioXeHbl HOBblIE TEXHUYECKUE PELLEHUS At OOHapyXeHMs yS3BMMOCTEN B anna-
paTHOM ob6ecrnevyeHnr, OCHOBaHHbIE HA TakMX METOAaX, Kak CKaHMPOBaHME CUCTEMbI HA NMPOrpaMMUpPyeEMOoi No-
rMYeCKOM MHTEerpanbHON CXemMe, NosyHaTypHOe MOAENMPOBaHMe, Bepudurkaums no BUpTyasbHON MOLENN, aHaNn3
NPOTOKOJIOB CBSA3U U AMArHOCTUKA YCTPOMCTB. MNpumMeHeHne pa3paboTaHHbIX alirOPUTMOB 1 CMOCOO0B NO3BONUT
paspaboTynkam NpeanpuHATL HE0OX0AMMbIE MEPHI MO YCTPAHEHWIO annapaTHbIX YA3BUMOCTEN 1 NPeaoTBPaLLEHNIO
BO3MOXHbIX BPELOHOCHbIX BO34ENCTBUI Ha BCeX 3Tarnax npouecca NpoekTUPOoBaHUA YCTPOMCTB BbIYUCIUTENIBHON

TEXHUKN N VIHq)OpMaLI,I/IOHHbIX CucTem.

KnioueBble cnoBa: annapaTtHas ys3BUMOCTb, LMPPOBbIE KOMMOHEHTLI, MOJlyHATYPHOE MOAENMPOBaHNE, AnarHo-

CTuKa, CKaHMpoBaHue, sepundurkaums

* Moctynuna: 30.08.2023 » flopa6GoTaHa: 13.01.2024 ¢ MpuHaTa k ony6nukoeaHuio: 03.06.2024

Ona untupoBaHus: MesuoB E.®., JemeHkosa T.A., MHopuweHok A.O., ®unnmoHoB B.B. BbisiBneHre annapaTtHbIX
YA3BMMOCTEN UMODPOBbLIX YCTPONCTB Ha OCHOBE CUCTEM CKaHMPOBAHWA WM MONYHATYpPHOro MoLennpoBaHusa. RuSS.
Technol. J. 2024;12(4):23-39. https://doi.org/10.32362/2500-316X-2024-12-4-23-39

npospaquch d)MHaHCOBOVI AedaTesibHOCTU: ABTOpr He NMetoT CI)I/IHHHCOBOVI 3anHTEepPeCOBaHHOCTW B nNpeacTaBiieH-

HbIX MaTepunanax nnm MetTogax.

ABTOPbI 3a5BNSIOT 06 OTCYTCTBUM KOHMIMKTA MHTEPECOB.

INTRODUCTION

Hardware vulnerability is an error in the technical
implementation of hardware which can allow malicious
intruders to gain access to a system or its application.
Advanced hardware vulnerabilities can have serious
security implications for computer systems, including
compromising sensitive data, disruption of systems, and
potential threat to human life and health, if vulnerabilities
in medical devices or automotive equipment are
exploited.!

Hardware vulnerabilities can be diverse and include
bugs in various computer components: Processor,
chips, memory, hardware modules, and drivers. They
are also contained in other hardware complex function
blocks (CF-blocks). Hardware vulnerabilities can occur
as a result of interaction with software, particularly
drivers, databases, and other applications that contain
bugs or malicious code.

Checking for vulnerabilities is a complex process
and requires the involvement of information security
experts.? Hardware vulnerabilities can be identified by
scanning the system under investigation, in order to
find problem areas and then fix them [1]. One option for
finding vulnerabilities in existing computing devices is
to use specialized software and tools. For example, many

I Zantout S. Hardware Trojan Detection in FPGA through
Side-Channel Power Analysis and Machine Learning. MSc Thesis.
University of California, Irvine. 2018. https://escholarship.org/uc/
item/7hk8x6rb. Accessed May 15, 2023.

2 Oberg J. Testing Hardware Security Properties and
Identifying Timing Channels. UC San Diego. 2014. P. 5-38.
https://escholarship.org/uc/item/8b530988. Accessed May 15,
2023.

utilities and applications for searching and analyzing
vulnerabilities can also be used to check the security
of network devices, etc. A comprehensive approach of
model comparison in the form of OpenOCD? binding
and a software model of the device obtained using
Verilator [2] from hardware description languages* can
also be applied.

Analysis and reverse engineering techniques are also
used to find vulnerabilities. These methods can be used
to find vulnerabilities in hardware and software systems,
operating systems, device drivers, and other computing
systems [3].

Each vulnerability has certain attributes which
can be used to detect it. This paper describes the
attributes of hardware vulnerabilities, methods of
their detection, and risk assessment. Attributes of
hardware vulnerabilities are considered in accordance
with the accepted taxonomy proposed in a number
of works which categorize the identification of
hardware vulnerabilities and assessment of their
risk or severity [4]. This taxonomy identifies four
multi-parametric attributes (vectors) corresponding
to hardware vulnerability identification, hardware
vulnerability detection identification, hardware
vulnerability risk or severity, and hardware vulnerability
detection efficiency.

3 Documentation regarding OpenOCD RISC-V Debug
Configuration Commands. https://openocd.org/doc/html/
Architecture-and-Core-Commands.html#RISC_002dV-Debug-
Configuration-Commands. Accessed May 15, 2023.

4 Andrianov A.V. Realization of possibility of step-by-step
debugging at debugging of test scenarios on VLSI SonC model.
https://www.module.ru/uploads/media/1534156062-2018-
833a272aac.pdf (in Russ.). Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

25

https://escholarship.org/uc/item/7hk8x6rb
https://escholarship.org/uc/item/7hk8x6rb
https://escholarship.org/uc/item/8b530988
https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Debug-Configuration-Commands
https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Debug-Configuration-Commands
https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Debug-Configuration-Commands
https://www.module.ru/uploads/media/1534156062-2018-833a272aac.pdf
https://www.module.ru/uploads/media/1534156062-2018-833a272aac.pdf
https://doi.org/10.32362/2500-316X-2024-12-4-23-39

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

TASK STATEMENT. TAXONOMY
OF HARDWARE BOOKMARKS

Each hardware vulnerability has a number of
attributes, so methods have been developed to perform
their detection by means of some or all of the attributes.
Information about vectors and attributes is further
needed to select methods for vulnerability detection.

Attributes in each category may be ranked based
on their importance, uniqueness, weighting, or other
criteria determined by the specific Trojan detection
project or task. A hardware Trojan is a malicious
module embedded in an integrated circuit or a malicious
modification of the circuit to alter its operation or add
additional functionality, for example, to organize an
information leakage channel.

ATI (Trojan Identification) vector includes attributes
that are used to identify Trojans, such as Trojan size,
location in the circuitry, defense mechanisms used by
the Trojan, and other characteristics that may be unique
to a particular Trojan.

TDI (Trojan Detection Identification) vector includes
attributes that can be detected by a particular Trojan
detection method, such as changes in Trojan signatures,
anomalies in Trojan behavior, attack features used by
the Trojan, and other attributes that can be detected by
a particular method.

TR wvector (Trojan Risk or Severity) includes
attributes that assess the risk or severity of a Trojan, such
as the ability of the Trojan to cause harm, how stealthy
the Trojan is, how likely it is to spread, the potential
consequences of its actions, and other factors that may
affect the severity of the Trojan.

TDE vector (Trojan Detection Effectiveness)
includes attributes that evaluate the effectiveness of
a particular Trojan detection method, such as detection
accuracy, false positives and false negatives of the
method, detection rate, complexity of the method
implementation, and other factors that may affect the
effectiveness of the method.

These vectors can be used to evaluate Trojans
and select the most effective method of detecting it,
identifying it, and assessing its risk or severity.

A combination of TI, TDI, CR, and TDE vectors
can be used to select the most effective Trojan detection
method based on certain criteria and requirements
of a project or task. For example, a method with high
values of the TDI and TDE vectors indicating a high
Trojan detection capability and method effectiveness
may be preferred over a method with lower values in
these vectors. Attributes in the TR vector can also be
used to assess the severity of a Trojan and its priority
when selecting a detection method.

Attributes in each category are used to identify
Trojans and assess their risk or severity. They can also be

used to identify Trojan detection methods and evaluate
their effectiveness. Two vectors TI and TR are assigned
to each Trojan. The former identifies the corresponding
attributes and the latter represents the attributes in terms
of their risk or severity. Each Trojan detection method
also has two vectors TDI and TDE. TDI identifies the
attributes that can be detected and TDE represents the
attributes in terms of the effectiveness of the method.
Thus, there are four vectors corresponding to: 1) TI Trojan
identification, 2) TDI Trojan detection identification,
3) TR Trojan risk or severity, 4) TDE Trojan detection
effectiveness [5].

The proposed approach based on ranking the attributes
of Trojans in each category and using TI, TR, TDI, and
TDE vectors can be a useful tool for identification and risk
assessment of Trojans, as well as for selecting effective
detection methods when developing more robust security
and defense against attacks.

However, it should be noted that the proposed
Trojan attribute ranking system may be limited because
new types of Trojans and their attributes may emerge
as a result of evolving technologies and attack methods.
Therefore, the database of Trojan attributes and
detection methods need to be continuously updated and
supplemented, in order to better protect against them.

Detecting vulnerabilities is only the first step. Steps
must also be taken to remediate the vulnerabilities and
prevent potential attacks. In this process, tools such
as computer-aided design (CAD) systems can play
an important role in verifying devices and detecting
vulnerabilities early in the design process. A typical
example of such a system is the CAD tool suite of
Cadence Design Systems [6]. In general, security is
a critical aspect in the development of computing
systems, detection and protection against hardware
vulnerabilities should be considered at all stages of the
development and operation process.

In addition to the implemented function, the
vulnerability can be upgraded for remote interaction.
Here it is necessary to program the ability to access the
network card and go online. In addition, the bookmark
can be configured to corrupt not only the output data at
a given time, but also to modify already recorded data.
To do this, the bookmark must have access to memory
storages, as well as the ability to detect certain data or the
ability to change all data by a certain amount. Writing
and modernizing a bookmark is limited only by the
skills of the attacker and the size of the bookmark [7-9].

HARDWARE BOOKMARK
IMPLEMENTATION EXAMPLE

An important aspect of the methodology for
identifying hardware bookmarks is the procedure for
creating possible examples. Usually, the main difficulty

Russian Technological Journal. 2024;12(4):23-39

26

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

Obtaining operands A and B
for subsequent addition

Checking
the obtained values for
equality to zero

yes

Checking
for Not-a-Number

A= +oo/_oo
vnn B = +oo/—oo

Ais a non-normalized
operand

Normalization of the operand A

B is a non-normalized
operand

Normalization of the operand B

4

A>B

no /

C=B_ M+ (A M*10"E) C=A M+ (B_M*10°E)

4 A

Normalization of the result C

:

> Output of the C result

Fig. 1. Algorithm of adder operation

arises with regard to what exactly to show and how to
present it. The example can be useful for developers
of computer security devices during design in terms of
identifying possible vulnerabilities.

Let us consider hardware bookmarks which violate
the accuracy of calculations in the kernels, also known
as the hardware gas pedal of mathematical calculations.
When adding real numbers at the adder, multiplier
or divider, you can create a hardware bookmark that
violates the correctness of calculations. Let us introduce
the bookmark into the addition algorithm and adder code
using a separate module and synthesize the resulting
computation block.

This module performs the following procedure:
when the adder receives a certain number, the bookmark
triggers and replaces this number with the one needed
by the intruder. It then passes this number directly to the
summation. If the bookmark has not received the number
necessary for its transition, it remains inactive. Thus, the
bookmark spoils output data, while giving its appearance
at a particular moment of receipt of a certain number
at the input. Figure 1 shows the algorithm of the adder
block operation for practicing the skills of introducing
and detecting bookmarks in the most common nodes of
digital computer systems.

A hardware tab in the presence of the fractional part
in the result will change its value, and affect calculation
accuracy. The presence of a fractional part in a number
in the encoded 32-bit IEEE 754 standard format® can
be detected by the presence of units in the digits of the
number:

stetexptl1<n, (1)
where s is the number of bits allocated to the sign of the
number, e is the number of bits allocated to the shifted
exponent of the number, exp is the exponent of the
number, and # is the total number of bits.

In the 32-bit representation (1) can be written as:

10 + exp < 32. 2)

If the number has a fractional part, then we invert
the digit s + e + exp + 2. In other words, the number
5.5, = 101.100, after inverting this digit will become
equal to 5.75,, = 101.110,.

5 2754-2019 IEEE Standard for Floating-Point Arithmetic.
July 22, 2019. Electronic ISBN 978-1-5044-5924-2. https://
ieeexplore.ieee.org/document/8766229. Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

27

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

Block diagram of the hardware bookmarking
algorithm is shown in Fig. 2 [10, 11].

A[0...13] = Z[18...31]

Z[12] =1Z[12]

Y

End

Fig. 2. Block diagram of the hardware bookmarking
algorithm

In order to reduce the frequency of this event which
triggers a hardware tab, we will take only numbers that,
in addition to having a fractional part, have values only
in the range 512 < x < 1024. The prerequisite for this
condition can be met from the value of the exponent of
the binary number. If the exponent of the binary number
is equal to 9, = 1001,, which corresponds to the shifted
exponent 10001000,, then this number lies in the interval
512 <x<1024.

As a result, this hardware Trojan will change the
result on the adder only if this result belongs to the
interval 512 <x <1024 and has a fractional part.

Since we have determined the order of numbers
required for distortion to be equal to 9, the previously
described step of finding the right digit in a number
to check whether the number has a fractional part is
no longer required. Any 32-bit IEEE 754 numbers
lying in the interval 512 < x < 1024 with one in any of
18 <n <31 digits will have a fractional part according to
formulas (1) and (2):

1+8+9+1=19<n.
The encoded fractional part of the number will be

located in the interval from 19 digits to 32 digits, and
the encoded integer part of the number is located in

digits 9 to 17. Therefore, in order to check whether the
number has a fractional part, at least one unit in digits
18-31 needs to be found.

From the adder result bus, the value of the resulting
encoded number is read into register Z of the hardware
Trojan. If the shifted exponent of the number is equal
to 10001000,, then the remainder of the mantissa of
the encoded number is written to register A of the
hardware tab. Further, if this register A is non-empty,
then in register Z the z value of the 12th digit is inverted,
corresponding to the second digit of the fractional part
of the number. As a result, the number is either increased
by 0.25 if there is 0 in this digit, or decreased by 0.25 if
there is 1 in this digit. The developed hardware Trojan
can be embedded into the real number adder core of
a hardware math gas pedal. The developed bookmark is
described in the Verilog language [12].

After the successful development of a hardware
Trojan, verification must be performed. This is required,
in order to determine whether the hardware tab works
correctly depending on the specified conditions. For the
purpose of this verification, we define several possible
events. Each of the events must be verified both with and
without the presence of the hardware Trojan.

1. Result of the adder lies in the interval 512 <x <1024.
a) result has a fractional part;

b) result has no fractional part.

2. Result of the adder does not belong to the interval
512 <x<1024.

a) result is less than 512 and has a fractional part;

b) result is less than 512 and has no fractional part;

c) result is greater than or equal to 1024 and has

a fractional part;

d) result is greater than or equal to 1024 and has no

fractional part.

3. The adder result is an exceptional number.

a) result is equal to 0;

b) result is equal to +oo;

¢) result is equal to —oo.

Such hardware vulnerability can be detected using
the following methods.

1. Anomalous behavior analysis. The presence of
a bookmark can lead to abnormal behavior of the
floating-point unit (FPU), such as unexpected
calculation errors, incorrect results, or unusual
activity during mathematical operations.

2. Application of Linpack performance test [13].
A hardware tab introduced into FPU is difficult to
detect using this test because its size has a negligible
effect on performance. However, this method
will be effective, if it is possible to compare two
hardware blocks: with and without the bookmark.
One model has an intentionally introduced hardware
vulnerability and is loaded into a programmable
logic integrated circuit (PLIC). The other model

Russian Technological Journal. 2024;12(4):23-39

28

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

Control and channel
switching elements

A
Y

Power system > Control system on MK stm32

A

Scanning FPGA ROM

Y

Scanning FPGA

A
\ 4

A
Y

SDRAM memory

FPGA ROM for data transfer

Y

Data transfer FPGA

A
Y

External connectors

Y

ROM memory

Fig. 3. The structure of the bench for conducting experiments to identify hardware vulnerabilities. ROM, read-only
memory; SDRAM, synchronous dynamic random access memory; MK stm32, STM32 microcontroller

is behavioral and is implemented with some
simplifications in a simulator on a computer using
special CAD tools for integrated circuits, such as
Cadence Design Systems tools.

. Checking the instruction set inside the processor
using the Joint Test Action Group (JTAG) interface®
and the Remote Bitbang protocol-based scanning
system. Specifically, this meant auditing the FPU
microcode for unusual or suspicious instructions
which may indicate the presence of a hardware
bookmark.

The Remote Bitbang protocol is a protocol
used in OpenOCD (an open source program for
debugging embedded systems) which allows data to
be transferred between OpenOCD and a device that
is connected to the debug port. The Remote Bitbang
protocol is used to control I/O and other device
interfaces.

The Remote Bitbang protocol uses asynchronous
data transfer, represented as a simple message
format. Commands sent through this protocol are
of two types: write commands and read commands.
Write commands allow you to control pins, transfer
data, and set interface modes, while read commands
allow you to receive data from the device via inputs.

Remote Bitbang protocol is used in conjunction
with protocols such as JTAG, in order to enable
full debugging and programming of embedded
systems. This protocol can be used to scan registers
on a remote device connected to OpenOCD, and in
the automation of testing, fault diagnosis, and device
programming in production environments [14—16].

. The use of specialized tools (microcode analyzers
and specialized stands for detecting hardware
bookmarks) which can be useful in detecting such
threats. However, their use requires specialized
knowledge and experience.

6 https://ru.wikipedia.org/wiki/JTAG (in Russ.). Accessed

May 15, 2023.

SEMI-NATURAL SIMULATION BENCH

When developing a stand designed to detect hardware

vulnerabilities, it needs to ensure the reliability of the
results obtained and fulfill the following functions:

1

. Ensue

. Ability to test various types of hardware, including

processors, chipsets, I/O controllers, network cards,
and other components.

. Ability to wuse a variety of tools to detect

vulnerabilities in hardware, including vulnerability
scanners, debuggers, emulators, and other tools.

. Ability to experiment in a variety of scenarios,

including malware attacks on hardware, memory
and peripheral manipulation, and vulnerability
exploits.

security and data protection during
experiments, including protection against leakage of
confidential information and ensuring confidentiality
of test results.

. Ensure that test results can be reproduced and all

steps of the experiment can be documented, including
test automation and tools for analyzing results.

The structural diagram of the stand is shown in Fig. 3.
The feature is a special FPGA structure that enables

verification for the repeated firmware in order to ensure
that there are no changes to the complex programmable
logic device (CPLD) circuit. It is also possible to use the
FPGA’s built-in resources for basic firmware verification
using built-in controls.

Verification of the Verilog code used to generate

the firmware file (bitstream) can be performed using
various methods and tools such as simulation, formal
verification, and emulation on hardware.

1.

Simulation. After creating test vectors which
represent different bitstream loading scenarios in
the FPGA, the Verilog simulator should be used
to perform a simulation of these test vectors. As
a result, the signal values within the bitstream
comparison circuitry can be analyzed and compared
to the expected values. This enables error detection

Russian Technological Journal. 2024;12(4):23-39

29

https://ru.wikipedia.org/wiki/JTAG

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

and verification that the bitstream comparison

methods are working correctly.

2. Formal verification is a method of verifying the
correctness of Verilog code based on mathematical
algorithms. Formal verification tools, such as Model
Checking or Equivalence Checking, can be used
to verify that bitstream comparison methods work
correctly. This can include checking the correctness
of the comparison logic, detecting potential errors,
and finding unexpected execution paths.

3. Emulation on hardware. Load the bitstream into
the FPGA and run it on a physical device. Test
vectors and physical signals can then be used to
verify that the bitstream comparison methods work
correctly in real time. This can help identify possible
problems when running on the real hardware.

4. Manual validation. The code of bitstream
comparison methods can be carefully analyzed and
manual validation performed against requirements
and expected behavior. This can include analyzing
logic, checking boundary conditions, and testing
different bitstream loading scenarios.

Another feature of the semi-natural simulation bench
architecture is the ability to load into internal memory
via the internal FPGA reconfiguration interface. If
such an interface is not available, the standard external
reconfiguration interface can be used. In order to avoid
problems when verifying and loading into memory from
the FIFO (first in, first out) buffer, verification blocks
need to be placed in strictly allocated FPGA cells when
writing the configuration and layout on-chip. In addition,
this module has multi-stage verification to detect threats,
report them, and eliminate possible negative effects.
A report of the validation results is saved and can be used
to further analyze and improve the module’s performance.

Since FPGA architectures can vary from model to
model and manufacturer to manufacturer, this structure
enables the verification algorithms to be adapted to different
architectures and manufacturers. Compared to the closest
analogs, this module is more relevant because it has the
ability to connect to various external devices. This provides
for its versatility and the possibility of it being used as
a master device in information switching systems, as well
as in systems with high-performance processors [17, 18].

Before scanning, device operation modes need to
be selected which will allow you to identify possible
vulnerabilities in the RS-485 data transmission
system. For example, you can configure the device to
send malicious commands or to intercept and analyze
data transmitted over the network. It should be taken
into account that such actions can lead to disruption
of the device or the network as a whole. Therefore,
the experiments should be conducted in a controlled
environment and with prior coordination with those
responsible for the operation of the system [1, 19].

An example of implementation of the semi-natural
simulation stand is shown in Fig. 4.

Vf: todule

Fig. 4. Implementation of semi-natural simulation bench

A configuration according to the target model is
loaded into the data transfer FPGA, describing the
expected results of the device. Then the process begins
of obtaining readings from the external interfaces of the
unit under investigation, such as RS-485 or Ethernet’,
and comparing them with the target model. If the results
do not correspond to the expected results, an error is
generated and recorded in the report. Then the indicator
on the device signals the occurrence of the error®.

When connecting the bench and debugging the
FPGA firmware, in order to obtain the necessary data
for comparison with the target model deployed on
a computer, it is important to note that the connection
scheme of the JTAG programmer to the FPGA may differ
depending on the specific model of the programmer
and FPGA, as well as the task to be solved by this
connection® 1% 11 In this case, if additional peripherals

7 Andrianov A.V. Realization of possibility of step-by-step
debugging at debugging of test scenarios on VLSI SonC model.
https://www.module.ru/uploads/media/1534156062-2018-
833a272aac.pdf (in Russ.). Accessed May 15, 2023.

8 Fern N.C. Verification Techniques for Hardware Security:
Ph.D. Thesis (Comput.). USA: UC Santa Barbara; 2016. P. 10-25.
https://escholarship.org/uc/item/2ch6f44s. Accessed May 15,
2023.

9 Cadence documentation. https://www.cadence.com/content/
cadence-www/global/en_US/home/support/documentation.html.
Accessed May 15, 2023.

10 Yang P. Assessing VeSFET Monolithic 3D Technology
in Physical Design, Dynamic Reconfigurable Computing,
and Hardware Security: Ph.D. Thesis (Comput.). USA: UC
Santa Barbara; 2017. P. 62-81. https://escholarship.org/uc/
item/5s9833kz. Accessed May 15, 2023.

1 Farinholt B.R. Understanding the Remote Access Trojan
malware ecosystem through the lens of the infamous DarkComet
RAT: Ph.D. Thesis (Comput.). USA: UC San Diego; 2019.
P. 17-29. https://escholarship.org/uc/item/3vv544n5. Accessed
May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

30

https://www.module.ru/uploads/media/1534156062-2018-833a272aac.pdf
https://www.module.ru/uploads/media/1534156062-2018-833a272aac.pdf
https://escholarship.org/uc/item/2ch6f44s
https://www.cadence.com/content/cadence-www/global/en_US/home/support/documentation.html
https://www.cadence.com/content/cadence-www/global/en_US/home/support/documentation.html
https://escholarship.org/uc/item/5s9833kz
https://escholarship.org/uc/item/5s9833kz
https://escholarship.org/uc/item/3vv544n5

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

Personal computer

\

GDB Python API

..

, OpenOCD ,
E software E
E RISC-V Synchronization A ;
| processor [«»| and verification y ,
/| model software ‘—L !
1 GDB !

Remote JTAG
BitBang protocol
FPGA
JTAG converter k——— it RISC-V loaded

IITCP

Input/output system

Fig. 5. A model for finding vulnerabilities in a RISC-V processor-based system. API, application programming interface;
TCP, transmission control protocol; GVB, Gnu DeBugger, open source debugger

need to be connected to the FPGA, for example, to
debug a system containing a microcontroller, a special
debug module may also need to be connected.

EXPERIMENTAL

A semi-natural simulation test bench is performed
on the basis of verification of a processor design, e.g.,
RISC-V,!2 in whose behavioral description in the Verilog
language code of an intentional hardware vulnerability
is introduced. This vulnerability can be represented as
a modified SF block ready to be embedded into a system
with RISC-V architecture for hardware vulnerability
detection experiments'3 [20].

After implementing the modified hardware NF
block, the performance needs to be compared, and
the node with vulnerability first identified using error
detection software. Then, using virtual model analysis,
analysis needs to be performed on the FPGA using
a combination of Remote Bitbang and JTAG protocols,
as well as OpenOCD software. Then the results need to
be compared and possible deviations from the behavioral
model of the device identified. The general concept of
the scanning idea is presented in Fig. 5.

The device behavioral model is an abstract model
which describes the functional behavior of a device and
its interaction with other system components. It describes
how a particular unit should behave under certain input
signals and conditions. It does not specify the internal
implementation of the device, and how this behavior is
reflected in the overall picture of the device’s interaction
with external sources of information.

12 RISC-V is an extensible open and free instruction system
and processor architecture based on the RISC (reduced instruction
set computer) concept for processor/microcontroller design and
software development.

13 Li C. Securing Computer Systems Through Cyber Attack
Detection at the Hardware Level: Ph.D. Thesis (Comput.).
USA: UC Irvine; 2020. P. 13-26. https://escholarship.org/uc/
item/8vr8f0dq. Accessed May 15, 2023.

A description in unified modeling language, used
to describe the behavior of the entire device, should be
used for verification, but other options are possible.

You can use automated security checkers to check
Verilog code for vulnerabilities or hardware flaws. These
systems analyze the code for bugs and look for possible
vulnerabilities. Third-party tools such as Ferilator and
VeriSim'* can also be used to analyze and check Verilog
code for vulnerabilities.

Verilator is an open source translator from Verilog
to C/C++ which generates files for profiling and
debugging. It allows users to analyze code for hardware
bookmarks and vulnerabilities. This tool can be used to
automatically check Verilog code for bugs.

VeriSimis an anothertool foranalyzing and verifying
Verilog code. It allows users to analyze code using
simulation and profiling. It also enables identification
of hardware bookmarks and vulnerabilities in Verilog
code.

Alternative tools for analyzing and inspecting
Verilog code for hardware bookmarks and vulnerabilities
include Vivado HLS", Synopsys VCS'S, and Mentor
Questal’.

Automated vulnerability scanning tools such
as SonarQube'® and Coverity!® can be used to find

14 Wei S. Minimizing Leakage Energy in FPGAs Using
Intentional Post-Silicon Device Aging: Master Sci. Thesis. USA:
UC Los Angeles; 2013. P. 16-35. https://escholarship.org/uc/
item/75h4m6qgb. Accessed May 15, 2023.

15 https://docs.xilinx.com/r/en-US/ug949-vivado-design-
methodology/Vivado-Design-Suite-User-and-Reference-Guides.
Accessed May 15, 2023.

16 https://users.ece.utexas.edu/~patt/10s.382N/handouts/vcs.
pdf. Accessed May 15, 2023.

17 https://www.orcada.ru/product/mentor-graphics/
proektirovanie-zakaznyh-ims/products _106.html (in Russ.).
Accessed May 15, 2023.

18 https://www.sonarsource.com/products/sonarqube/.
Accessed May 15, 2023.

19 https://devguide. python.org/development-tools/coverity/.
Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

31

https://escholarship.org/uc/item/8vr8f0dq
https://escholarship.org/uc/item/8vr8f0dq
https://escholarship.org/uc/item/75h4m6qb
https://escholarship.org/uc/item/75h4m6qb
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Vivado-Design-Suite-User-and-Reference-Guides
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Vivado-Design-Suite-User-and-Reference-Guides
https://users.ece.utexas.edu/~patt/10s.382N/handouts/vcs.pdf
https://users.ece.utexas.edu/~patt/10s.382N/handouts/vcs.pdf
https://www.orcada.ru/product/mentor-graphics/proektirovanie-zakaznyh-ims/products_106.html
https://www.orcada.ru/product/mentor-graphics/proektirovanie-zakaznyh-ims/products_106.html
https://www.sonarsource.com/products/sonarqube/
https://devguide.python.org/development-tools/coverity/

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

vulnerabilities in SystemC program code. These
tools enable automated scanning of the source code
for vulnerabilities. If vulnerabilities or hardware
bookmarks are not found, there is a risk that the
application will be vulnerable to attack by malicious
attackers who can exploit the vulnerability to make
unwanted changes to the code or gain access to
data20, 21, 22, 23,24 [21 , 22]

In order to perform synchronization between
a virtual processor and a real processor undergoing
debugging, OpenOCD capabilities can be used.
OpenOCD needs to be connected to the debug
interface of the real processor. This can be done, for
example, via the JTAG interface OpenOCD must
then be configured to work with a virtual processor
undergoing debugging, such as a processor emulated
in QEMU [23] or through the Functional Safety
Simulator®.

Next, synchronization between the virtual and real
processor must be performed. This can be done with
the resume command which allows execution of the
process on the virtual processor to be continued while
synchronizing it with the real processor. Thus, it is
possible to debug the virtual processor while being able
to monitor its operation in real time.

For correct synchronization the correct OpenOCD
configuration is needed, in order to work with a specific
virtual processor and debugging interface of a real
processor. The particular features of working with
certain types of processors and debug interfaces also
need to be taken into account.

In order to build a project for testing for hardware
vulnerabilities, the cross-platform automatic build
system CMake can be used. This allows you to create,

20 Architecture and Core Commands. https://openocd.org/
doc/html/Architecture-and-Core-Commands.html#RISC_002dV-
Authentication-Commands. Accessed May 15, 2023.

21 Verilog-Mode Help. https://veripool.org/verilog-mode/
help/. Accessed May 15, 2023.

22 Shepherd C., Markantonakis K. Vulnerabilities analysis
and attack scenarios description. 2021. https://exfiles.eu/
wp-content/uploads/2022/07/EXFILES-DS5.1-Vulnerabilities-
analysis-and-attack-scenarios-description-PU-M06.pdf. Accessed
May 15, 2023.

23 Wang B. Improving and Securing Machine Learning
Systems: Ph.D. Thesis (Comput.). USA: UC Santa Barbara; 2019.
P. 10-14. https://escholarship.org/uc/item/1nv8m9nb. Accessed
May 15, 2023.

2 Guo Z. Security of Internet of Things Devices and
Networks: Ph.D. Thesis (Comput.). USA: UC Irvine; 2016.
P. 1-30. https://escholarship.org/uc/item/4rq8s4jx. Accessed
May 15, 2023.

25 Spear Ch. System Verilog for Verification: A Guide to
Learning the Testbench Language Features. Springer. 2018.
https://3ecl1218usm.files.wordpress.com/2016/12/book _
systemverilog for verification.pdf. Accessed May 15,
2023.

test and package a build system for source code, as well
as freely distributed compilers2°.

Figure 6 shows a code fragment of building a test
program using CMake for the RISC-V processor. In order
to execute the procedure, you need to install CMake and
RISC-V compiler. To do this, you can use the operating
system package manager or download them from the
official websites.

To start it, the commands ‘mkdir build && cd build
&& cmake ... && make’ need to be executed. Then the
project will be built, and the result of the build will be
loaded into the stand and the virtual testing system, the
code description of which is given in Fig. 7.

Since a hardware vulnerability in the FPU compute
unitis under consideration here, one option for identifying
vulnerabilities is to directly stress test systems related to
floating-point computing.

Identifying hardware vulnerabilities by means of
stress testing can be quite complex, unproductive, and
depends on the type of vulnerability. However, the
following approaches can be distinguished:

1. Changing operating conditions: stress testing can
be used to identify vulnerabilities associated with
prolonged operation of the device under high
load conditions. For example, you can increase
the number of requests to the device, increase the
duration of operation, or change the temperature,
humidity, or other operating parameters.

2. Attack simulation: with stress testing, attacks on the
device can be simulated.

3. Congestion testing: stress testing can be used to test
the device’s resistance to congestion, for example,
to check how the device handles high traffic or
a situation where the number of users on the network
increases dramatically.

4. Use of random test data: by generating random test data,
the robustness of the device against data errors can be
tested, e.g., data transmission errors or data storage errors.
It is important to realize that stress testing can only

help identify specific hardware vulnerabilities. For
acomplete check, a combination of different methods and
tests must be used, and the security recommendations of
the device manufacturer must be followed. An evolution
of this concept is the identification of vulnerabilities
through software scanners.

The creation of a stand for identifying hardware
vulnerabilities, as well as the technology of working
with it, can be considered as one result of this research.
This is because the available scientific literature provides
no clear definition and description of the steps required
to create similar hardware and developing examples for
practicing possible vulnerable situations.

26 Qualys platform. https://www.qualys.com/solutions/pci-
compliance/. Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

32

https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Authentication-Commands
https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Authentication-Commands
https://openocd.org/doc/html/Architecture-and-Core-Commands.html#RISC_002dV-Authentication-Commands
https://veripool.org/verilog-mode/help/
https://veripool.org/verilog-mode/help/
https://exfiles.eu/wp-content/uploads/2022/07/EXFILES-D5.1-Vulnerabilities-analysis-and-attack-scenarios-description-PU-M06.pdf
https://exfiles.eu/wp-content/uploads/2022/07/EXFILES-D5.1-Vulnerabilities-analysis-and-attack-scenarios-description-PU-M06.pdf
https://exfiles.eu/wp-content/uploads/2022/07/EXFILES-D5.1-Vulnerabilities-analysis-and-attack-scenarios-description-PU-M06.pdf
https://escholarship.org/uc/item/1nv8m9nb
https://escholarship.org/uc/item/4rq8s4jx
http://ec1218usm.files.wordpress.com/2016/12/book_systemverilog_for_verification.pdf
http://ec1218usm.files.wordpress.com/2016/12/book_systemverilog_for_verification.pdf
https://www.qualys.com/solutions/pci-compliance/
https://www.qualys.com/solutions/pci-compliance/

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,

etal.

Set{HEU_RISCV RISCV)
set (START FILE startup.s) # Startup file s

add compile options(-Wall -Wextra)
add compile options(-02 -ggdb)
add link options(-mthumb -mfpu=fpv4-sp-dlé -mfloat-aki=hard

-T3{RISCV _LDSCRIPT} --specs=nosys.specs ——-sSpecs=nano.spec

set the project name
project (Test_firs prj VERSION 0.1}

include directories(
"% {PROJECT BINARY DIR}"
"${PROJECT SOURCE DIR}/inc"™
"${PROJECT SOURCE_DIR}/library/CHMSIS"

)
set_property (SOURCE ${STRRT_FILE} FRECPERTY LANGUAGE C)
add_subdirectory{lihrarnyHSIS)
configure file(inc/version.h.in inc/version.h)

list (APPEND TARGET SOURCE ${PROJECT SOURCE DIR}/inc/main.h)
list (APPEND TARGET SOURCE ${PROJECT_ SOURCE_DIR}/src/main.c)

Fig. 6. Example of program test assembly system

delay lms (100} ;

printf ("linpackc test \r\n"):

rte print_current_time () ;
printf("Start >> linpackc test \r\n"):

rtc print_current time () ;
printf ("Stop »>> linpackc test \r\n"):

while (1)} {
time start = rtc_get subsecond();
linpacke test():
uintlé t real len = read string(test string, TEST STR SIZE);
printf("len read data = 3%d \r\n",real_len):

if(real lemn){
printf("read data = s \r\n",test_string):
memset (test string, 0, TEST STR SIZE);

time stop = rtc get subsecond():

uinted4 t runtims = (uinté4 t)time stop- (uinted t)tims start;
printf("runtime = %1d ‘\r\n", (uint32 t)runtime);
rce_print_current _time () ;

Fig. 7. Code for running a stress test to verify the RISC-V behavioral description

Russian Technological Journal. 2024;12(4):23-39

33

Identification of digital device hardware vulnerabilities Evgeniy F. Pevtsov,

based on scanning systems and semi-natural modeling etal.
IDENTIFYING VULNERABILITIES 1. Gitleaks is a tool for finding sensitive data in Git
THROUGH SOFTWARE VULNERABILITY repositories which can be used to scan C code stored
SCANNERS in Git.
2. Trivy is a tool for scanning Docker containers

A comparison of the most commonly used software and images for vulnerabilities in the packages and
vulnerability scanning systems is shown in the table dependencies used. It can be used to scan Docker
below. images containing C code.

One of the tools specializing in searching for errors 3. Burp Suite is a popular web application security
and vulnerabilities in C, C++, C#, and Java code is testing tool used to scan web applications written in
PVS-Studio, static code analyzer. However, for a more the C language.
complete C code scanning you may need other tools such 4. MobSF is a mobile application vulnerability
as Gitleaks, Trivy*’, Burp Suite*®, and MobSF?°. Here is scanning tool used to scan mobile applications
a brief description of these tools and their capabilities for written in C language (e.g., using Native
detecting vulnerabilities in C code. Development Kit).

Table. Comparison of different software vulnerability scanning systems

No. | Scanner Name Open code C/C++ support Main purpose

It is used to scan for vulnerabilities in web applications, ports,
1 Snlper30 no no and network devices, supports dictionary brute force scanning and
allows you to customize various scanning parameters

It is a vulnerability scanner for web applications that is open source
and can automatically search for vulnerabilities in various parts

2 Wapiti33! es no .
P y of'a web application such as URL parameters, forms, headers, and
scripts
It performs database and extensible script-based vulnerability
. scanning, enables scanning various vulnerabilities such as cross-
3 Nikto*? yes no & &

site scripting (XSS), SQL-injections, header spoofing, unauthorized
access, etc.

It provides automatic or manual scanning and penetration tests. It
4 OWASP ZAP*3 yes no is used to search for vulnerabilities such as SQL injection, XSS,
cross-site request forgery, invalid authorization, etc.

It is a tool for automatic scanning of SQL injection vulnerabilities
5 Sqlmap>* yes no in web applications. It supports multiple databases including
MySQL, Oracle, PostgreSQL, Microsoft SOL Server, etc.

It is a web application vulnerability scanning tool that provides
Acunetix o o automatic or manual scanning options. It supports detection of
wys3s vulnerabilities such as XSS, SQL injection, information leaks, file

security breaches, etc.

27 https://trivy.dev/. Accessed May 15, 2023.

28 https://portswigger.net/burp. Accessed May 15, 2023.

29 https://github.com/MobSF/Mobile-Security-Framework-MobSF. Accessed May 15, 2023.

30 https://github.com/1N3/Snlper/releases. Accessed May 15, 2023,

31 https://pypi.org/project/wapiti3/ (in Russ.). Accessed May 15, 2023.

32 https://github.com/sullo/nikto. Accessed May 15, 2023.

33 https://www.zaproxy.org/docs/. Accessed May 15, 2023.

34 https://sqlmap.org/. Accessed May 15, 2023.

33 https://allsoft.ru/software/vendors/acunetix/acunetix-web-vulnerability-scanner-/ (in Russ.). Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39
34

https://github.com/1N3/Sn1per/releases
https://pypi.org/project/wapiti3/
https://github.com/sullo/nikto
https://www.zaproxy.org/docs/
https://sqlmap.org/
https://allsoft.ru/software/vendors/acunetix/acunetix-web-vulnerability-scanner-/
https://trivy.dev/
https://portswigger.net/burp
https://github.com/MobSF/Mobile-Security-Framework-MobSF

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

Table. Continued

No. | Scanner Name Open code C/C++ support Main purpose

It is a tool for scanning vulnerabilities in web applications.

7 Vega' yes o It suppo%’ts dictionary brute-force sganning and pro.v.ic?es
penetration tests and enables detection of vulnerabilities such as
XSS, SQL-injections
A stati \ i ++ i t h

p PVS-Studiod? o ves static code analyzer 1.n.(.?, C++, C#, and Java designed to searc
for errors and vulnerabilities
It is a tool for scanning open source Git repositories for sensitive
information and other security vulnerabilities. It operates by

9 Gitleaks3® no yes analyzing source code, commits, and change history in the
repository for lines of code containing sensitive information such
as passwords, secure shell keys, access tokens, API secrets

10 OARK™ yes no Java application scanner for Android and IOS

Each of these tools is designed to detect using semi-natural modeling is it possible to narrow

vulnerabilities in different areas. When combined,
they can provide more comprehensive code security
coverage.

However, it should be noted that most of the
scanners on the list can be used to scan code in a variety
of programming languages, including C. However,
depending on your specific needs and the type of
vulnerabilities you need to detect, a combination of
several tools may need to be used.

CONCLUSIONS

The research carried out herein has shown that
the proposed approach based on scanning systems and
semi-natural modeling can successfully identify the
hardware vulnerabilities of digital systems when other
methods prove ineffective and the analysis of the results
is difficult to interpret. Only in a synthetic experiment

36 https://subgraph.com/vega/. Accessed May 15, 2023.

the search area and identify a system with embedded
malicious code with a vulnerability. The results of the
experiments allowed us to develop a methodology and
define a set of tools for identifying vulnerabilities in
digital devices of computing systems, as well as to create
a library of ready-made solutions for implementing an
optimal solution.

The results obtained and the stand we developed
for conducting experiments can be used in perspective
projects linked to the creation of digital devices on
a modern element base. It offers the possibility of
transition to new technologies for detection of hardware
vulnerabilities. Hardware security should be considered
as a priority task in various industries and spheres of
activity. The detection and elimination of vulnerabilities
of digital components of devices should be carried out
both at early stages of development and at the stage of
operation.

37 https://pvs-studio.ru/ru/pvs-studio/ (in Russ.). Accessed May 15, 2023.

38 https://github.com/gitleaks/gitleaks. Accessed May 15, 2023.

39 https://github.com/linkedin/qark. Accessed May 15, 2023.

Russian Technological Journal. 2024;12(4):23-39

35

https://subgraph.com/vega/
https://pvs-studio.ru/ru/pvs-studio/
https://github.com/gitleaks/gitleaks
https://github.com/linkedin/qark

Identification of digital device hardware vulnerabilities
based on scanning systems and semi-natural modeling

Evgeniy F. Pevtsov,
etal.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science
and Higher Education of the Russian Federation (State
task for universities No. FGFZ-2023-0005) and using
the equipment of the Center for Collective Use of
RTU MIREA (agreement dated September 01, 2021,
No. 075-15-2021-689, unique identification number
2296.61321X0010).

Authors’ contributions

E.F. Pevtsov—the research idea, consultations on
research issues, writing the text of the article.

T.A. Demenkova—the research idea,
planning, scientific editing of the article.

A.O. Indrishenok—the research idea, conducting
research, writing the text of the article, interpretation and
generalization of the results.

V.V. Filimonov—consultations on research issues,
writing the text of the article.

research

REFERENCES

1. Smetana D. FPGA-Enabled Trusted Boot Is Part of Building Security into Every Aspect of Trusted Computing Architectures.
Military & Aerospace Electronics Journal. September 25, 2019. Available from URL: https://www.militaryaerospace.com/
trusted-computing/article/14040672/trustedcomputing-embedded-computing-realworld

2. Sesin 1.Yu., Bolbakov R.G. Comparative analysis of software optimization methods in context of branch predication on
GPUs. Russ. Technol. J. 2021;9(6):7-15 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-6-7-15

3. Shayan M., Basu K., Karri R. Hardware Trojans Inspired Hardware IP Watermarks. /[EEE Design & Test. 2019;36(6):72-79.
https://doi.org/10.1109/MDAT.2019.2929116

4. Hennessy J.L., Patterson D.A. A new golden age for computer architecture: Domain-specific hardware/software co-design,
enhanced security, open instruction sets, and agile chip development. In: Proceedings of the 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE; 2018. https://doi.org/10.1109/ISCA.2018.00011

5. Li D., Zhang Q., Zhao D., Li L., He J., Yuan Y., Zhao Y. Hardware Trojan Detection Using Effective Property-Checking
Method. Electronics. 2022;11(17):2649. https://doi.org/10.3390/electronics 11172649

6. Alekhin V.A. Designing electronic systems using SystemC and SystemC-AMS. Russ. Technol. J. 2020;8(4):79-95 (in Russ.).
https://doi.org/10.32362/2500-316X-2020-8-4-79-95

7. Yang K., Zhang K., Ren J., Shen X. Security and privacy in mobile crowdsourcing: Challenges and opportunities. /EEE
Commun. Mag. 2015;53(8):75-81. https://doi.org/10.1109/MCOM.2015.7180511

8. Lou X., Zhang T., Jiang J., Zhang Y. 4 Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in
Cryptography. Vol. 1. No. 1. March 2021. Available from URL: https://arxiv.org/pdf/2103.14244

9. Skorobogatov S., Woods C. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In: Prouff E.,
Schaumont P. (Eds.). Cryptographic Hardware and Embedded Systems — CHES 2012. Lecture Notes in Computer Science.
2012. V. 7428. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-33027-8 2

10. Tasiran S., Keutzer K. Coverage metrics for functional validation of hardware designs. [EEE Des. Test. Comput.
2001;18(4):36-45. https://doi.org/10.1109/54.936247

11. Mukhopadhyay D., Chakraborty R.S. Hardware Security: Design, Threats, and Safeguards. CRC Press; 2014. 542 p. ISBN
978-1-4398-9584-9

12. Tarasov L.E. PLIS Xilinx. Yazyki opisaniya apparatury VHDL i Verilog, SAPR, priemy proektirovaniya (FPGA Xilinx.
Hardware Description Languages VHDL and Verilog, CAD, Design Techniques). Moscow: Goryachaya liniya — Telekom;
2024. 538 p. (in Russ.). ISBN 978-5-9912-0802-4

13. Turkington K., Masseios K., Constantinides G.A., Leong P. FPGA Based Acceleration of the Linpack Benchmark: A High
Level Code Transformation Approach. In: 2006 International Conference on Field Programmable Logic and Applications.
IEEE; 2007. INSPEC Accession Number: 9604301. https://doi.org/10.1109/FPL.2006.311240

14. Tamuly S., Joseph A. Chandrasekharan J. Deep Learning Model for Image Classification. In: Smys S., Tavares J., Balas V.,
Iliyasu A. (Eds.). Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and
Computing. Springer, Cham; 2019. V. 1108. P. 312-320. https://doi.org/10.1007/978-3-030-37218-7_36

15. Majeric F., Gonzalvo B., Bossuet L. JTAG Fault Injection Attack. [EEE Embed. Syst. Lett. 2018;10(3):65-68. https://doi.
org/10.1109/LES.2017.2771206

16. Abdalhag B., Awad A., Hawash A. A fast Binary Decision Diagram (BDD)-based reversible logic optimization engine
driven by recent meta-heuristic reordering algorithms. Microelectron. Reliab. 2021;123:114168. https://doi.org/10.1016/].
microrel.2021.114168

17. Pevtsov E.F., Demenkova T.A., Shnyakin A.A. Design for Testability of Integrated Circuits and Project Protection Difficulties.
Russ. Technol. J. 2019;7(4):60-70 (in Russ.). https://doi.org/10.32362/2500-316X-2019-7-4-60-70

Russian Technological Journal. 2024;12(4):23-39
36

https://www.militaryaerospace.com/trusted-computing/article/14040672/trustedcomputing-embedded-computing-realworld
https://www.militaryaerospace.com/trusted-computing/article/14040672/trustedcomputing-embedded-computing-realworld
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.1109/MDAT.2019.2929116
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.3390/electronics11172649
https://doi.org/10.32362/2500-316X-2020-8-4-79-95
https://doi.org/10.1109/MCOM.2015.7180511
https://arxiv.org/pdf/2103.14244
https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1109/54.936247
https://doi.org/10.1109/FPL.2006.311240
https://doi.org/10.1007/978-3-030-37218-7_36
https://doi.org/10.1109/LES.2017.2771206
https://doi.org/10.1109/LES.2017.2771206
https://doi.org/10.1016/j.microrel.2021.114168
https://doi.org/10.1016/j.microrel.2021.114168
https://doi.org/10.32362/2500-316X-2019-7-4-60-70

Identification of digital device hardware vulnerabilities Evgeniy F. Pevtsov,
based on scanning systems and semi-natural modeling etal.

18.

19.

20.

21.

22.

23.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Kuo M.-H., Hu Ch.-M., Lee K.-J. Time-Related Hardware Trojan Attacks on Processor Cores. In: /IEEE International Test
Conference in Asia (ITC-Asia). IEEE; 2019. https://doi.org/10.1109/ITC-Asia.2019.00021

Komolov D., Zolotukho R. Using special memory chips to ensure FPGA copy protection. Komponenty i tekhnologii =
Components & Technologies. 2008;12:24-26 (in Russ.). Available from URL: https:/kit-e.ru/wp-content/
uploads/2008_12 24.pdf

Becker A., Hu W., Tai Y., Brisk P., Kastner R., Ienne P. Arbitrary Precision and Complexity Tradeoffs for Gate-Level
Information Flow Tracking. In: Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2017. Part 128280. https://doi.org/10.1145/3061639.3062203

Polychronou N.F., Thevenon P.H., Puys M., Beroulle V. A Comprehensive Survey of Attacks without Physical Access
Targeting Hardware Vulnerabilities in [oT/IloT Devices, and Their Detection Mechanisms. ACM Trans. Design Automat.
Electron. Syst. 2022;27(1):1-35. https://doi.org/10.1145/3471936

Erata F., Deng Sh., Zaghloul F., Xiong W., Demir O., Szefer J. Survey of Approaches and Techniques for Security Verification
of Computer Systems. ACM J. Emerg. Technol. Comput. Syst. 2022;1(1):Article 1. https://doi.org/10.1145/3564785

Yang X., Zhao D., Jiang Y., Zhang X., Yuan Y. Fault Simulation and Formal Analysis in Functional Safety CPU
FMEDA Campaign. J. Phys.: Conf. Ser. 2021;1769:012061. https://doi.org/10.1088/1742-6596/1769/1/012061

CNUCOK JINTEPATYPbI

. Smetana D. FPGA-Enabled Trusted Boot Is Part of Building Security into Every Aspect of Trusted Computing Architectures.

Military & Aerospace Electronics Journal. September 25, 2019. URL: https://www.militaryaerospace.com/trusted-
computing/article/14040672/trustedcomputing-embedded-computing-realworld

. Cecun N.IO., bon6akos P.I. CpaBHUTENIBHbINM aHAIN3 METOJOB ONTHMU3ALUU IPOrPaMMHOTO oOecredeHus it G0pbObI C

MpearKannei BeTBICHNH Ha Tpadudeckux nporeccopax. Russ. Technol. J. 2021;9(6):7—-15. https://doi.org/10.32362/2500-
316X-2021-9-6-7-15

. Shayan M., Basu K., Karri R. Hardware Trojans Inspired Hardware IP Watermarks. IEEE Design & Test. 2019;36(6):72—79.

https://doi.org/10.1109/MDAT.2019.2929116

. Hennessy J.L., Patterson D.A. A new golden age for computer architecture: Domain-specific hardware/software co-design,

enhanced security, open instruction sets, and agile chip development. In: Proceedings of the 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE; 2018. https://doi.org/10.1109/ISCA.2018.00011

. Li D., Zhang Q., Zhao D., Li L., He J., Yuan Y., Zhao Y. Hardware Trojan Detection Using Effective Property-Checking

Method. Electronics. 2022;11(17):2649. https://doi.org/10.3390/electronics 11172649

. Anexun B.A. IIpoexTupoBaHue JIEKTPOHHBIX cUCTeM C ucnonb3zoBanueM SystemC u SystemC—-AMS. Russ. Technol. J.

2020;8(4):79-95. https://doi.org/10.32362/2500-316X-2020-8-4-79-95

. Yang K., Zhang K., Ren J., Shen X. Security and privacy in mobile crowdsourcing: Challenges and opportunities. /EEE

Commun. Mag. 2015;53(8):75-81. https://doi.org/10.1109/MCOM.2015.7180511

. Lou X., Zhang T., Jiang J., Zhang Y. A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in

Cryptography. Vol. 1. No. 1. March 2021. URL: https://arxiv.org/pdf/2103.14244

. Skorobogatov S., Woods C. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In: Prouff E.,

Schaumont P. (Eds.). Cryptographic Hardware and Embedded Systems — CHES 2012. Lecture Notes in Computer Science.
2012. V. 7428. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-33027-8 2

Tasiran S., Keutzer K. Coverage metrics for functional validation of hardware designs. /[EEE Des. Test. Comput.
2001;18(4):36-45. https://doi.org/10.1109/54.936247

Mukhopadhyay D., Chakraborty R.S. Hardware Security: Design, Threats, and Safeguards. CRC Press; 2014. 542 p.
ISBN 978-1-4398-9584-9

Tapacos W.E. IIVTUC Xilinx. Hzviku onucanus annapamyper VHDL u Verilog, CAIIP, npuemul npoexmuposanus. M.: Tops-
yas auHusg — Teaexom; 2024. 538 ¢. ISBN 978-5-9912-0802-4

Turkington K., Masseios K., Constantinides G.A., Leong P. FPGA Based Acceleration of the Linpack Benchmark: A High
Level Code Transformation Approach. In: 2006 International Conference on Field Programmable Logic and Applications.
IEEE; 2007. https://doi.org/10.1109/FPL.2006.311240

Tamuly S., Joseph A. Chandrasekharan J. Deep Learning Model for Image Classification. In: Smys S., Tavares J., Balas V.,
Iliyasu A. (Eds.). Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and
Computing. Springer, Cham; 2019. V. 1108. P. 312-320. https://doi.org/10.1007/978-3-030-37218-7_36

Majeric F., Gonzalvo B., Bossuet L. JTAG Fault Injection Attack. IEEE Embed. Syst. Lett. 2018;10(3):65—68. https://doi.
org/10.1109/LES.2017.2771206

Abdalhag B., Awad A., Hawash A. A fast Binary Decision Diagram (BDD)-based reversible logic optimization engine
driven by recent meta-heuristic reordering algorithms. Microelectron. Reliab. 2021;123:114168. https://doi.org/10.1016/j.
microrel.2021.114168

IleBuos E.®., Jlemenkosa T.A., [ITusixkun A.A. TecTonpurogHoe NpoeKTUPOBAHUE UHTETPATIbHBIX CXEM U IIPOOIEMBI 3aIUTHI
poekToB. Russ. Technol. J. 2019;7(4):60—70. https://doi.org/10.32362/2500-316X-2019-7-4-60-70

Kuo M.-H., Hu Ch.-M., Lee K.-J. Time-Related Hardware Trojan Attacks on Processor Cores. In: /IEEE International Test
Conference in Asia (ITC-Asia). IEEE; 2019. https://doi.org/10.1109/ITC-Asia.2019.00021

Russian Technological Journal. 2024;12(4):23-39
37

https://doi.org/10.1109/ITC-Asia.2019.00021
https://kit-e.ru/wp-content/uploads/2008_12_24.pdf
https://kit-e.ru/wp-content/uploads/2008_12_24.pdf
https://doi.org/10.1145/3061639.3062203
https://doi.org/10.1145/3471936
https://doi.org/10.1145/3564785
https://doi.org/10.1088/1742-6596/1769/1/012061
https://www.militaryaerospace.com/trusted-computing/article/14040672/trustedcomputing-embedded-computing-realworld
https://www.militaryaerospace.com/trusted-computing/article/14040672/trustedcomputing-embedded-computing-realworld
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.1109/MDAT.2019.2929116
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.3390/electronics11172649
https://doi.org/10.32362/2500-316X-2020-8-4-79-95
https://doi.org/10.1109/MCOM.2015.7180511
https://arxiv.org/pdf/2103.14244
https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1109/54.936247
https://doi.org/10.1109/FPL.2006.311240
https://doi.org/10.1007/978-3-030-37218-7_36
https://doi.org/10.1109/LES.2017.2771206
https://doi.org/10.1109/LES.2017.2771206
https://doi.org/10.1016/j.microrel.2021.114168
https://doi.org/10.1016/j.microrel.2021.114168
https://doi.org/10.32362/2500-316X-2019-7-4-60-70
https://doi.org/10.1109/ITC-Asia.2019.00021

Identification of digital device hardware vulnerabilities Evgeniy F. Pevtsov,
based on scanning systems and semi-natural modeling etal.

19.

20.

21.

22.

23.

Komornos /1., 3omotyxo P. Mcnons3oBanue MUKpocxXeM crienuaibHOi namsitu st odecnieuenus saumtel [IJIUC FPGA or
konupoBanus. Komnonenmot u mexnonoeuu. 2008;12:24-26. URL: https://kit-e.ru/wp-content/uploads/2008 12 24.pdf
Becker A., Hu W., Tai Y., Brisk P., Kastner R., Ienne P. Arbitrary Precision and Complexity Tradeoffs for Gate-Level
Information Flow Tracking. In: Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2017. Part 128280. https://doi.org/10.1145/3061639.3062203

Polychronou N.F., Thevenon P.H., Puys M., Beroulle V. A Comprehensive Survey of Attacks without Physical Access
Targeting Hardware Vulnerabilities in IoT/IloT Devices, and Their Detection Mechanisms. ACM Trans. Design Automat.
Electron. Syst. 2022;27(1):1-35. https://doi.org/10.1145/3471936

Erata F., Deng Sh., Zaghloul F., Xiong W., Demir O., Szefer J. Survey of Approaches and Techniques for Security Verification
of Computer Systems. ACM J. Emerg. Technol. Comput. Syst. 2022;1(1):Article 1. https://doi.org/10.1145/3564785

Yang X., Zhao D., Jiang Y., Zhang X., Yuan Y. Fault Simulation and Formal Analysis in Functional Safety CPU

FMEDA Campaign. J. Phys.: Conf. Ser. 2021;1769:012061. https://doi.org/10.1088/1742-6596/1769/1/012061

About the authors

Evgeniy F. Pevtsov, Cand. Sci. (Eng.), Director of Center for the Design of Integrated Circuits, Nanoelectronics
Devices and Microsystems, MIREA - Russian Technological University (78, Vernadskogo pr., Moscow, 119454
Russia). E-mail: pevtsov@mirea.ru. Scopus Author ID 6602652601. ResearcherlD M-2709-2016, RSCI SPIN-code
1410-2483, http://orcid.org/0000-0001-6264-1231

Tatyana A. Demenkova, Cand. Sci. (Eng.), Associated Professor, Computer Technology Department, Institute of
Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia).
E-mail: demenkova@mirea.ru. Scopus Author ID 57192958412, ResearcherlD AAB-3937-2020, RSCI SPIN-code
3424-7489, http://orcid.org/0000-0003-3519-6683

Alexander O. Indrishenok, Postgraduate Student, Computer Technology Department, Institute of Information
Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail:
indrishenoksasha@mail.ru. RSCI SPIN-code 2308-7140, http://orcid.org/0000-0003-1471-9043

Vladimir V. Filimonov, Senior Lecturer, Department of Physics and Technical Mechanics, Institute for Advanced
Technologies and Industrial Programming, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: filimonov@mirea.ru. Scopus Author ID 7102525379. http://orcid.org/0000-0003-1118-6608

Russian Technological Journal. 2024;12(4):23-39
38

https://kit-e.ru/wp-content/uploads/2008_12_24.pdf
https://doi.org/10.1145/3061639.3062203
https://doi.org/10.1145/3471936
https://doi.org/10.1145/3564785
https://doi.org/10.1088/1742-6596/1769/1/012061
mailto:pevtsov@mirea.ru
http://orcid.org/0000-0001-6264-1231
mailto:demenkova@mirea.ru
http://orcid.org/0000-0003-3519-6683
mailto:indrishenoksasha@mail.ru
http://orcid.org/0000-0003-1471-9043
mailto:filimonov@mirea.ru
http://orcid.org/0000-0003-1118-6608

Identification of digital device hardware vulnerabilities Evgeniy F. Pevtsov,
based on scanning systems and semi-natural modeling etal.

06 aBTOpax

MeBuoB EBreHnii DununnoBundy, K.T.H., UPEKTOP CTPYKTYPHOro noapasaenenus «LleHTp npoekTnpoBaHns NH-
TerpasibHbIX CXeM, YCTPONCTB HAHO3IEKTPOHUKM N MUKpocucTem», DIEQY BO «MUPOA — Poccuiickumin TexHonormnye-
ckuinyHmBepcuteT» (119454, Poccus, Mockea, np-TBepHaackoro, a. 78). E-mail: pevtsov@mirea.ru. Scopus Author ID
6602652601. ResearcherlD M-2709-2016, SPIN-kog PUHL, 1410-2483, http://orcid.org/0000-0001-6264-1231

AdemeHkoBa TaTbsiHa AneKkcaHApoOBHA, K.T.H., AOLEHT, kadeapa BblYNCANTENbHOM TEXHUKU, NHCTUTYT MHpOpP-
MaLMOHHbIX TexHonoruin, ®reQy BO «MUP3A — Poccuiickuii TexHosormyeckmin ynmepcuteT» (119454, Poccus,
Mocksa, np-T BepHaackoro, a. 78). E-mail: demenkova@mirea.ru. Scopus Author ID 57192958412, ResearcherlD
AAB-3937-2020, SPIN-kon PUHLL, 3424-7489, http://orcid.org/0000-0003-3519-6683

UnppuweHok AnekcaHgp OneroBu4, acnupaHT, kadeapa BblHUCINTENbHOM TeEXHUKM, UHCTUTYT nHdopmaum-
OHHbIX TexHonorunii, PreQy BO «MUPOA — Poccuinckunia TexHonormndeckmin yHmsepcuteT» (119454, Poccusi, Mockea,
np-T BepHagckoro, A. 78). E-mail: indrishenoksasha@mail.ru. SPIN-kon PUHL, 2308-7140, http://orcid.org/0000-
0003-1471-9043

dunumoHoB Bnagumup Bukroposuy, ctaplinii npenogasatens, kadpenpa Grusankm n TeXHUYECKON MeXaHNKM,
MHCTUTYT NepCnekTUBHbLIX TEXHOIOMNIA U MHOYCTpUanbsHoro nporpammmpoanms, @reQy BO «MUPIOA — Poccuiickuin
TexHosormyeckmin yHmesepcuteT» (119454, Poccusa, Mocksa, np-T BepHaackoro, a. 78). E-mail: filimonov@mirea.ru.
Scopus Author ID 7102525379, http://orcid.org/0000-0003-1118-6608

Translated from Russian into English by Lyudmila O. Bychkova
Edited for English language and spelling by Dr. David Mossop

Russian Technological Journal. 2024;12(4):23-39
39

mailto:pevtsov@mirea.ru
http://orcid.org/0000-0001-6264-1231
mailto:demenkova@mirea.ru
http://orcid.org/0000-0003-3519-6683
mailto:indrishenoksasha@mail.ru
http://orcid.org/0000-0003-1471-9043
http://orcid.org/0000-0003-1471-9043
mailto:filimonov@mirea.ru
http://orcid.org/0000-0003-1118-6608

