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Abstract

Objectives. The study set out to compare the forecasting quality of time series models that describe the trend
in different ways and to form a conclusion about the applicability of each approach in describing the trend depending
on the properties of the time series.

Methods. A trend can be thought of as the tendency of a given quantity to increase or decrease over the long term.
There is also an approach in which a trend is viewed as some function, reflecting patterns in the behavior of the time
series. In this case, we discuss the patterns that characterize the behavior of the series for the entire period under
consideration, rather than short-term features. The experimental part involves STL decomposition, construction
of ARIMA models (one of the stages of preparation for which includes differentiation, i.e., removal of the trend and
transition to a weakly stationary series), construction of ACD models (average conditional displacement) and other
approaches. Time-series models based on various trend models are compared with respect to the value of the
maximum likelihood function. Many of the combinations have not been constructed before (Fourier series as a trend
model, combination of ACD model for trend with seasonal models). Example forecasts of macroeconomic statistics
of the Russian Federation and stock prices of Sberbank on the Moscow Exchange in the time range of 2000-2021 are
presented.

Results. In the experiments, The LOESS method obtained the best results. A combination of polynomial model for
trend description and ARIMA for seasonally description and combination of ACD algorithm for trend and ETS for
seasonal model obtained good forecasts in case of seasonal time series, while Fourier time series as a trend model
also achieved close quality of prediction.

Conclusions. Since the LOESS method for groups of seasonal and non-seasonal series gives the best results
for all indicators, this method can be recommended for obtaining the most accurate results for series of different
nature. Trend modeling using Fourier series decomposition leads to quite accurate results for time series of different
natures. For seasonal series, one of the best results is given by the combination of modeling a trend on the basis
of a polynomial and seasonality in the form of the ARIMA model.

Keywords: dynamic series, macroeconomic statistics, ARIMA, ACD, time series, trend, maximum likelihood
function, trend modeling
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Pe3iome

Llenu. OCHOBHas Leflb — CPaBHUTb KQ4E€CTBO NPOrHO3MPOBAHUSA MOAENEN BPEMEHHbIX PSA0B, MO-PA3HOMY OMUCHI-
BaIOLLMX TPEHA, 1 CHOPMMPOBATL 3aK/OHEHME O MPUMEHVMOCTI KaXA0ro noaxoaa npy onmcaHum TpeHaa B 3aBu-
CUMOCTN OT CBOICTB BPEMEHHOIO psiaa.

MeTopabl. TpeH MOXET pacCMaTpPUBaTLCH Kak CKIIOHHOCTb paccMaTpUBaeMOo BENNHYNHbBI K BO3PACTaHMIO U YObI-
BaHMIO B AOITOCPOYHON nepcnekTree. Takke BCTPEYaeTCs Noaxon, Npy KOTOPOM TPEHA aBngeTcs yHKunen He-
KOTOPOro BMaa, oTpaxarLlen 3aKkOHOMEPHOCTN B MOBEAEHUN PACCMATPUBAEMOrO BPEMEHHOMO psaa (peyb naer
O 3aKOHOMEPHOCTSX, XapakTepm3yIoLLMX NOBeAEHME psaa A/ BCEero paccmaTpruBaemMoro nepnuoaa, a He KpaTko-
cpoyHble ocobeHHocTu). B paboTe paccmatpuBaeTcs pasnoxeHue STL, noctpoeHne mogenen ARIMA, ncrnonb-
3oBaHne mogenern ACD (yCpeoHEHHOro yCnoBHOIO CMELLEHUs) U Apyrne noaxoabl. XOTsa pasfiokeHne Ha TpeHa,
CE30HHOCTb, OCTaTOK U SIBNSEeTCs 06LLeynoTpebuTeNbHON NPaKTUKOM, MHOMME KOMOWHaUMW, NpencTaBfieHHbIe
B BbIYUCNNTENIbBHOM 3KCMEPUMMEHTE, MOCTPOEHKI BNEPBbLIE (HANpUMep, UCNoNib3oBaHWe psaa Pypbe Ans Moaenmpo-
BaHWS TPEeHAA, COBMELLEHNE MOOENN CE30HHOCTM U MOAENN TPEHAA Ha ocHoBe anroputMma ACD). Bo BTopow yacTtu
paboThbl NPeACTaBNEH BbIYUCINTESbHBIA SKCMEPUMEHT, B KOTOPOM MOJENW, UCMOJIb3YIOLWME pa3finyHble NOAXOAbI
K MOHATUIO TPEHA, €ro BblAENEHNIO 1 06paboTKe, CPABHUBAIOTCS MO 3HAYEHMIO DYHKUMN MaKCMMasbHOro npas-
[0noao6us U No NPOrHo3y Ha TECTOBbLIN NepUOA, AN151 ANHAMUYECKMX PSA0B MakKpO3KOHOMUYECKOM cTaTUCTUKK PD;
LeHbl akumii CoepbaHka PO Ha MockoBckol bupxe BpemeHHoro neproaa 2000-2021 rr.

PesynbTaTtbl. Bo BCcex akcneprMeHTax oauH U3 Hanbosiee ToOYHbIX MPOrHO30B caenaH npu nomolum metona LOESS.
[na cCe30HHbIX pAO0B AOCTATOYHO TOYHbIE PE3ybTaThl MOKA3bIBAET MOAENMPOBAHME TPEHAA HA OCHOBE MHOMO4YNe-
Ha 1 Ce30HHOCTU Ha ocHoBe dyHKUMI ARIMA, coBmeLleHne moaenu TpeHaa Ha ocHose anropmutma ACD 1 ce30HHO-
CTW Ha ocHoBe ETS 1 MmopennpoBaHue Ha ocHoBe psifa Pypbe.

BbiBogbl. MeTon LOESS ang rpynn Ce30HHbIX 1 HECE30HHbIX PSAOB AAET HAUy4LINIA pe3ynbTaT N0 BCEM NokKasa-
TENsM, NO3TOMY MOXHO PEKOMEHA0BATb MMEHHO 3TOT METOA AJ15 NMOJly4eHNss Hanboslee TOYHbIX Pe3ynbTaToB A
pSO0B pasnuyHol Npupoabl. MoaennpoBaHue TpeHAa C MOMOLLbIO pa3noxeHus B psa Pypbe NpuBOAUT K OCTATOY-
HO TO4HbIM Pe3ysibTaTaM Ha BPEMEHHbIX PSAAX Pa3nn4HOM Npupoapl. g CE30HHbIX PAO0B OAMH N3 NYYLLUX PE3Y/ib-
TaToOB AaeT KOMOUHaUMS MOAENMPOBaHMS TPeH4a Ha OCHOBE MHOrro4ieHa 1 ce30HHOCTU B Buae moaenv ARIMA.

KnioueBble cnoBa: anHamMmunyeckne psiabl, MakpoakoHomuyeckas ctatucTtuka, ARIMA, ACD, BpeMeHHble psaabl,
TpeHna, GyHKUMS MaKkCMMaibHOro npaeaononobuvs, MogenmpoBaHue TpeHaa
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Mpo3payHocTb pUHAHCOBOMN AEeATENIbHOCTU: ABTOPbLI HE UMEIKDT PUHAHCOBOM 3aMHTEPECOBAHHOCTW B NPELCTaB/EH-

HbIX MaTepunanax nain Mmetogax.

ABTOPbI 3a5BASIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.

INTRODUCTION

Within the scope of the presented work, various
approaches to the definition of the trend of a time series
existing in modern science are analyzed. Since there
is no single approach to the definition of a trend, the
concept can be given a number of definitions depending
both on the characteristics of the series and the approach
chosen by the researcher. However, a trend is usually
understood as an increasing or decreasing propensity of
a time series in the predicted area. In medicine, trend is
typically considered as the general direction of change
in the average level of characteristics in a data set [1].
This definition can be generalized to the presence of
a constant unidirectional change in the quantity under
study [2—-4]. It is important to note the presence of the
noise component of the time series, which can affect
the values of the series in both downward and upward
directions. For this reason, researchers are interested in
the component of long-term trend, i.e., the characteristics
of changes in the studied value over a long period of
time [5-8]. There is also a way to identify the trend in
functional form, which is the analysis of the process at a
deeper level, where the same terminology is used.

The article considers several methods of trend
extraction, providing forecasts for the test period of
time series models (for cases where the model enables
making a forecast), and comparing different approaches
in terms of the quality of forecasts for the test period.
In terms of processed data, we used the time series of
macroeconomic statistics of the Russian Federation!, as
well as data of the stack quote of Sberbank of the Russian
Federation (RF Sberbank) on the Moscow Exchange?.
All the models under consideration were tuned on the
20002020 study period (following removal of the crisis
years 2008 and 2014, the data were joined). However,
since the models studied in this paper do not depend on

1" Unified archive of economic and sociological data.

Dynamic series of macroeconomic statistics of the Russian
Federation. Index of money incomes of the population; real
volume of agricultural production. http://sophist.hse.ru/hse/
nindex.shtml (in Russ.). Accessed November 03, 2023.

2 Sberbank (SBER) stock price. https://www.moex.com/
ru/issue.aspx?board=TQBR&code=SBER (in Russ.). Accessed
November 03, 2023.

a specific time period, the conclusions can be extended
to other time processes.

The researcher generally has at hand many
models of different natures (based on neural networks,
standard autoregressive integrated moving average
model (ARIMA)3, exponential time smoothing (ETS),
generalized autoregressive conditional heteroscedastic
(GARCH), etc.), each of which makes its own prediction
for the target period. The models built in computational
experiments can be used (as the accuracy of their predictions
for the test period shows) in a common set of predictors.
The presented approach is relevant due to the possibility
to build combinations of models for describing trends and
seasonal components (if any) of time series that have not
been used before. This will make it possible to add new
models and methods to the existing set of applied models
and methods, as well as to explain when the dynamics of
the time process can be better described in comparison
with other models. The struggle to improve the quality of
time series forecasting remains important regardless of the
breadth of the researcher’s toolkit.

The aim of the work is to build various trend models,
to compare the accuracy of their forecasts for the test
period with standard models, and to draw conclusions
about the possibility of further use of various models for
trend in time series forecasting.

Within the concept of STL (seasonal trend
decomposition based on locally estimated scatterplot
smoothing) [9], trend 7, is a deterministic part of the time
series y,, which may also contain seasonal component S,
and noise component R,. The series can be represented
in additive (1) or multiplicative (2) form:

v, =8, +T, +R, (1)
Vv, =8, xT, xR, )

where ¢ is time.

If variable substitution and unit conversion based on
logarithmization are possible, approaches (1) and (2) are
equivalent [9]:

Iny, =In(S, xT;xR)=InS, +InT, +InR,.

3 Autoregressive and moving average model or Box—Jenkins
model.
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In order to find out the presence of a trend, a statistical
hypothesis approach can be used—in particular, the
Mann—Kendall criterion [10, 11].

Methods for estimating the trend of a time series are
divided into parametric and non-parametric methods. In
terms of parametric methods, a trend is understood as a
function of one or more variables. Examples of parametric
methods are the methods of trend estimation in the form
of a function, where the parameters characterizing the
trend can be calculated using the least squares method,
polynomial fitting, logarithmic, step, exponential,
harmonic, logistic functions, piecewise linear function,
autoregressive (AR) model, etc. Non-parametric
methods include the moving average (MA) model,
median smoothing method, ETS model, application
of frequency filters, etc. The experimental part of the
work considers the selection of logarithmic, linear and
exponential functions to describe the trend, as well as
the application of the Bayesian approach [12]. Since
describing monotonic areas of growth and decline of the
studied value, these methods can be applied only for a
monotonic time series. In the case when the initial series
is not monotonic, it is necessary to perform preliminary
processing, dividing the series into monotonic parts, and
describing each part separately [13—17].

The experimental section of the work also studies the
method of describing a trend using polynomials of the
second order and higher. Since the polynomial function
not in generally monotonic, computational problems may
arise along with the question of choosing a specific type
of function (degree of the polynomial). This problem is
also characteristic of spline interpolation. Among other
things, in polynomial interpolation the function can
deviate strongly from the fixed values at the nodes. For
example, the function 1/ (1+x2) problem is known [18].

Let us consider the average conditional displacement
ACD (average conditional displacement) algorithm [15]
for trend estimation and solving problems on this
basis [12, 13]. Compared to spline interpolation [19, 20]
for describing the behavior of some function on a given
segment, the ACD algorithm and related algorithms
have the useful property of preserving monotonicity.
Similar ideas also find application in works based on
other approaches [14].

In addition to the above trend description methods,
mathematical models of time series based on neural
networks (long-short term memory (LSTM), gated
recurrent unit (GRU), etc.) are widely used [21-25].
Often such models better describe long-term patterns
in the data compared to ARIMA models based on
statistics [24, 26]. There are known works where
models of different types are integrated into a single
framework [22, 23]. Researchers are currently making
attempts to analyze the characteristics and features of
time series using neural networks [26].

The experimental section of the work presents
the construction of trend models based on different
methods, combining the models with information on
the seasonality of the process, checking the quality of
forecasts and corresponding conclusions concerning the
ability of the obtained model to adjust to the values of
the time series and the quality of the forecast for the test
period.

TREND EXTRACTION METHODS UNDER
CONSIDERATION

One of the most commonly used models for
describing a time series is ARIMA(p, d, q) [9], which
consists of the autoregressive part of AR (for a model of
order p the values of the series X are made dependent on
p of their previous values):

X, =c+o X, +..+ (prt_p,
where ¢;, i = G are the function coefficients; and from
the moving average MA part of order ¢ [9]:

X, =g, +0g_ 1 +..+0,8_,,

where 0,,i=1, g are the function coefficients. The order d
denotes the number of differentiations of the series.

When building the model, the trend is eliminated
by switching to the stationary time difference (multiple
differentiation of the series until the test for stationarity
is fulfilled) [9, 27]. Thus, the model description and the
forecasting process are performed with the transformed
stationary time series. The ARIMA model remains one
of the most widely used models in the field of time series
forecasting. In the computational part of the study, its
results are compared with the forecasts of other models.

In the averaged conditional bias algorithm [15] for
estimating a trend and solving related problems [16, 17],
time series segments are approximated by monotonic
functions of the following form:

S () =y +k(x=x), (€)

where y, is the value of the function f{x) at the leftmost
position of the segment at x = x,, k is the slope coefficient
of the line f{x) (see Figure).

Since the trend estimation is constructed by
successive calculation of monotone segments, the
mentioned problems do not arise, as in the case of
polynomial interpolation or spline interpolation.

As a part of the computational experiment, the
quality of ARIMA and ACD model predictions was
compared with the results of models based on neural
networks (LSTM, GRU) and models with bagging [28]
applied to time series data. Bagging involves generating
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a set of pseudo-samples from the series data. The final
forecast is obtained by averaging or weighted averaging
of forecasts for the test period constructed for each
pseudo-sample [28].

Y~ - T T T T 7
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i
I
I
X Xn X141

Fig. Diagram of the monotonic segment construction by
time series segment according to the ACD algorithm [15]

In order to evaluate model forecasts, measures of
forecast vector closeness and the vector of real values of
the time series are considered [9]:

D (1) —ts(1))?

N

D w(r)—ts()]|
MAE =-£

(4)

Here RMSE is the root mean square error; MAE is
the mean absolute error; T(¢) are the real values of the
time series; zs(z) is the forecast of the mathematical
model; N is the length of the forecasting interval (often
coincides with the length of the seasonality interval;
since we are talking here about time series with annual
seasonality, N = 12 months).

COMPUTATIONAL EXPERIMENT

In the experiment, time series models are built and
compared. The following series are used for modeling:
monetary incomes of the population, real volume of
agricultural production according to macroeconomic
statistics of the Russian Federation (monthly indicators,
dimensionless) and stocks of RF Sberbank on the
Moscow Exchange (monthly indicators, rubles). The
last year in the data is used as a test period for which
forecasts are made by all models. The rest of the data
is used for training and tuning the models. Since the
time series models that participate in the experiment
use only time series data for tuning without considering
external factors, we excluded data around the 2008 and
2014 crises prior to tuning the models. Data from the
previous and the next period relative to the crisis year
are joined together. Graphs of the money income series,
as well as its autocorrelation function (ACF) and partial

autocorrelation function (PACF) [9], are presented and
described in detail in [29, Figs. 3 and 4]. Graphs for
a series of real agricultural output are presented and
described in detail in [29, Figs. 5 and 6].

The maximum likelihood function and MAE/RMSE
estimates used in model comparison show the closeness
of the forecast to the real data of the test period. The
results of processing the index of money income of the
population are presented in Table 1 (the best models
according to various criteria are marked in bold).

First five trend models are polynomials whose
coefficients are estimated using the least squares method.
A seasonality model is superimposed on the forecast.
The next five models are characterized by the fact that
the forecast on the constructed polynomial trend model
is made via ARIMA.

When forecasting using hyperbolic/indicative/
logarithmic function, the trend is modeled using
the corresponding function. Based on the obtained
regression model, the trend is forecast for the test period
with subsequent imposition of seasonality information.
The model coefficients are also calculated using the least
squares method.

Fourier series expansion is used to describe the trend
model for the training period. Forecasting is performed
using ARIMA similarly to the methods presented above
but with imposition of the seasonality model.

Interpolation of a tabulated function (which, in
general, corresponds to the measurements on which
the time series is constructed) can be performed using
splines. Interestingly, while such an interpolation method
is highly accurate, it cannot be used to make predictions.
However, it is possible to compare how splines and other
models are fitted to the series data.

When using the STL model (locally estimated
scatterplot smoothing (LOESS) method) [30, 31] the
series is divided into components: trend, seasonality,
noise.

A similar approach is taken when applying the ACD
algorithm. After building the trend model on the basis of
ACD, the forecast for the test period is carried out.

Hybrid models, in which seasonality is superimposed
on a trend model and predicted using ETS or ARIMA,
are also studied.

Computational experiment follows the
methodology used in [29]. The first part uses a time
series of monthly indicators of money income of the
population. The series has annual seasonality. The
test period is 2018. The results are summarized in
Table 1 (accuracy is 0.01). Prior to the experiment,
the data of the series were transformed into the
range [0, 1]. The best models in terms of forecast
accuracy for the test period or the value of the logarithm
of the maximum log-likelihood function (LLF) are
highlighted in bold type.
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Table 1. Household money income models according to macroeconomic statistics of the Russian Federation

and their forecasts for the test period

Trend estimation LLF MAE RMSE

Ist degree polynomial y = a,+ a,x —364.650 0.192 0.193
2nd degree polynomial y = a, + ax + a2x2 —363.084 0.042 0.046

3
3rd degree polynomial y =a; + Zaixi —362.139 0.055 0.062

i=1
4

4th degree polynomial y =a; + Zaixi —362.746 0.016 0.020

i=1

5
5th degree polynomial y =a, + Zaixi —363.487 0.081 0.086

i=1

1st degree polynomial + ARIMA -364.151 0.145 0.147
2nd degree polynomial + ARIMA —362.863 0.024 0.027
3rd degree polynomial + ARIMA —362.453 0.026 0.033
4th degree polynomial + ARIMA —362.668 0.014 0.019
5th degree polynomial + ARIMA —362.746 0.016 0.020
Hyperbolic functiony = a,+a_ /x —361.679 0.105 0.107
Logarithmic function y = a;, + a,lnx -363.174 0.050 0.054
Exponential function y = exp(q, + a,x) —364.967 0.221 0.222
Interpolation by splines —362.688 - -
Fourier series expansion —362.783 0.020 0.027
Exponential smoothing —363.073 0.040 0.044
LOESS method -362.719 0.015 0.019
ACD algorithm —362.959 0.030 0.034
ACD + ARIMA trend —362.198 0.060 0.074
ACD + ETS trend -361.777 0.010 0.012

The mostaccurate results (MAE and RMSE columns)
are obtained when considering a hybrid model with
trend estimation by ACD algorithm with information on
seasonality of the time series and its forecast for the test
period via ETS. The method of trend estimation using
a polynomial of the fourth degree with the addition of
seasonality information and a random component based
on the ARIMA(0, 4, 1) model has good performance in
terms of forecast accuracy for the test period. The values
of the likelihood function are smaller as compared to the
previous method. The same values of error and model
quality for trend estimation using LOESS method.
These models have almost the same values of accuracy
of fitting to the data of the series (LLF) as the modeling
of the series based on splines.

The next method of trend estimation in terms
of accuracy of results and quality of adjustment to
the initial series uses a polynomial of the fourth
degree modeled and predicted by linear regression
method. The same indicators have the method of trend
estimation using a polynomial of the fifth degree with
a forecast for the test period by the ARIMA(3, 5, 1)
method.

Fairly good estimates of forecast accuracy
and likelihood function when modeling the trend
using Fourier series expansion, polynomials of the
second and third degree with forecasting using the
ARIMA method. Slightly lower forecast accuracy
is obtained when modeling the trend using the ACD
algorithm.
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While classical ARIMA and ETS methods have less
accurate prediction performance for the test period, they
are far from useless.

The lowest values for the logarithm of the maximum
likelihood function pertain to the methods of trend
estimation using the exponential function, as well as
those using the polynomial of the first degree. However,
these models also have the worst prediction accuracy
results for the test period. The worst method of trend
modeling by all indicators is the one using the hyperbolic
function.

A similar computational experiment was conducted
for the time series of monthly indicators of the index
of real agricultural production (a detailed analysis of
the characteristics of the series is given in [29]). Data

from 2000-2020 are used for training. The series has
annual seasonality. The test period is 2021. The results
are summarized in Table 2. The best models in terms
of forecast accuracy for the test period or the value of
the logarithm of the maximum likelihood function are
highlighted in bold font.

The lowest values for the logarithm of the maximum
likelihood function have the hybrid model with trend
estimation by the ACD algorithm with information on
the seasonality of the time series and its prediction for
the test period using ETS. However, this method does
not have the most accurate results of forecasts for the
test period (MAE and RMSE columns).

The best MAE results for forecasting for the test
period are obtained using the method of trend estimation

Table 2. Models of the index of real volume of agricultural production according to macroeconomic statistics
of the Russian Federation and their forecasts for the test period

Trend estimation LLF MAE RMSE
Ist degree polynomial y = a,+ax —395.597 0.084 0.097
2nd degree polynomial y = a, +ax + a2x2 —395.871 0.096 0.105
3
3rd degree polynomial y =a; + Zaixi —396.132 0.112 0.117
i=1
4
4th degree polynomial ¥ =a; + Zaixi —396.173 0.114 0.119
i=1
5
5th degree polynomial y = a, + Zaixi —397.175 0.171 0.185
i=1
Ist degree polynomial + ARIMA —395.567 0.083 0.096
2nd degree polynomial + ARIMA —395.734 0.090 0.100
3rd degree polynomial + ARIMA —395.830 0.093 0.103
4th degree polynomial + ARIMA —395.836 0.094 0.103
Sth degree polynomial + ARIMA —396.031 0.102 0.107
Hyperbolic functiony =a,+a_,/x —394.600 0.079 0.124
Logarithmic function y = a, + a,Inx —395.058 0.069 0.101
Exponential function y = exp(a, + a,x) —395.310 0.075 0.095
Interpolation by splines —396.028 - -
Fourier series transformations —395.648 0.076 0.089
Exponential smoothing —395.343 0.078 0.096
LOESS method —395.379 0.079 0.097
ACD algorithm —396.643 0.145 0.153
ACD + ARIMA trend —397.140 0.170 0.195
ACD + ETS trend —400.076 0.121 0.121
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Table 3. Time series models of RF Sberbank stocks and their forecasts for the test period

Trend estimation LLF MAE RMSE

Ist degree polynomial y = a;, + a,x —4979.271 0.105 0.128
2nd degree polynomial y = a, + a x + a2x2 —4950.327 0.199 0.215
3rd degree polynomial y =ag+ iaixi —4881.779 0.440 0.465

i=1

4
4th degree polynomial y =ay+ Y a;x’ ~4986.211 0.108 0.114

i=1

5
Sth degree polynomial y =a; + Zaixi —5019.458 0.079 0.119

i=1
1st degree polynomial + ARIMA —4993.657 0.070 0.093
2nd degree polynomial + ARIMA -4995.075 0.067 0.089
3rd degree polynomial + ARIMA —4997.347 0.063 0.083
4th degree polynomial + ARIMA —5006.537 0.067 0.085
5th degree polynomial + ARIMA —5006.588 0.062 0.079
Hyperbolic function y =a,+a | /x —4880.421 0.443 0.451
Logarithmic function y = a, + a,Inx —4923.877 0.288 0.300
Exponential function y = exp(a, + a,x) —4992.214 0.072 0.094
Interpolation by splines —5013.558 - -
Fourier series transformations —5014.470 0.038 0.054
Exponential smoothing —4976.059 0.117 0.145
LOESS method —5013.578 0.004 0.006
ACD algorithm —4996.171 0.077 0.086
ACD + ARIMA trend —4987.216 0.145 0.162
ACD + ETS trend —4979.289 0.170 0.191

using logarithmic and exponential functions (the best
models are highlighted in bold). Models with Fourier
series expansion, exponential smoothing, hyperbolic
function, as well as those based on the LOESS method,
have close values to them.

The best results in terms of RMSE for forecasting
for the test period are those obtained using the method of
trend estimation based on Fourier series expansion. The
error values of trend modeling with exponential function,
exponential smoothing, LOESS method and with
polynomial of the first degree with forecasting both on
the basis of ARIMA and linear regression are acceptable.

The lowest value of the likelihood function after
the hybrid model with ACD trend and ETS forecast is
obtained using the method of modeling the trend based
on a polynomial of the fifth degree with linear regression
forecasting. This value is slightly higher for the hybrid
model with ACD trend and time series seasonality
information predicted by ARIMA. We can also note
the models with trend estimation using third- and

fourth-degree polynomials. However, this group of
models has some of the worst indicators for forecast
accuracy.

When estimating the trend using polynomials,
it is important to note that the accuracy decreases as
the degree of the polynomial increases. This property
also holds when combining trend estimation using
polynomials with the ARIMA model.

In the examples presented above, seasonal time
series are processed. Let us consider the performance of
various methods of trend estimation on a non-seasonal
time series of RF Sberbank stocks* (rubles). Data from
2000-2021 are used for training. The test period is 2022.
Graphs of ACF and PACF functions are presented and
described in detail in [29, Fig. 7]. The modeling and
forecasting results are presented in Table 3. The best

4 Sberbank (SBER) stock price. https://www.moex.com/ru/
issue.aspx?board=TQBR&code=SBER (in Russ.). Accessed
November 03, 2023.
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models in terms of prediction accuracy for the test period
or the value of the logarithm of the maximum likelihood
function are highlighted in bold font.

Since there is no seasonality for stock market data,
the forecast result depends entirely on the trend model
and the random component.

The behavior of the series is described best by the
spline function and LOESS models. At good values of
the likelihood function, the trend model with the LOESS
method has the most accurate forecasts. The error is
0.004 for MAE and 0.006 for RMSE. Low LLF values
also correspond to trend modeling using a fifth-degree
polynomial with linear regression prediction and using
Fourier series expansion. These models also have some
of the best accuracy values after the LOESS method
model.

In contrast to the modeling of seasonal series, the
other models are less well adjusted to the behavior of the
series. These models are characterized by deterioration
of'accuracy as LLF values increase.

In trend modeling with polynomial, as the degree
of the polynomial increases, starting from the fourth
degree, accuracy increases, which may be partly due
to overtraining. This is also true for the combination of
series modeling with polynomial and ARIMA; however,
the accuracy performance improves as the degree of the
polynomial increases from the first degree onwards.

CONCLUSIONS

When modeling the trend for seasonal series,
overlaying information on seasonal and random
components affects the quality of forecasts. The best
results are shown by the methods of trend modeling
using Fourier series expansion and LOESS method. The
combination of trend modeling with polynomial and
ARIMA method for seasonality also has quite accurate
results. While the indicators are worse when using

polynomials for trend estimation with linear regression
forecast than when using the combination of polynomial
with ARIMA model, the behavior dynamics of accuracy
indicators is the same for them.

It is interesting to note that the ACD algorithm
performed best on the data of monetary incomes of
the population. This time series has heterogeneous
dispersion. Data forecasting using the ACD algorithm
can be very useful for heteroscedastic series.

Trend modeling using exponential and logarithmic
functions did not demonstrate outstanding results. Such
methods are also computationally more complex than
their polynomial equivalents. The logarithmic function
model has limitations on the data values due to the lack of
a real logarithm of a negative argument. The hyperbolic
function model is one of the worst performing, both in
terms of likelihood function and accuracy estimates.

Unlike trend estimation using the exponential
function, trend extraction using exponential smoothing
led to one of the best results. However, the main
disadvantage of this method is the uncertain smoothing
coefficient.

When working with non-seasonal time series, the
forecast quality depends only on the trend and noise
components. Models with Fourier series expansion,
LOESS method and spline function fit the data best.
However, it is difficult to make forecasts based on
splines due to their orientation to data interpolation.

Since the LOESS method for a group of non-seasonal
series also gives the best or close to the best results for
all indicators, this method can be recommended for
obtaining the most accurate results for series of different
nature. The modeling of the trend using Fourier series
decomposition can also be highlighted based on the
sufficiently accurate results for time series of different
natures obtained using this approach.
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