Russian Technological Journal. 2024;12(3):37-45 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMbl. UHdopmaruka. IIpodaembl nHGOpMALMOHHON 0€3011aCHOCTH

UDC 004.2
https://doi.org/10.32362/2500-316X-2024-12-3-37-45 @)y |
EDN PXKDKR

RESEARCH ARTICLE

Method for designing specialized computing systems
based on hardware and software co-optimization

llya E. Tarasov @, Peter N. Sovietov, Daniil V. Lulyava, Dmitry I. Mirzoyan

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: tarasov_i@mirea.ru

Abstract

Objectives. Following the completion of development stages due to transistor scaling (Dennard’s law) and
an increased number of general-purpose processor cores (limited by Amdahl’s law), further improvements in the
performance of computing systems naturally proceeds to the stage of developing specialized computing subsystems
for performing specific tasks within a limited computational subclass. The development of such systems requires
both the selection of the relevant high-demand tasks and the application of design techniques for achieving desired
indicators within the developed specializations at very large scales of integration. The purpose of the present work
is to develop a methodology for designing specialized computing systems based on the joint optimization of hardware
and software in relation to a selected subclass of problems.

Methods. The research is based on various methods for designing digital systems.

Results. Approaches to the analysis of computational problems involving the construction of a computational graph
abstracted from the computing platform, but limited by a set of architectural solutions, are considered. The proposed
design methodology based on a register transfer level (RTL) representation synthesizer of a computing device
is limited to individual computing architectures for which the relevant circuit is synthesized and optimized based
on a high-level input description of the algorithm. Among computing node architectures, a synchronous pipeline and
a processor core with a tree-like arithmetic-logical unit are considered. The efficiency of a computing system can
be increased by balancing the pipeline based on estimates of the technological basis, and for the processor—based
on optimizing the set of operations, which is performed based on the analysis of the abstract syntax tree graph with
its optimal coverage by subgraphs corresponding to the structure of the arithmetic logic unit.

Conclusions. The considered development approaches are suitable for accelerating the process of designing
specialized computing systems with a massively parallel architecture based on pipeline or processor computing nodes.

Keywords: processor, RTL, synthesis, translator

e Submitted: 18.10.2023 ¢ Revised: 04.12.2023 ¢ Accepted: 22.03.2024

For citation: Tarasov I.E., Sovietov P.N., Lulyava D.V., Mirzoyan D.I. Method for designing specialized computing systems
based on hardware and software co-optimization. Russ. Technol. J. 2024;12(3):37—-45. https://doi.org/10.32362/2500-
316X-2024-12-3-37-45

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

© |.E. Tarasov, P.N. Sovietov, D.V. Lulyava, D.l. Mirzoyan, 2024
37

https://doi.org/10.32362/2500-316X-2024-12-3-37-45
https://elibrary.ru/PXKDKR
mailto:tarasov_i@mirea.ru
https://doi.org/10.32362/2500-316X-2024-12-3-37-45
https://doi.org/10.32362/2500-316X-2024-12-3-37-45

Method for designing specialized computing systems llya E. Tarasov,
based on hardware and software co-optimization etal.

HAYYHAA CTATbA

MeToanka nNpoeKTUPOBAHUSA
ClleMAJIU3UPOBAHHBIX BHIYUCIUTEIbHBIX
CUCTEM HA OCHOBE COBMECTHOM ONTUMHU3ALUN
anmnapaTHoro U MPOrpaMMHOro odecrnedeHust

WU.E. Tapacos @, 1.H. CoseTos, [1.B. Jlionssa, [,.U. Mupsosix

MUP3A — Poccuiicknii TexHoI0rn4eckni yumsepceutet, Mocksa, 119454 Poccus
@ AsTOp AN Nepenvcku, e-mail: tarasov_i@mirea.ru

Pesiome

Llenu. Cnenyowimm 3Tanom NoBbILLEHNS MPOU3BOAUTENBHOCTU BbIYMCAUTENbHbLIX CUCTEM NOCIE 3aBepLUEeHNs 3Ta-
NMoB pocTa 3a CcYeT MacLuTabMpoBaHUs TPAH3MCTOPOB (3akoH JleHHapaa) 1 3a CHeT yBENYEHUs KOIMYecTBa Nnpo-
LLECCOPHbIX saep 0OLEero Ha3HavYeHUs (OrpaHnYMBaeMoro 3akoHOM Ampaana) siBnseTcs rnepexof K pa3paboTke
CneumnananpoBaHHbIX BbIYUCIUTENBbHBIX NOACUCTEM A paboTbl B OrpaHMYeHHOM noaknacce 3anad. CospaHuve
Takux cucTem TpebyeT Kak BbI6opa COOTBETCTBYIOLLMX MAcCOBO BOCTPeEOOBaHHbLIX 3aa4, Tak U MPUMEHEHUSI METO-
OVK NPOEKTMPOBaHMs, 06ecneyrBaoLLX JOCTUXKEHNE BbICOKMX TEXHUKO-3KOHOMMYECKUX NoKasaTenel pa3paba-
TbIBAEMbIX CMEUManM3npoBaHHbIX CBEPXOONbLUNX MHTErpasibHbIX cxeMm. Lienb paboTbl — pa3paboTka MeTOANKN NpPo-
EKTUPOBaHNA CneLnann3npoBaHHbIX BbIYNCIUTESbHbLIX CUCTEM Ha OCHOBE COBMECTHOM ONTUMM3aLLMKM annapaTHoro
1 NporpamMMHOro obecneyeHns MPYMEHNTENBHO K BbIOpaHHOMY MoAKIaccy 3a4au.

MeToabl. /Icrnonb30BaHbl METOAbI NPOEKTUPOBAHUSA LUDPOBbLIX CUCTEM.

Pe3ynbTaTtbl. PacCMOTpEHbl NOAXOAb! K aHANW3Y BbIYUCIUTESNbHBLIX 3a4a4 NyTeM NOCTPOeHUs rpada BblYUCIEHUI,
abCcTparnpoBaHHOMO OT BbIMVCIUTENBHOM NaTdopMbl, 0HAKO OrPaHNYEHHOr0 HAGOPOM aPXUTEKTYPHBIX PELLEHWIA.
[MpennoxeHa meToavka NPOEKTUPOBAHUSA, NCMNOJb3YIOLAA MapLUPyT, OCHOBAHHbLIN Ha NPYMEHEHUN CUHTe3aTopa
npencTasieHns YPOBHA perncTpoBbix nepenad (RTL-npeacTaBneHnst) BbIYUCUTENIBHOMO YCTPOMCTBA, OrPaHnNYeH-
HOro OTAENIbHbIMU BbIYUCIIUTENbHLIMU apPXUTEKTYPaMu, A8 KOTOPbIX MPOU3BOAATCH CUHTE3 U ONTUMN3aLNSA CXe-
Mbl H2 OCHOBE BbICOKOYPOBHEBOIO BXOAHOrO onvcaHus anroputma. Cpeam apxXuTekTyp BbIMUCIUTENbHbIX Y3/10B
PacCMOTPEHbI CUHXPOHHbLIN KOHBEWEP U NPOLLECCOPHOE A4P0 C APEBOBUAHBIM apudMETUKO-TTIOrMYEeCKUM YCTPON-
cTBOM. [MoBbilleHVe 3PPEKTUBHOCTU BbIYUCTUTENBHON CUCTEMBI OCYLLIECTBSIETCS NyTEM H6anaHCUPOBKW KOHBEN-
epa Ha OCHOBE OLLEHOK TeXHOJIorMyeckoro 6asuca, a gns npoueccopa — nyTemM ontuMmnsauumn Habopa onepaumia
Ha OCHOBe aHann3a rpacda abCTPakTHOro CUHTAKCMYECKOro AepeBa C ero onTuMasibHbIM NMoKpbITUEM noarpadamm,
COOTBETCTBYIOLLUMM CTPYKTYpPE apudMeTUKO-/T0rM4eCcKOro yCTponcTaa.

BbeiBOAbI. PaccMoTpeHHble noaxoapl kK pa3paboTke No3BOJISIOT YCKOPUTL NMPOLECC NPOEKTUPOBAHNUS CHeLMannam-
POBaHHbIX BbIYNCIINTESIbHBLIX CUCTEM C MacCOBO-MapanfieflbHON apxXUTEKTYPON, OCHOBAHHbLIX Ha KOHBEMEPHbIX Bbl-
YNCNUTEJSIbHbIX Y3/1axX.

Kniouesble cnosa: npoueccop, RTL, cuHTes, TpaHcnaTop

e MocTtynuna: 18.10.2023 ¢ flopa6oTaHa: 04.12.2023 ¢ MpuHaATa k ony6nukoBaHuio: 22.03.2024

Ansa umtupoBanus: Tapacos U.E., CosetoB IN.H., Jllonaea [1.B., Mup3osH 1.1. MeToguka npoekTMpoBaHus cneumanm-
3MPOBAHHbIX BLIYNCIINTENbHBIX CUCTEM Ha OCHOBE COBMECTHOW ONTUMMN3aLM1 annapaTtHOro 1 nporpaMmMHoro obecrne-
yeHus. Russ. Technol. J. 2024;12(3):37-45. https://doi.org/10.32362/2500-316X-2024-12-3-37-45

Mpo3payHocTb GUHAHCOBOMN AEATENIbHOCTU: ABTOPbI HE NMEIOT (PUHAHCOBOW 3aMHTEPECOBaHHOCTY B NPeACcTaBeH-
HbIX MaTepuanax uiM MeToaax.

ABTOpPbI 3a9BASAOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.

38

Russian Technological Journal. 2024;12(3):37-45

mailto:tarasov_i@mirea.ru
https://doi.org/10.32362/2500-316X-2024-12-3-37-45

Method for designing specialized computing systems
based on hardware and software co-optimization

llya E. Tarasov,
etal.

INTRODUCTION

The field of element base design for high-
performance computing in Russia is characterized by
trends corresponding to objective technical limitations
and the need to intensify import substitution processes
to ensure technological sovereignty. Analysis of the
desired technical characteristics should take into account
production capacity limitations, as well as the need to
reduce technical and economic risks.

Analysis of architectural trends in the field of
computing is presented by Patterson and Hennessy
in [1]. The authors draw attention to a number of
major milestones in the development of processor
architectures since the 1970s. The first of these concerns
the replacement of the CISC (complex instruction set
computer) concept with the RISC (reduced instruction
set computer) approach. Due to the ensuing reduction in
combinational logic complexity, it became possible to
increase the clock frequency of processor devices.

Further increases in clock frequency, however,
turned out to be limited according to Dennard’s Law,
which describes an inherent limit to the possibility of
increasing processor performance by scaling transistor
sizes. The response to this limitation was the transition
to multi-core processors, which took place in the mass
segment of personal computers during the mid-2000s.

Improved performance by increasing the number
of processor cores is in turn limited by Amdahl’s law,
which defines the potential performance improvement
of a multiprocessor complex by defining the fraction of
computations that can be performed in parallel. A related
problem is the so-called wall of interfaces [2], which
takes into account the fact that performance increases
quadratically with decreasing process standards, while the
bandwidth of memory and peripheral interfaces increases
linearly. Therefore, the construction of multicore systems
entails the problem of organizing inter-processor data
exchange, which cannot be effectively implemented due
to the outstripping growth of the volume of received data
compared to the possibility of their transmission through
existing communication channels designed according to
comparable technological standards.

In [1], in connection with the above problems,
a transition to domain-specific architectures is proposed
by analogy with domain-specific languages (DSL). In
this case, the specialization of a processor for performing
certain classes of computations implies its reduced
efficiency in other classes, necessitating the selection
of specialized computational tasks corresponding to
current technical needs. Such an approach can find wide
application due to considerations of reducing design
and production unit costs, as well as corresponding to
technically feasible approaches to the design of digital
devices.

ANALYSIS OF COMPUTATIONAL TASKS
FOR IMPLEMENTATION AS A PART
OF SPECIALIZED COMPUTING SYSTEMS

Important areas for the application of high-
performance computing systems include video processing
systems, virtual and augmented reality, robotics, industrial
automation, digital radio communications, measurement
technology [3, 4]. Among the implemented areas of signal
processing are digital filtering [5], spectral analysis [6],
machine learning algorithms [7], including those based
on specialized neural processors [8], or reconfigurable gas
pedals based on field-programmable gate array (FPGA).

Computational tasks that can be accelerated by
specialized computing systems include the following
subclasses:

1) solving differential equation systems by numerical
methods;

2) operations with three-dimensional images;

3) digital signal processing based on mass application
of “multiply and accumulate” operations;

4) computation of hash functions in information
protection tasks;

5) implementation of neural networks in terms of
calculating neural function values (neural net
inference), not including neural net training tasks.
Types of operations characteristic of the above tasks

are given in the Table. The columns of the table are
placed in such a way that the complexity of realization
of the corresponding types of operations increases
from left to right. Although significant difficulties are
associated with high-complexity memory operations
based on increasing the throughput capacity of a memory
subsystem, some memory operations themselves do not
have high complexity.

The Table uses the following scores to characterize
use intensity of certain types of operations. The
assessment 70, which corresponds to the situation when
the operation is not used in algorithms, does not require
support. While the assessment possibly characterizes
situations when such operations take place, these
do not have a noticeable impact on the efficiency of
the computing device due to their rare use. For such
operations, it is possible to use non-optimized solutions or
ready-made components having functional redundancy.
The assessment massively, which corresponds to
operations forming the basis of algorithms, determines
the intended implementation efficiency of the computing
device to the greatest extent.

According to the preliminary estimates, the
implementation of hash functions and digital signal
processing operations demonstrates the advantages
of pipelined architectures to a greater extent, since it
provides for streaming data processing without intensive
exchange with external memory.

Russian Technological Journal. 2024;12(3):37-45

39

Method for designing specialized computing systems

llya E. Tarasov,

based on hardware and software co-optimization etal.
Table. Intensity of use of operations characteristic of a number of tasks requiring the use of high-performance
computing systems
Shifts, addition, T Floating point Transcendental Memory
Task type bitwise operations Multiplication operations functions operations
Hash functions Massively No No No Possibly
Neural networks
implementation No Massively Possibly Possibly Possibly
Digital signals Massivel Massivel Possibl Possibl Possibl
processing (filtration) Y Y Y Y Y
Differential equation No Possibly Massively Possibly Massively
systems
3D graphws No Often Massively Often Massively
processing

COMPUTING NODE ARCHITECTURES

Architectural approaches to the realization of
individual computational nodes in modern digital
electronics are quite diverse. For their effective practical
use, however, it is necessary to limit ourselves to a set
of possible solutions for using computer-aided design
methods at the level of mathematical and software
models. Further transformations in the representation of
the register transfer level circuit (RTL-representation)
do not make significant changes in the characteristics
of such a system. It can be noted, for example,
that the use of means of description of high-level
language (HLL) class implies automated construction
of control diagrams (flow control) designed for a wide
class of realized architectural approaches. This leads
to excessive complication of synthesized control
diagrams.

The following architectural approaches to the
construction of computational nodes are considered for
the practically realizable design methodology:

1) processor unit;

2) synchronous pipeline;

3) modification of synchronous pipeline with the
possibility of reusing of individual stages.
Structural diagrams of the main computing nodes

are shown in Fig. 1.

Given variants of nodes are considered as
architectural templates for realization of selected
subclasses of computations. In this case, the required
set of operations for the processor is realized as part of
the arithmetic-logic unit (ALU), while for the pipeline,
it is realized in successive stages. To use a pipeline, it is
necessary for the order of operations for the realization
of the algorithm to remain unchanged, otherwise

the adjustment will require complication of control
diagrams. Provided that the frequency of receiving
input data is significantly less than the clock frequency
of the pipeline, repetition of operations can be used in
algorithms such as computation of hash functions and
realization of filters with finite impulse response. When
this condition is fulfilled, the same stage of the pipeline
can be used repeatedly until the arrival of a new input
value.

Processor

D

Program

Pipeline

@ Reg —@‘ Reg @ Reg——

SN I\

Pipeline with repetitive operations

Fig. 1. Diagrams of the main computing
nodes (architectural templates). f;, f,, ..., f, are the
functional devices

Program

Since operations involving RTL-representation
synthesis and optimization depends on the choice of
a particular architectural pattern, the present work article

Russian Technological Journal. 2024;12(3):37-45

40

Method for designing specialized computing systems
based on hardware and software co-optimization

llya E. Tarasov,
etal.

considers the application of the technique for pipelined
computational structures. The addition of processor
and pipeline architectural templates with operational
repetition is provided for subsequent stages of the
project.

Design route according to the proposed methodology
of designing computing modules of a specialized
computing system is shown in Fig. 2.

Design
constraints

Source text

Architectural
templates

Specialized synthesizer

|

;irs;hrgcélgtgg RTL representation
delay, area,
capacity
FPGA CAD VLSI CAD

Fig. 2. Route for designing modules of a specialized
computer system

According to the presented route, it can be seen that
the input data are the source code of the algorithm to be
implemented, while design constraints are presented in
the form of the limiting characteristics of the required
solution. The specialized synthesizer developed
by P.N. Sovetov [9] based on architectural templates
generates the RTL representation of a module using
the data on the technological library for preliminary
evaluation of its characteristics. The resulting RTL
representation is further used in FPGA or very large-scale
integration (VLSI) design paths, where the corresponding
computer-aided design systems (CAD) are used to
estimate the module characteristics following synthesis
or after performing placement and tracing (which gives
a more accurate estimation of characteristics compared
to the estimation after synthesis).

For example, the values of signal propagation
delays become the basis for re-synthesis of RTL
representation with additional pipelining of
the identified critical circuits. In addition, the
synthesizer provides additional information about the
interconnections of the synthesized nodes to generate
design constraints specifying the coordinates of
individual nodes of the synthesized circuit (stages of
the pipeline). While such capabilities are also partially
provided by such design tools as Vitis HLS', the

! https://www.xilinx.com/products/design-tools/vitis/vitis-
hls.html. Accessed October 10, 2023.

characteristics of the technological platform are set
out in the form of libraries. Using the route developed
as part of the present work, these characteristics can to
be refined during the process of project optimization.

OPTIMIZATION OF COMPUTATIONAL
NODE BASED ON SOFTWARE MODEL
OF COMPUTATIONS

The development of compilers for new processor
architectures is an important element in the provision
of tools for designing systems based on them [10].
Translators of DSL into RTL representation represent
a promising approach to fast design of hardware gas
pedals for some narrow class of architectures [11].
Let us briefly outline the design steps of a tool system
consisting of an embedded DSL based on a subset of
the Python language and a translator for synthesizing
hardware gas pedals based on pipelining of a linear
program section.

The wuser program, representing a behavioral
description of the hardware gas pedal being synthesized,
is input to the translator. This program is automatically
converted into the form of an abstract syntax tree (AST)
using the ast module from the Python standard library.
The AST checks and propagates information about the
types used in the input program based on Python’s type
annotation mechanism.

In addition, the user provides a table of delays and
operation combination rules for the selected chip type,
as well as one of the selected pipeline control templates
in the Verilog language. The result of the translator is
the code of the synthesized pipelined gas pedal in the
Verilog language.

After all functions in the input program are
embedded in the main function, the loops are fully
unrolled. Then the program is transformed into an
acyclic data dependency graph (DDG), where the
convolution and promotion of constants, removal
of matching expressions, and removal of dead code
are performed based on the numbering of values. In
order to achieve a potentially greater parallelism of
calculations, balancing of expression tree heights is
carried out.

Prior to the direct synthesis of the pipeline, auxiliary
steps are performed: a step of partial coverage of
the DDG using multiple input single output (MISO)
subgraphs, as well as a step of calculating the maximum
delays between pairs of nodes in the DDG.

The target chip type may use resources that
enable combination, i.e., combining the execution
of several operations in time, for example, using
a look-up table (LUT). The translator uses partial DDG
coverage of combined operations using a variant of
the MAXMISO algorithm for instruction synthesis.

Russian Technological Journal. 2024;12(3):37-45

41

https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html

Method for designing specialized computing systems
based on hardware and software co-optimization

llya E. Tarasov,
etal.

This algorithm allows us to enumerate in DDG
non-intersecting subgraphs having the number of
inputs not more than a given number and one output.

The result of the pipeline synthesis is DDG with
added nodes representing pipelining registers. By
realizing the pipeline synthesis mainly using third-
party constraint programming and linear programming
solvers, the implementation of the code generator is
simplified. The pipeline synthesis is implemented
in one of the following ways: with minimization of
the pipeline depth, with minimization of the total
size of the pipeline registers, or with minimization
of the pipeline depth followed by minimization of
the total size of the pipeline registers. The pipeline is
synthesized using information about the end-user nodes
that takes the DDG representation of the program into
account. This simplifies the algorithm synthesis process
by reducing the number of generated constraints.
A similar approach was used to create a compiler for
a specialized controller based on a field-programmable
gate array (FPGA) [12]. Here, the presence of similar
approaches to the translation of high-level program
representation [13, 14] can be noted; however, these do
not involve feedback from CAD, which determines the
actually achieved time delays by tracing the project. At
the same time, attention is paid to pipelined architectures
for FPGA [15].

METHODOLOGY FOR EVALUATING THE
TOPOLOGICAL IMPLEMENTATION OF
A COMPUTATIONAL NODE

The synthesized RTL representation discussed
above uses the estimated delays introduced by individual
operations as input information. For the selected
technological basis, it is therefore necessary to:

1) determine the delays of individual elements that
implement the computations supported by the
synthesizer;

2) identify the possibility of using an additive delay
model or determine a way to determine the total
delay of a combinational node taking into account
the interaction of individual elements.

Verification of the topological realization of the
example of the pipeline calculator was carried out
in AMD/Xilinx Vivado®> FPGA CAD. The pipeline
calculator implements the COordinate Rotational
DIgital Computer (CORDIC) vector rotation
algorithm, forming the basis for the computation of
transcendental functions. This choice is related to
the inclusion of the CORDIC IP core in the library

2 https://docs.xilinx.com/r/en-US/ug910-vivado-getting-
started. Accessed October 10, 2023.

components of AMD/Xilinx Vivado CAD; thus, its
characteristics can be compared with the obtained
results. The calculation of the steps of the CORDIC
algorithm is combined with the sequential calculation
of the result of multiplication with accumulation.
In this way, an excess of functionality with respect
to the CORDIC IP core is ensured. A quantitative
criterion for assessing the quality of preliminary delay
modeling is the histogram of time delay stocks (slack
histogram)?®. In static timing analysis, the slack value
is the difference between the value of the clock signal
period and the maximum signal propagation delay
between synchronous nodes of the circuit. Depending
on the complexity of expressions and mutual
arrangement of nodes, the delay will be individual for
each circuit. On this basis, a histogram is constructed
showing the number of circuits that have appropriate
time reserves before the arrival of the next edge of
the clock signal. Such a histogram, which is referred
to here as a stock histogram, is generated in Vivado
CAD at the operator’s request based on the static time
analysis performed in CAD.

Based on the considerations of balancing the stages
of the pipeline in the ideal case, we can assume that the
stocks will be grouped around the minimum values to
indicate the absence of circuits having an excessively
short delay and consequent inefficient use of hardware
resources. An example of a histogram of time delay
stocks is shown in Fig. 3.

Time slack, ns

0 025 050 075 1.00

800

[e2]
o
o

Number of nets
D
o
o

200

Fig. 3. Histogram of time delay stocks for the pipeline
example

The grouping of circuits on the histogram shows that
balancing of the pipeline stages is performed correctly:
the main proportion of circuits falls in the left part of the
histogram, which corresponds to small values of time
reserve.

3 https://docs.xilinx.com/r/en-US/ug906-vivado-design-
analysis/Timing-Analysis. Accessed October 10, 2023.

Russian Technological Journal. 2024;12(3):37-45

42

https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started
https://docs.xilinx.com/r/en-US/ug906-vivado-design-analysis/Timing-Analysis
https://docs.xilinx.com/r/en-US/ug906-vivado-design-analysis/Timing-Analysis

Method for designing specialized computing systems
based on hardware and software co-optimization

llya E. Tarasov,
etal.

EXAMPLES OF PRACTICAL TESTING
OF THE METHODOLOGY

Practical approbation of the method was carried
out on the basis of a number of computational nodes
of pipeline type. A configurable pipeline with the
combination of calculations of the result of multiplication
with accumulation and vector rotation based on the
CORDIC algorithm was realized. The synthesized
pipeline can be used to calculate a pair of values of sine,
cosine or multiply independent 32-bit operands in the
mode of switching functional nodes.

When estimating the achievable clock speed of
FPGA-based digital circuits, the concept of logic levels
is used to refer to the number of nodes connected in
series in a circuit of maximum length. This circuit is
a limiting factor where the achievable clock frequency
is preliminarily estimated as the system clock frequency
divided by the logic levels figure. With a system clock
frequency on the order of 700—750 MHz for a modern
FPGA architecture, achieving logic levels equal to 1 is
quite a challenging technical task. Nevertheless, the
balancing of the pipeline allowed us to obtain a clock
signal period of 1.6-1.7 ns, which corresponds to
a clock frequency of 600-625 MHz for the AMD/Xilinx
Kria platform constructed according to 16 nm FinFET#
technological standards.

CONCLUSIONS

Approaches considered in the article enable the
optimization of pipeline calculators designed to work
as part of VLSI. The obtained positive results can be
used to extend the methodology for designing processor
nodes and pipelines with repetition of operations,
whose architectural templates were considered in
the introductory part of the article. The calculator is
optimized in accordance with the selected quality
criteria by means of joint analysis of the design at
several levels (software model, circuit, and topological
representations), including controlled increase of clock
frequency for high-performance computing systems
due to balancing delays of functional nodes of the
pipeline.

ACKNOWLEDGMENTS

The work was performed within the framework of
the State assignment of the Ministry of Science and
Higher Education of the Russian Federation (theme
No. FSFZ-2022-0004 “Architectures of specialized
computing complexes, methods, algorithms, and tools
for designing digital computing devices”).

Authors’ contribution. All authors

contributed to the research work

equally

REFERENCES

1. Hennessy J.L., Patterson D.A. A new golden age for computer architecture: Domain-specific hardware/software co-design,
enhanced security, open instruction sets, and agile chip development. In: Proceedings of the 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE; 2018. https://doi.org/10.1109/ISCA.2018.00011

2. Hennessy J.L, Patterson D.A. Computer Architecture: A Quantitative Approach. 6th ed. The Morgan Kaufmann Series in
Computer Architecture and Design. Morgan Kaufmann; 2017. 936 p.

3. Sesin I.Yu., Bolbakov R.G. Comparative analysis of software optimization methods in context of branch predication on
GPUs. Russ. Technol. J. 2021;9(6):7-15 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-6-7-15

4. Sleptsov V.V., Afonin V.L., Ablacva A.E., Dinh B. Development of an information measuring and control system for a
quadrocopter. Russ. Technol. J. 2021;9(6):26-36 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-6-26-36

5. Smirnov A.V. Optimization of digital filters performances simultaneously in frequency and time domains. Russ. Technol. J.
2020;8(6):63—77 (in Russ.). https://doi.org/10.32362/2500-316X-2020-8-6-63-77

6. Umnyashkin S.V. Osnovy teorii tsifrovoi obrabotki signalov (Fundamentals of the Theory of Digital Signal Processing).
3rd ed. Moscow: Litres; 2022. 551 p. (in Russ.). ISBN 978-5-4576-1810-7

7. Abadi M., Barham P., Chen J., et al. TensorFlow: A system for Large-Scale Machine Learning. In: Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI '16). USENIX Association; 2016. P. 265-283.

8. Nurvitadhi E., Sheffield D., Sim J., et al. Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and
ASIC. In: 2016 International Conference on Field-Programmable Technology (FPT). IEEE; 2016. P. 77-84. https://doi.
org/10.1109/FPT.2016.7929192

9. Sovetov P.N. Synthesis of linear programs for a stack machine. Vysokoproizvoditel 'nye vychislitel 'nye sistemy i tekhnologii
= High-Performance Computing Systems and Technologies. 2019;3(1):17-22 (in Russ.).

10. Aho A.V., Lam M.S., Sethi R., Ullman J.D. Kompilyatory: printsipy, tekhnologii i instrumentarii (Compilers: Principles,
Techniques, & Tools): transl. from Engl. Moscow: Vil’yams; 2018. 1184 p. ISBN 978-5-8459-1932-8 (in Russ.).
[Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, & Tools. Pearson Addison Wesley; 2007.
1035 p.]

4 https://www.xilinx.com/products/som/kria/k26¢-commercial.html. Accessed October 10, 2023.

Russian Technological Journal. 2024;12(3):37-45
43

https://www.xilinx.com/products/som/kria/k26c-commercial.html
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.32362/2500-316X-2021-9-6-26-36
https://doi.org/10.32362/2500-316X-2020-8-6-63-77
https://doi.org/10.1109/FPT.2016.7929192
https://doi.org/10.1109/FPT.2016.7929192

Method for designing specialized computing systems llya E. Tarasov,
based on hardware and software co-optimization etal.

11.

12.

13.

14.

15.

10.

11.

12.

13.

14.

15.

Pratt T.W., Zelkowitz M.V. Yazyki programmirovaniya: razrabotka i realizatsiya (Programming Languages. Design and
Implementation): transl. from Engl. St. Petersburg: Piter; 2002. 688 p. (in Russ.).

[Pratt T.W., Zelkowitz M. V. Programming Languages. Design and Implementation. Prentice Hall; 2001. 649 p.]

Tarasov L.E., Potekhin D.S., Khrenov M.A., Sovetov P.N. Computer-aided design of multicore system for embedded
applications. Ekonomika i Menedzhment Sistem Upravleniya. 2017;25(3—1):179-185 (in Russ.).

Huang S., Wu K., Jeong H., Wang C., Chen D., Hwu W.M. PyLog: An Algorithm-Centric Python-Based FPGA Programming
and Synthesis Flow. IEEE Trans. Comput. 2021;70(12):2015-2028. https://doi.org/10.1109/TC.2021.3123465

Jiang S., Pan P, Ou Y., Batten C. PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation,
Simulation, and Verification. IEEE Micro. 2020;40(4):58—66. https://doi.org/10.1109/MM.2020.2997638

Oishi R., Kadomoto J., Irie H., Sakai S. FPGA-based Garbling Accelerator with Parallel Pipeline Processing. /EICE
Transactions on Information and Systems. 2023;E106-D(12):1988—1996. https://doi.org/10.1587/transinf.2023PAP0002

CNNCOK JIUTEPATYPbI

. Hennessy J.L., Patterson D.A. A new golden age for computer architecture: Domain-specific hardware/software co-design,

enhanced security, open instruction sets, and agile chip development. In: Proceedings of the 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE; 2018. https://doi.org/10.1109/ISCA.2018.00011

. Hennessy J.L, Patterson D.A. Computer Architecture: A Quantitative Approach. 6th ed. The Morgan Kaufmann Series in

Computer Architecture and Design. Morgan Kaufmann; 2017. 936 p.

. Cecun N.10., Bonbakor P.I. CpaBHHUTENBHBINH aHAJIN3 METOMOB ONTHMH3ALUU MPOTPAMMHOTO OOeCTeueHHsI sl OOphObBI

¢ TpenuKanueil BeTBIECHWH Ha rpaduueckux mnpoueccopax. Russian Technological Journal. 2021;9(6):7-15. https://doi.
org/10.32362/2500-316X-2021-9-6-7-15

. Cnenuos B.B., Aponun B.JI., Abnaesa A.E., lunb b. PazpaboTka nHbOpMaLnOHHO-U3MEPUTEIBHON U YIIpaBILIIOLIeH cUCTe-

MbI KBajpokontepa. Russian Technological Journal. 2021;9(6):26-36. https://doi.org/10.32362/2500-316X-2021-9-6-26-36

. Cmupnos A.B. Ontumuzanus XapakTepucTUK HU(PPOBLIX (GUIBTPOB OZHOBPEMEHHO B YACTOTHOM M BPEMEHHOH 00JIacTsX.

Russian Technological Journal. 2020;8(6):63—77. https://doi.org/10.32362/2500-316X-2020-8-6-63-77

. Ymusmkue C.B. Ocnosvr meopuu yugposoi oopabomku cuenanos. 6-e n3a. M.: Litres; 2022. 551 c¢. ISBN 978-5-4576-

1810-7

. Abadi M., Barham P., Chen J., et al. TensorFlow: A system for Large-Scale Machine Learning. In: Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16). USENIX Association; 2016. P. 265-283.

. Nurvitadhi E., Sheffield D., Sim J., et al. Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and

ASIC. In: 2016 International Conference on Field-Programmable Technology (FPT). IEEE; 2016. P. 77-84. https://doi.
org/10.1109/FPT.2016.7929192

. Cogeros I1.H. CunTe3 TUHEHHBIX IPOTPAMM JIJIsl CTEKOBOM MAIIUHBL. BblCOKONPOU3600UMENbHbLE BbIUUCIUMETbHbLE CUCHIe-

mot u mexuonoeuu. 2019;3(1):17-22.

Axo A.B., Jlam M.C., Ceru P., Yneman JI.J1. Kounuramopul: npunyunsi, mexuonrocuu u uHCmpymeHmapuii: mep. ¢ annr. M.:
Bubsimc; 2018. ISBN 978-5-8459-1332-8

Ipart T., 3enkoBuit M. 3vixku npoepammuposanusi: paspabomka u pearusayusi: nep. ¢ aun. CII0.: TTurep; 2002. 688 c.
Tapacos N.E., ITorexun J1.C., XpernoB M.A., Coseros [1.H. ABromMaru3ainusi npoeKTUPOBAHUS MHOTOIIPOIIECCOPHON CHCTE-
Mbl Ha 6aze [IJIMC mis ynpaBieHns] BO BCTPanBaeMBbIX NPHIOKEHUSIX. DKOHOMUKA U MEHEONCMEHI CUCEM YAPAGIEeHUsL.
2017;25(3-1):179-185.

Huang S., Wu K., Jeong H., Wang C., Chen D., Hwu W.M. PyLog: An Algorithm-Centric Python-Based FPGA Programming
and Synthesis Flow. IEEE Trans. Comput. 2021;70(12):2015-2028. https://doi.org/10.1109/TC.2021.3123465

Jiang S., Pan P, Ou Y., Batten C. PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation,
Simulation, and Verification. IEEE Micro. 2020;40(4):58—66. https://doi.org/10.1109/MM.2020.2997638

Oishi R., Kadomoto J., Irie H., Sakai S. FPGA-based Garbling Accelerator with Parallel Pipeline Processing. /EICE
Transactions on Information and Systems. 2023;E106-D(12):1988—1996. https://doi.org/10.1587/transinf.2023PAP0002

44

Russian Technological Journal. 2024;12(3):37-45

https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/MM.2020.2997638
https://doi.org/10.1587/transinf.2023PAP0002
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.32362/2500-316X-2021-9-6-7-15
https://doi.org/10.32362/2500-316X-2021-9-6-26-36
https://doi.org/10.32362/2500-316X-2020-8-6-63-77
https://doi.org/10.1109/FPT.2016.7929192
https://doi.org/10.1109/FPT.2016.7929192
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/MM.2020.2997638
https://doi.org/10.1587/transinf.2023PAP0002

Method for designing specialized computing systems llya E. Tarasov,
based on hardware and software co-optimization etal.

About the authors

llya E. Tarasov, Dr. Sci. (Eng.), Associated Professor, Head of the Laboratory of Specialized Computing Systems,
MIREA - Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: tarasov_i@mirea.ru.
Scopus Author ID 57213354150, RSCI SPIN-code 4628-7514, http://orcid.org/0000-0001-6456-4794

Peter N. Sovietov, Cand. Sci. (Eng.), Senior Researcher, Laboratory of Specialized Computing Systems,
MIREA - Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: sovetov@mirea.ru.
Scopus Author ID 57221375427, RSCI SPIN-code 9999-1460. http://orcid.org/0000-0002-1039-2429

Daniil V. Lulyava, Junior Researcher, Laboratory of Specialized Computing Systems, MIREA - Russian
Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: lyulyava@mirea.ru. Scopus Author ID
58811698000, RSCI SPIN-code 1882-0989, http://orcid.org/0009-0009-9623-7777

Dmitry I. Mirzoyan, Senior Researcher, Laboratory of Specialized Computing Systems, MIREA — Russian
Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: mirzoyan@mirea.ru. Scopus Author D
57432027000, ResearcherlD JJE-7844-2023, RSCI SPIN-code 8135-9802, http://orcid.org/0009-0002-4703-8340

06 aBTOpPax

TapacoB Unbs EBreHbeBud, [.T.H., JOLUEHT, 3aBeayowwmii nabopatopuein cneunann3npoBaHHbIX BbIYUCIN-
TenbHbIX cuctem, PreQyY BO «MUP3A — Poccuiickunin TexHonorndeckuii yHuesepcuteT» (119454, Poccusi, Mocksa,
np-T BepHaackoro, a. 78). E-mail: tarasov_i@mirea.ru. Scopus Author ID 57213354150, SPIN-kog PUHL, 4628-7514,
http://orcid.org/0000-0001-6456-4794

CogetoB lNMeTp HukonaeBwuy, K.T.H., CTApLUNIA HAYYHbIA COTPYOHUK, NabopaTopus Cneumann3mpoBaHHbIX Bbl-
yncautenbHbix cuctem, GreQy BO «MUP3A — Poccuiickuin TexHosiormdeckmin yHuesepcuteT» (119454, Poccus,
Mockea, np-T BepHaackoro, a. 78). E-mail: sovetov@®mirea.ru. Scopus Author ID 57221375427, SPIN-kog PUHL],
9999-1460. http://orcid.org/0000-0002-1039-2429

Jlionsisa Januun BayecnaBoBuY, MaaLlnii HAy4YHblIn COTPYOHUK, NabopaTopust CneLmann3npoBaHHbIX BbIYKC-
nutenbHblx cuctem, PreQy BO «MUPIA — Poccuinckunia TexHosiorndeckumin ynmsepcuteT» (119454, Poccus, Mocksa,
np-T BepHaackoro, A. 78). E-mail: lyulyava@mirea.ru. Scopus Author ID 58811698000, SPIN-kog PUHLL, 1882-0989,
http://orcid.org/0009-0009-9623-7777

Mup3sosaH AmuTtpuii Unbud, cTaplumii HayyHbli COTPYOHUK, nabopaTtopus Crneumann3npoBaHHbIX BbIUCN-
TenbHbIX cnuctem, PreQyY BO «MUP3A — Pocculickunin TexHonorndeckuii yHuesepcutet» (119454, Poccusi, Mocksa,
np-T BepHaackoro, A. 78). E-mail: mirzoyan@mirea.ru. Scopus Author ID 57432027000, ResearcherlD JJE-7844-2023,
SPIN-koa PUHL, 8135-9802, http://orcid.org/0009-0002-4703-8340

Translated from Russian into English by Lyudmila O. Bychkova
Edited for English language and spelling by Thomas A. Beavitt

Russian Technological Journal. 2024;12(3):37-45
45

mailto:tarasov_i@mirea.ru
http://orcid.org/0000-0001-6456-4794
mailto:sovetov@mirea.ru
http://orcid.org/0000-0002-1039-2429
mailto:lyulyava@mirea.ru
http://orcid.org/0009-0009-9623-7777
mailto:mirzoyan@mirea.ru
http://orcid.org/0009-0002-4703-8340
mailto:tarasov_i@mirea.ru
http://orcid.org/0000-0001-6456-4794
mailto:sovetov@mirea.ru
http://orcid.org/0000-0002-1039-2429
mailto:lyulyava@mirea.ru
http://orcid.org/0009-0009-9623-7777
mailto:mirzoyan@mirea.ru
http://orcid.org/0009-0002-4703-8340

