Russian Technological Journal. 2024;12(3):7-24 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMbl. UHdopmaruka. IIpodaembl nHGOpMALMOHHON 0€3011aCHOCTH

UDC 004.657
https://doi.org/10.32362/2500-316X-2024-12-3-7-24 [D)sy |
EDN BNQNDI

RESEARCH ARTICLE

Evaluation of connection pool PgBouncer efliciency
for optimizing relational database computing resources

Anton S. Boronnikov @,
Pavel S. Tsyngalev,
Victor G. llyin,

Tatiana A. Demenkova

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: boronnikov-anton@mail.ru

Abstract

Objectives. The aim of the research is to investigate the possibilities of using the PgBouncer connection pool
with various configurations in modern database installations by conducting load testing with diverse real-world like
scenarios, identifying critical metrics, obtaining testing results, and interpreting them in the form of graphs.
Methods. The research utilized methods of experimentation, induction, testing, and statistical analysis.

Results. The main features, architecture and modes of operation of the PgBouncer service are considered.
Load testing was carried out on a virtual machine deployed on the basis of an open cloud platform with different
configurations of computing resources (CPU, RAM) and according to several scenarios with different configurations
and different numbers of balancer connections to the database, during which the following main indicators were
investigated: distribution of processor usage, utilization of RAM, disk space, and CPU. The interpretation of the
data obtained and the analysis of the results obtained by highlighting critical parameters are performed. On the
basis of results analysis, conclusions and recommendations are formulated on the use of a connection balancer
in real high-load installations for optimizing the resources utilized by the server on which the database management
system (DBMS) is located. A conclusion is presented on the usefulness of using the PgBouncer query balancer along
with proposed configuration options for subsequent use in real installations.

Conclusions. The degree of influence of the use of the PgBouncer connection balancer on the performance of the
system as a whole deployed in a virtualized environment is investigated. The results of the work showed that the use
of PgBouncer allows significantly optimization of the computing resources of a computing node for a DBMS server,
namely, load on the CPU decreased by 15%, RAM—by 25-50%, disk subsystem—by 20%, depending on the test
scenarios, the number of connections to the database, and the configuration of the connection balancer.

Keywords: PgBouncer, PostgreSQL, connection pool, balancer, databases, optimization, monitoring, virtual
machines, cloud technologies

e Submitted: 13.06.2023 ¢ Revised: 06.12.2023 ¢ Accepted: 09.04.2024

For citation: Boronnikov A.S., Tsyngalev P.S., llyin V.G., Demenkova T.A. Evaluation of connection pool PgBouncer
efficiency for optimizing relational database computing resources. Russ. Technol. J. 2024;12(3):7-24. https://doi.
org/10.32362/2500-316X-2024-12-3-7-24

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

© A.S. Boronnikov, P.S. Tsyngalev, V.G. llyin, T.A. Demenkova, 2024

https://doi.org/10.32362/2500-316X-2024-12-3-7-24
https://elibrary.ru/BNQNDI
mailto:boronnikov-anton@mail.ru
https://doi.org/10.32362/2500-316X-2024-12-3-7-24
https://doi.org/10.32362/2500-316X-2024-12-3-7-24

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,
for optimizing relational database computing resources etal.

HAYYHAA CTATbA

Ounenka 3¢ (PpeKTUBHOCTH 0AJTAHCHPOBIIUKA COCAMHECHMUI
PgBouncer njasi onTUMHU3ANMN BbIYUCIUTEIbHBIX
PeCYPCOB PeSAUOHHBIX 023 JAHHBIX

A.C. BopoHHuKoB @,
MN.C. UbiHranés,
B.l. UnbuH,

T.A. JemeHKOBa

MUP3A — Poccuiickunii TexHosiorndeckuii yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp An9 nepenvicku, e-mail: boronnikov-anton@mail.ru

Pe3iome

Llenun. Lenbio paboTbl SBASETCA UCCNeaoBaHNe BO3MOXHOCTEN UCMOIb30BaHNA 6anaHCUPOBLLMKA NOAKIOYEHNA
PgBouncer ¢ pa3nuyHbIMU KOHPUIypaUnsaMm B COBPEMEHHbIX MHCTaNNsaumax 6as aaHHbix (B1) nytem npoBeaeHuns
Harpy304HOro TECTUPOBAHUS C PA3NINYHBLIMU CLIEHAPUSIMU, MAKCUMaJTbHO NPUOAMXEHHBIMUY K PeanbHOWN Harpyske,
onpeneneHre KpUTUYHbIX NoKasaTtesien, NonyyeHne pesynbLTatoB TECTUPOBAHNA U MHTeprpeTaums nx B BUae rpa-
bUKOB.

MeToabl. B xoae nccnenosaHns NCnosib30BaIMCb METOAbI 9KCMNEPUMEHTA, NHAYKLUNN, TECTUPOBAHUS U CTaTUCTU-
4eCKOoro aHanmnaa.

Pe3ynbTatbl. PacCCMOTpPEHbI OCHOBHbIE BO3MOXHOCTU, apxXuTekTypa U pexumbl paboTel cepBuca PgBouncer.
[MpoBeoeHo Harpyso4yHoe TecTUpPOBaHME Ha BUPTyaslbHOW MallvHe, pa3BepHyTor Ha 6a3e OTKPbITOM 06sa4yHOM
nnaTtpopmbl, C PasINYHON KOHUrypaumen s3arpadymBaemMbiX BbIHUCIIUTESNBHLIX PECYPCOB — LLEHTPasibHOro npo-
ueccopa (CPU) u onepatmsHon namatu (RAM) 1 ncnonb3oBaHMEM HECKOJIbKUX CLLEHAPUEB C PA3HOW KOHpUrypa-
LUMen 1 pasHbiM KONIMYECTBOM MOAKIIOYEeHN 6anaHcupoBLlumka kK B. B xone tectupoBaHusa 6biiv MccnenoBaHsbl
OCHOBHbIE noKasaTenu: pacrnpenesieHne 1UCnosb30BaHUA MpoLeccopa, yTunmsaumsa onepaTtuBHON namaTu, Auc-
KOBOIO NMPOCTPAHCTBA U LLEHTPaNbHOro npoLeccopa. BoinosHeHbl nHTEpNpeTaumns nojlydeHHbIX AaHHbIX 1 aHanu3
NMOSYYEHHBIX PE3Y/IbTATOB MyTEM BbIAENEHUS KPUTUYECKUX NapamMeTpoB. CHOPMYNMPOBAHbI BbIBOALI M PEKOMEH-
Jauvm no Mcnosib30BaHUIO 6anaHCUPOBLLMKA NOAKTIOYEHNSA B PEASIbHbIX BbICOKOHArPYXEHHbIX MHCTAMNALNAX AN
ONTMMU3aLUU YTUIN3MPYEMBIX PECYPCOB CEPBEPOM, HA KOTOPOM PAaCroJioXeHa cucTema ynpasneHnsa 6a3amMm oaH-
HbiX (CYBA). ChopMnpOoBaHO 3ak/o4eHME O MONE3HOCTU UCMONb30BaHMS BanaHCMpPOBLLMKA 3anpocoB PgBouncer
1 NPeaoXeHbl BapmaHTbl KOHOUrypauum ang nocaenyowero NCnonb30BaHUs B peasibHbIX MHCTaNAUUSX.
BbiBOoAbl. MiccnenoBaHa cteneHb BANSHUS MCNOJSb30BaHMA GanaHCUPOBLLUYKA coeanHeHnin PgBouncer Ha npouns-
BOOUTENBHOCTb CUCTEMbI B LIESIOM, Pa3BEPHYTOW B BUPTYaInM3MpPOBaHHOM cpeae. PedynbTtathl paboThl nokasanu,
4YTO NpumeHeHne PgBouncer NO3BONSET CYLLECTBEHHO ONTUMU3NPOBATL 3aTpadynBaeMble BblYUCIUTENbHbIE pe-
CYpPChbl BblYNCNTENLHOrO y3na nog cepeep CYB/L, a MMeHHO: ymeHblunnack Harpy3ka Ha CPU Ha 15%, Ha RAM —
Ha 25-50%, Ha ouckoByto noacuctemy — Ha 20%, B 3aBUCMMOCTM OT CLEHApPMEB TECTOB, KOIMYECTBA NOAKIOYEHN
k B, kKoHPUrypaumm 6anaHCMpoBLLMKA MOOKTIOHEHNIA.

KnioueBble cnoBa: PgBouncer, PostgreSQL, nynnep, 6anaHcupoBLLmK, 6a3a AaHHbIX, ONTUMU3ALNS, MOHUTOPWHT,
BUPTYyasbHasa MalLmHa, ob6navyHble TeXHONOrnmn

e Moctynuna: 13.06.2023 ¢ fopa6oTaHa: 06.12.2023 ¢ MpuHaTa k onyonukoeaHuio: 09.04.2024

Ana uutuposBanua: GopoHHukos A.C., UbiHranés N.C., UnbuH B.T., JemeHkosa T.A. OueHka addeKTMBHOCTN BanaH-
CUpOoBLLMKa coeamnHeHnin PgBouncer onst onTUMn3aumn BblYMCIUTENbHbLIX PECYPCOB PENSALUMOHHbIX 6@3 AaHHbIX. RUSS.
Technol. J. 2024;12(83):7—-24. https://doi.org/10.32362/2500-316X-2024-12-3-7-24

Mpo3payHocTb GUHAHCOBOM AEATEJNIbHOCTU: ABTOPbI HE UMEIOT (PUHAHCOBOM 3aMHTEPECOBAHHOCTM B NPeACTaB/IEH-
HbIX MaTepuanax uiam mMeTogax.

ABTOpPbI 325BNSAIOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.

Russian Technological Journal. 2024;12(3):7-24

mailto:boronnikov-anton@mail.ru
https://doi.org/10.32362/2500-316X-2024-12-3-7-24

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

INTRODUCTION

Databases (DB) are an integral part of modern
applications. They are used to store, manage, and process
large scopes of information. However, one of the main
problems faced by applications is managing multiple
DB connections.

Connection to a DB involves the process of
establishing a link between a client application and the
DB server. Since each client application establishes its
own connection to the DB, excessive loads on the DB
server can decrease the application performance. In
addition, each DB connection requires certain resources
such as memory and CPU time. If a significant number
of client applications establish a DB connection at the
same time, it may overload the server and degrade the
application performance.

In order to solve this problem, the DB management
system (DBMS) can be optimized by configuring its
parameters at the infrastructure startup stage [1-3]
or using third-party services such as DB connection
balancers. Such tools manage client connections in such
a way as to maximize the use of DB server resources,
thus improving application performance. There are
several types of balancers [4]. This article discusses the
main features of a tool that belongs to the application-
level balancing type known as a connection pooler or
pooler.

1. DB QUERY PATH

Implementation of the pooler leads to significant
changes in working with the DB. In order to notice them,
it is necessary to study the standard query passing route.
In the usual client-server architecture, the following
standard interaction principle takes place as shown in
Fig. 1.

Client
-
Client PostgreSQL
Server
Client

Fig. 1. Regular client-server connection’

1 PostgreSQL. https://www.postgresql.org/. Accessed April 18,
2023.

When a new session is established, the client
application requests a connection to the server and
goes through the authentication process. The server
responds by creating a separate system process to
handle the connection and session operation. The
initialization of the session state is based on various
configuration parameters defined at server, DB, and
user levels. Within a single session, the client performs
the required operations. The operation continues until
the client terminates the session by disconnecting.
After the session is terminated, the server destroys
the corresponding system process responsible for
processing this session.

The main disadvantages of a regular client-server
connection can be highlighted as follows:

1) creating, managing and deleting connection
processes takes time and consumes resources;

2) as the number of connections on the server increases,
so does the need for resources to manage them. In
addition, memory utilization on the server increases
as clients perform operations;

3)since a single session serves only one client,
clients can change the state of a DB session and
expect those changes to persist in subsequent
transactions.

When using a pooler, clients connect to the
puller that has already established a connection to
the server (Fig. 2). This changes the model of the
standard connection principle to a client-proxy-server
architecture.

Client PostgreSQL

Server

Cl|ent

Fig. 2. Client-proxy-server connection

Now the connection of a client to a server is
independent of the lifetime of the connection and the
process on the server. The pooler is responsible for
accepting and managing connections from the client,
establishing and maintaining connections to the server,
and assigning server connections to client connections.

PostgreSQOL [5-9] is an excellent choice in terms
of the quality of the DBMS. One of the main factors
is PostgreSQL’s status as open-source software.
There are several decent PostgreSQL connection

Russian Technological Journal. 2024;12(3):7-24

https://www.postgresql.org/

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

poolers [6, 10-12] such as PgBouncer?, Pgpool-IP, and
Odyssey*. In this paper, the main features, architecture,
and modes of operation of PgBouncer are considered.

2. PgBouncer CONNECTION POOL

PgBouncer is a pooler that allows you to manage
connections to a PostgreSQL DB. It works as a proxy
server that processes DB connection requests and
redirects them to the appropriate server. PgBouncer can
be installed on the same machine as PostgreSQOL or on
a separate one.

This pooler widely used in many PostgreSQL-based
applications is for solving various tasks related to
performance, scalability and security. This balancer is
actively used in products of such large companies as
Alibaba’, Huawei®, Instagram’ (banned in the Russian
Federation), Skype®, as well Russian companies® such as
Yandex!?, Avito!!, Sberbank'?, Gazpromneft!3, etc.

One of the main tasks of PgBouncer is connection
management. This allows the creation of connection
pools that can be used by multiple clients, which
reduces load on the DB server and improves application
performance.

2.1. Architecture

In the official documentation of PgBouncer
there is no description of the balancer architecture.
After analyzing the libraries of this pooler and
investigating its functionality, we propose a PgBouncer
balancer architecture based on our own reverse-
engineering (Fig. 3).

Listener plays an important role in handling client
connections to PostgreSOL DB. Providing an entry
point for client connections (called a socket), it acts as
an intermediary between the client and the server. The
listener still includes a protocol that defines the format

2 Official documentation PgBouncer. https://www.pgbouncer.
org/. Accessed April 02, 2023.

3 Pgpool Wiki. https://pgpool.net/mediawiki/index.php/
Main_Page. Accessed April 15, 2023.

4 Odyssey — Yandex Technologies. https://yandex.ru/dev/
odyssey/ (in Russ.). Accessed April 15, 2023.

> https://www.alibaba.com/. Accessed April 15, 2023.

6 https://www.huawei.com/. Accessed April 15, 2023.

7 https://www.instagram.com/. Accessed April 15, 2023.

8 https://www.skype.com/ru/ (in Russ.). Accessed April 15,
2023.

9 Why the largest companies in Russia and the world choose
Postgres. Results of PgConf.Russia 2017. http://www.interface.
ru/home.asp?artld=39028 (in Russ.). Accessed April 10, 2023.

10 https://yandex.ru/ (in Russ.). Accessed April 15, 2023.

1 https://www.avito.ru/ (in Russ.). Accessed April 15, 2023.

12 http://www.sberbank.ru/ (in Russ.). Accessed April 15, 2023.

13 https://www.gazprom-neft.ru/ (in Russ.). Accessed April 15,
2023.

of data exchange between the client and the server
over the socket. PgBouncer uses the same protocol as
PostgreSQL, but has its own additional extensions and
commands.

Authentication provides verification of the client’s
authenticity when an attempt is made to connect to it.
Various methods such as md5, trust, plain, cert, etc. are
supported.

! PgBouncer \

Listener Autentication

Routing Connection Pooler

Connection Manager Query Queue

Cache Log

Configuration File

Fig. 3. PgBouncer architecture

Routing determines the modes of pooler operation.
There are four types: session pooling, transaction
pooling, statement pooling, and combined pooling. They
are discussed in more detail in Section 2.2.

Connection pool is a set of available connections
that can be used by the client to perform operations in
the DB. If a connection is free, the client can take it from
the pool. If there is no connection, the pooler can create
anew one.

Connection manager is responsible for managing
the lifecycle of each connection in the pool. It tracks
the state of each active connection to the DB, including
opening, closing and reusing free connections.

Query queue manages queries coming from
clients when all connections are busy. This ensures
fair processing of queries and avoids DB blocking
or overloading. The query queue has customizable
parameters that enable controlling the number and
waiting time of queries in the queue.

Cache is an additional component that stores the
results of previous queries so that when a query is
executed again, the results are returned directly from
the cache instead of accessing the DB. Cache saves
time and resources for query execution, especially if
the queries are often repeated and their results do not
change.

Eventlogkeepsarecord of events such as establishing
and breaking connections, executing requests and other
operations, etc. It can be used to analyze and track
the operation of the pooler, detect various errors and

Russian Technological Journal. 2024;12(3):7-24

10

https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://pgpool.net/mediawiki/index.php/Main_Page
https://pgpool.net/mediawiki/index.php/Main_Page
https://yandex.ru/dev/odyssey/
https://yandex.ru/dev/odyssey/
https://www.alibaba.com/
https://www.huawei.com/
https://www.instagram.com/
https://www.skype.com/ru/
http://www.interface.ru/home.asp?artId=39028
http://www.interface.ru/home.asp?artId=39028
https://yandex.ru/
https://www.avito.ru/
http://www.sberbank.ru/
https://www.gazprom-neft.ru/

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

Table 1. Comparison of PgBouncer operating modes

Comparison of PgBouncer Isolation . .
. . Connection pool Capacity
operating modes of transactions
Session mode Full Assigned for the duration Decrease due to creation
of the session and deletion of the connections
Transaction mode Full Assigned for the duration Decrease due to creation
of the transaction and deletion of the connections
. Assi for th ti 1 1
Statement mode Partial ssigned for the duration ncrease due o reuse
of the query of the connections
. D i th, Bal it
Combined mode Balance epending on the type alance beWeen capacity
of the query and insulation

warnings, monitor performance, and perform debugging
activities.

This is followed directly by the configuration file,
where settings can be configured and specified for all the
architecture components discussed in this section.

When these elements are properly configured,
they ensure efficient use of server resources, improve
performance and performance of applications that
use PostgreSQOL.

2.2. Operating modes

Operating modes determine how the pooler will
manage connections. In different modes, PgBouncer
can have different effects on system performance and
functionality.

Session mode, representing the standard approach,
consists of assigning a single server connection to each
client for as long as the client remains connected. When
a client disconnects, this server connection is returned
back to the pool. This is the default method of operation.
The mode can be useful for applications that have many
client requests that are not frequent, but are executed in
long sessions.

Transaction mode means that the client is assigned
a connection to the server only for the duration of the
transaction. When transaction completion is detected,
PgBouncer returns the connection back to the pool. This
mode can be useful in applications that have many short
transactions.

Statement mode is the most aggressive approach,
which assumes that the connection to the server will
be returned to the pool immediately after each request
is completed. In this mode, transactions with multiple
statements are prohibited. This mode can be useful for
applications that have many repetitive queries or use
queries with the same structure.

Combined mode is an approach that combines
transaction and operator modes. PgBouncer will use

statement mode for queries that do not start a new
transaction, and transaction mode for queries that do
start a new transaction. This method can be useful for
applications that run many repetitive queries and require
transactions. It can also be effective for applications
that have a large number of unique queries, but where
transactions may be repeated.

PgBouncer operation modes were compared
according to the following criteria: transaction isolation,
connection pooling and performance. The results of the
study are shown in Table 1.

2.3. Features of use

Some key features of PgBouncer will be emphasized
in order to avoid mistakes when working with it.

The first key feature is the limitation on query
types. Some queries, such as DB creation or deletion,
cannot be routed through the pool and must be executed
directly on the PostgreSQOL server. It is also worth
considering the configuration of the DBMS itself, since
some parameters, such as those related to caching, may
affect the performance of the pooler itself. In this case,
additional configuration of the PostgreSQOL server will
be required for optimal operation in conjunction with the
pooler.

In order to avoid pooler overloading, it is necessary
to control the size of the balancer connection pool
otherwise overflow may occur to exhaust system
resources such as central processing unit (CPU)
and random-access memory (RAM) utilization. An
overflowed pool can cause performance degradation or
application failures.

When configuring extensions, it should be taken into
account that some of them may not be compatible with
PgBouncer, as they may create their own connections to
the PostgreSQL server, which will harm the performance
of the system as a whole. When using this balancer, it is
also necessary to ensure that it is compatible with other

Russian Technological Journal. 2024;12(3):7-24

11

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

tools and technologies used in the application, such as
the ORM-framework ! used.

Version support will be required when using with
PgBouncer, since some versions of the pooler may not
support the latest versions of PostgreSQL.

3. TESTING AND EVALUATION
OF THE RESULTS OBTAINED

Testing was conducted on two virtual machines (VM)
with the following characteristics:

e VM with DBMS: 8 wvirtual central processing
units (VCPU), 16 GB of random access
memory (RAM), external SSD 32 GB (under system),
500 Mbps, 320 IOPS!, 120 GB (under DB), 500 Mbps,
1200 IOPS, Ubuntu 22.04 operating system (OS);

e VM with the pooler: 2 vCPU, 4 GB RAM, 120 GB
SSD external drive, 500 Mbps, 1200 IOPS, Ubuntu
22.04 OS.

In order to collect and display metrics, the software
pgwatch2', Grafana'’ and PostgreSQL were used.
These were run in a docker container [13—15]. 2 GB of
RAM, 1 vCPU was allocated for system performance.
During testing, the performance of the test bench VMs
was increased, since some tests utilized all available
resources.

Testing was performed using several connection
scenarios: directly to the DB and through the pooler.
The pooler was set to session mode. The scenarios
themselves included a gradual increase in the number of
connections (100, 500, 1000) and query complexity with
an active session size of 10 min.

The queries were of the following nature:

e simple queries to an empty DB;

e crud queries (create, read, update, delete) with
application of temporary tables to the DB containing
test data.

The following metrics were highlighted for the analysis:

1. CPU utilization distribution:

e idle—free resources;

e user—expenditures on the use of the system by users;

system—system expenditures;
iowait—waiting on the disk subsystem;
other—other CPU operations;
irqgs—CPU core interruptions.

. Utilization of CPU.

. Utilization of RAM.

. Utilization of the disk subsystem (disk).

A WD o 0 0 o

3.1. Read queries

As apart of this testing, a read request to the DB (obtaining
the DBMS version) was performed in parallel.

This test was chosen to evaluate the session’s impact
on DB resources as fairly as possible (it is most strongly
reflected in RAM utilization).

Metrics for the direct connections with simple
queries are depicted in Fig. 4 (100 connections),
Fig. 5 (500 connections), Fig. 6 (1000 connections),
where the time segments shown in the graph reflect the
change of parameters during the testing period in real
time in the hours:minutes format.

Metrics for connections via pooler with simple
queries are shown in Fig. 7 (100 connections),
Fig. 8 (500 connections), Fig. 9 (1000 connections).

During testing, an anticipated strong impact of idle
connections on the resources reserved for the DB was
noted.

If CPU and disk utilization can be attributed to the
error and influence of external factors, RAM should be
considered in more detail. The following utilization was
obtained for the tests:

1) 100 connections, 230 MB (2.3 MB/connection);
2) 500 connections, 1180 MB (2.36 MB/connection);
3) 1000 connections, 1810 MB (1.81 MB/connection).

RAM utilization rates when tested via pooler were
extremely low and did not fluctuate depending on the
number of connections, remaining at an extremely low
level (~30 MB on all tests).

It is also worth noting that a single connection had
the greatest impact on the resources consumed when
there were 500 parallel connections.

14 Object relation mapping is a programming technology that connects DBs with the concepts of object-oriented programming

languages, creating a virtual object DB.
15 JOPS—input/output operations per second.

16 PGWatch: Optimized PostgreSQL monitoring. https://pgwatch.com. Accessed April 15, 2023.

17 Grafana Labs. https://grafana.com. Accessed April 12, 2023.

Russian Technological Journal. 2024;12(3):7-24

12

https://pgwatch.com
https://grafana.com

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,

for optimizing relational database computing resources etal.
CPU utilization distribution CPU utilization
% - idle %
100 — e user 8
80 — system
= jowait 6
60 = other
40 - irgs 4
20 2
0
13:05 13:10 13:15 13:20 13:25 13:30 Time 13:05 13:10 13:15 13:20 13:25 13:30 Time
RAM utilization Disk utilization
0,
GB == available %
3.15 40
3.10 30
3.05
20
3.00
2.95 10
2.90 0
13:05 13:10 13:1513:20 13:25 13:30 Time 13:05 13:10 13:15 13:20 13:25 13:30 Time

Fig. 4. Performing load testing with simple queries with 100 connections directly to an empty DB

CPU utilization distribution CPU utilization
% — idle %
100 R E e S user 15
80 = system
= ijowait qq
60 = other
40 = irgs 5
20
0 ———— 0
09:20 09:25 09:30 09:35 09:40 Time 09:20 09:25 09:30 09:35 09:40 Time
RAM utilization Disk utilization
GB = available %
40
3.00
30
2.50 20
2.00 10
0
09:20 09:25 09:30 09:35 09:40 Time 09:20 09:25 09:30 09:35 09:40 Time

Fig. 5. Load testing with simple queries with 500 connections directly to an empty DB

Russian Technological Journal. 2024;12(3):7-24

13

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,

for optimizing relational database computing resources etal.
CPU utilization distribution CPU utilization
% — idle %
100 P user 10
80 — system g
= jowait
60 = other 6
40 = irgs 4
20 2
0
10:50 10:55 11:00 11:05 11:10 Time 10:50 10:55 11:00 11:05 11:10 Time
RAM utilization Disk utilization
GB — available %
40
3.00
30
2.50
2.00 20 -
1.50 10
1.00 0
10:50 10:55 11:00 11:05 11:10 Time 10:50 10:55 11:00 11:05 11:10 Time

Fig. 6. Performing load testing with simple queries and 1000 connections directly to an empty DB

CPU utilization distribution CPU utilization
% = idle %
100 user 20
50 W — system 5
= jowait
60 — other qg
40 - irqs
20 s
0 = 0
00:10 00:20 00:30 00:40 Time 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 Time
RAM utilization Disk utilization

GB = available %
40

3.12
30

3.1
20

3.10
3.09 10
0

00:10 00:20 00:30 00:40 Time 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 Time

Fig. 7. Load testing with simple queries with the number of 100 connections through the pooler to an empty DB

Russian Technological Journal. 2024;12(3):7-24
14

Evaluation of connection pool PgBouncer efficiency

Anton S. Boronnikov,

for optimizing relational database computing resources etal.
CPU utilization distribution CPU utilization
0,
% =idle %
100 user 10
80 =system 8
=iowait
60 =other 6
40 =irgs 4
20 2
0)
01:20 01:25 01:30 01:35 Time 01:20 01:25 01:30 01:35 Time
RAM utilization Disk utilization
- %
== available
GB 40
3.12
30
3.1
20
3.10
3.0 10
01:20 01:25 01:30 01:35 Time 01:20 01:25 01:30 01:35 Time

%
100

80
60
40
20

GB
3.1
3.10
3.09
3.08

Fig. 8. Performing load testing with simple queries with the number of 500 connections through the pooler
to an empty DB

CPU utilization distribution

= idle %

W user
= gystem 15

01:40 01:45 01:50 01:55 02:00 Time

01:40

01:45

RAM utilization

01:50

01:55

= jowait

= other 10
= irgs

5
— available %
21.2
21.1
21.0
20.9

02:00 Time

01:40

01:40

CPU utilization

01:45

01:50

Disk utilization

01:45

01:50

01:55

01:55

02:00 Time

02:00 Time

Fig. 9. Carrying out load testing with simple queries with 1000 connections through the pooler to an empty DB

Russian Technological Journal. 2024;12(3):7-24

15

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

3.2. Complicated queries

Within the framework of this testing, a query
for writing to the DB, creating, filling, deleting
a table (2 columns, 1000000 rows, with the fext value
type) was executed in parallel.

This test was chosen because it allows us to evaluate
possible CPU and disk resource savings when using the
request pooler.

CPU utilization distribution

The metrics for direct connections by complex
queries are depicted in Fig. 10 (100 connections),
Fig. 11 (500 connections),and Fig. 12 (1000 connections),
where the time segments shown in the graph represent
the change in metrics during the testing period in real
time in the hours:minutes format.

Metrics for connections via pooler with complex
queries are shown in Fig. 13 (100 connections), Fig. 14
(500 connections), and Fig. 15 (1000 connections).

CPU utilization

% = idle %
100 user
80 = system 15
== jowait
60 = other 10
40 = irqs
5
20
AL
16:40 16:45 16:50 16:55 17:00 17:05 17:10 Time 16:40 16:45 16:50 16:55 17:00 17:05 17:10 Time
RAM utilization Disk utilization
GB .
3.95 available %
3.00 40
275 35
2.50 30
2.25 25
2.00 20
16:40 16:50 17:00 17:10 Time 16:40 16:45 16:50 16:55 17:00 17:05 17:10 Time
Fig. 10. Load testing with complicated queries using temporary tables
and the number of 100 connections to the DB filled with test data
CPU utilization distribution CPU utilization
% idle %
100 user 20
system
80 iowait 10
60 pther 10
40 irqs
20 5
0
19:20 19:25 19:30 19:35 19:40 19:45 19:50 Time 19:20 19:25 19:30 19:35 19:40 19:45 19:50 Time
RAM utilization Disk utilization
GB .
= available
16.00 %
30
14.00
20
12.00
10
10.00
19:20 19:25 19:30 19:35 19:40 19:45 19:50 Time 1920 19:25 1930 19:35 19:40 19:45 19:50 Time

Fig. 11. Load testing with complex queries using temporary tables
and 500 connections to the DB filled with test data

Russian Technological Journal. 2024;12(3):7-24

16

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

Testing demonstrated a significant influence
of parallel operations on DB resources along with
the possibility to minimize them by means of pool
tools.

Let us examine RAM utilization at different number
of direct connections to the DB:

1) 100 connections, 1125 MB (11.25 MB/connection);
2) 500 connections, 5900 MB (11.8 MB/connection);
3) 1000 connections, 10250 MB (10.25 MB/connection).

CPU utilization distribution

RAM utilization rates when tested via the pooler
were extremely low and did not fluctuate depending on
the number of connections, remaining at an extremely
low level (~250 MB on all tests).

As compared to the previous test, utilization jumps
can be observed for all the monitored metrics. The
500-connection test also shows the highest memory
utilization per single connection, just like in the
previous case. The test for 1000 connections shows

CPU utilization

% = idle %
100 user 20
= system
80 - jowait 15
60 -
_other 10
40 = irgqs
20 S
0
19:00 19:05 19:10 19:15 19:20 Time 19:00 19:05 19:10 19:15 19:20 Time
RAM utilization Disk utilization
GB = available %
15.00 60
12.50
40
10.00
7.50 20
5.00
0
19:00 19:05 19:10 19:15 19:20 Time 19:00 19:05 19:10 19:15 19:20 Time
Fig. 12. Load testing with complex queries using temporary tables
and 1000 connections to the DB filled with test data
CPU utilization distribution CPU utilization
% - idle %
0% — - user 8
80 = gystem
= jowait 6
60 = other
40 = irgs 4
20 2
0 0
09:50 09:55 10:00 10:05 Time 09:50 09:55 10:00 10:05 Time
RAM utilization Disk utilization
GB == available
7.30 %
6.5
7.20
6.0
7.10
7.00 5.5
09:50 09:55 10:00 10:05 Time 09:50 09:55 10:00 10:05 Time

Fig. 13. Load testing with complex queries using temporary tables
and 100 connections through the pooler to the DB filled with test data

Russian Technological Journal. 2024;12(3):7-24

17

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

that the DBMS is not oriented for such a number of
connections, since the time of increased CPU and disk
system utilization is comparatively higher than the
other cases.

Optimization of disk subsystem utilization can also
be observed. This is due to the possibility of transferring

CPU utilization distribution

%

the processing of operations with temporary tables to
the power of the pooler (since it knows the result of all
queries in advance).

Reduced CPU load when testing through the pooler is
due to the fact that it takes over session management (the
most expensive process in terms of CPU resources).

CPU utilization

% = idle
100 user 6
80 = system
= jowait 4
60 = other
= irqs
40 a 5
20
0
0 23:40 23:45 23:50 23:55 00:00 00:05 Time 23:40 23:45 23:50 23:55 00:00 00:05 Time
RAM utilization Disk utilization
= available o
GB
15.60 7.0
15.50 6.5
15.40 6.0
23:40 23:45 23:50 23:55 00:00 00:05 Time 2340 23145 23550 23:55 00:00 00:05 Time
Fig. 14. Performing load testing with complex queries using temporary tables
and 500 connections through a pooler to the DB filled with test data
CPU utilization distribution CPU utilization
% - idle %
100 @— user
80 — system 6
= jowait
60 = other 4
40 = irgs
2
20
0 22:30 22:35 22:40 22:45 22:50 22:55 Time 0 22:30 22:35 22:40 22:45 22:50 22:55 Time
GB RAM utilization % Disk utilization
730 - available 7.0
7.20 6.5
7.10 6.0
7.00 5.5
22:30 22:35 22:40 22:45 22:50 22:55 Time 22:30 22:35 22:40 22:45 22:50 22:55 Time

Fig. 15. Load testing with complex queries using temporary tables
and 1000 connections through the pooler to the DB filled with test data

Russian Technological Journal. 2024;12(3):7-24

18

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,
for optimizing relational database computing resources etal.

3.3. Combined queries Metrics for direct connections by combined

queries are depicted in Fig. 16 (100 connections),

This test, which is a combination of the two previous Fig, 17 (500 connections), Fig. 18 (1000 connections),

ones, is aimed at evaluating a more general case of DB where the time segments shown in the graph represent

usage (parallel writing and reading). the change in metrics during the testing period in real
time in hours:minutes format.

CPU utilization distribution CPU utilization
%
% = idle
100 user 60
= system
80 = jowait 40
60 = other
- irqs
40 a 20
20
0 0
11:40 11:45 11:50 Time 11:40 11:45 11:50 Time
RAM utilization Disk utilization
GB
7.50 == available
%
7.00 10
6.50 8
6
6.00
11:40 11:45 11:50 Time 11:40 11:45 11:50 Time
Fig. 16. Performing load testing with combined queries using temporary tables
and 100 connections directly to the DB
CPU utilization distribution CPU utilization
% = idle
100 user %
80 = system
—iowait 40
60 == other
40 = irqs 20
20
0 0
11:55 12:00 12:05 12:10 12:15 Time 11:55 12:00 12:05 12:10 12:15 Time
RAM utilization Disk utilization
305 available %
3.00 40
275 35
2.50 30
2.25 25
2.00 20
11:55 12:00 12.05 12:10 12:15 Time 11:55 12:00 12:05 12:10 12:15 Time

Fig. 17. Performing load testing with combined queries using temporary tables
and 500 connections directly to the DB

Russian Technological Journal. 2024;12(3):7-24
19

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

Metrics for connections via pooler by combined
queries are shown in Fig. 19 (100 connections),
Fig.20(500 connections), and Fig. 21 (1000 connections).

Testing did not show any anomalies when running
simultaneous read and write tests. This shows that
testing with more real-world cases does not conflict in
any way with using the Connection Balancer.

CPU utilization distribution

Let us examine RAM utilization at different number
of direct connections to the DB:
1) 100 connections, 1200 MB (12.0 MB/connection);
2) 500 connections, 6050 MB (12.1 MB/connection);
3) 1000 connections, 11150 MB (11.15 MB/connection).
RAM utilization rates when tested via pooler were
extremely low and did not fluctuate depending on the

CPU utilization

[0) - i
% idle 20
100 user
80 T system 45
== jowait
60 = other 10
40 = irgs
20 5
M
18:40 18:45 18:50 18:55 19:00 Time 18:40 18:45 18:50 18:55 19:00 Time
RAM utilization Disk utilization
GB = available %
15.00 60
12.50
40
10.00
7.50 20
5.00
18:40 1845 18550 18:55 19:00 Time 18:40 18:45 18:50 18:55 19:00 Time
Fig. 18. Performing load testing with combined queries using temporary tables
and 1000 connections directly to the DB
CPU utilization distribution CPU utilization
% - idle
100 ~ user %
— system 8
80 - iowait
60 - Other 6
40 - irgs 4
20 2
0 0
23:30 23:35 23:40 23:45 23:50 Time 23:30 23:35 23:40 23:45 23:50 Time
RAM utilization % Disk utilization
= available 7.0
GB '
7.20 6.5
7.10
6.0
7.00 55
23:30 23:35 23:40 23:45 23:50 Time 723:30 23:35 23:40 23:45 23:50 Time

Fig. 19. Performing load testing with combined queries using temporary tables
and 100 connections through the pooler to the DB

Russian Technological Journal. 2024;12(3):7-24

20

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,
for optimizing relational database computing resources etal.

number of connections, remaining at an extremely low using the balancer will not only reduce infrastructure

level (~250 MB on all tests). costs, but also greatly optimize the system itself,
especially in terms of avoiding “huge” VM solutions
3.4. Overall assessment of the results involving several hundred gigabytes of RAM and CPU

cores for DBMS. Testing has shown that on average,
In general, the testing showed the expected results, ~ connection optimization freed 25-50% of RAM that
namely the reduction of the load on the system. Thus, was intended for the DBMS itself, taking into account

CPU utilization distribution CPU utilization
% —idle %
100 - user 6
= System
80 - iowait 4
60 = other
=- irqs
40 o
20
0 0
11:25 11:30 11:35 11:40 Time 11:25 11:30 11:35 11:40 Time
GB RAM utilization b % Disk utilization
7.30 = available 70
7.20 6.5
7.10 6.0
7.00 5.5
11:25 11:30 11:35 11:40 Time 11:25 11:30 11:35 11:40 Time
Fig. 20. Performing load testing with combined queries using temporary tables
and 500 connections through the pooler to the DB
CPU utilization distribution CPU utilization
% = idle %
100 ——~—————————— ——— user 8
- system
80 —jowait 6
60 == other
40 = irgs 4
20 2
0 0
23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 Time 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 Time
RAM utilization o Disk utilization
GB = available o
7.0
7.20
6.5
7.10
6.0
7.00 55
00:00 00:10 00:20 00:30 Time 2355 00:00 00:05 00:10 00:15 00:20 00:25 00:30 Time

Fig. 21. Performing load testing with combined queries using temporary tables
and 1000 connections through the pooler to the DB

Russian Technological Journal. 2024;12(3):7-24
21

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

Table 2. Results of load testing with simple queries

Number Method of sending queries CPU utilization, % RAM utilization, MB Disk utilization, %
of queries to the DB
) Directly to the DB 7 230 0
100 queries
Through the pooler to the DB 14 30 0
) Directly to the DB 11 1100 0
500 queries
Through the pooler to the DB 8 30 0
. Directly to the DB 8 1800 0
1000 queries
Through the pooler to the DB 11 20 1.4

Table 3. Results of load testing with complex queries

Numbfer WG gl CPU utilization, % RAM utilization, MB Disk utilization, %
of queries to the DB
Directly to the DB 25 1125 20
100 queries
Through the pooler to the DB 8 260 1.5
. Directly to the DB 16 5900 30
500 queries
Through the pooler to the DB 6 250 1.5
. Directly to the DB 19 10250 55
1000 queries
Through the pooler to the DB 6 250 1.1

Table 4. Results of load testing with combined requests

Number Method of sending queries CPU utilization, % RAM utilization, MB Disk utilization, %
of queries to the DB
. Directly to the DB 53 1200 7
100 queries
Through the pooler to the DB 8 250 1
) Directly to the DB 58 6050 32
500 queries
Through the pooler to the DB 4 260 1
) Directly to the DB 18 11150 55
1000 queries
Through the pooler to the DB 7 250 1

the size of VMs allocated for the pooler itself. If we
take pure calculations without taking into account the
resources for the balancer itself, the difference amounted
to ~30 times. At the same time, PgBouncer demonstrated
approximately the same values on different tests, which
indicates some universality of this solution as opposed
to adjusting the DBMS parameters itself.

The reduction of disk subsystem resources
utilization when using query balancers should be noted.
This optimization will help to reduce costs and decrease
the parameters of the disk intended for the DB.

We have also noticed a decrease in CPU utilization
when using the pooler. The average fluctuation was
15-20%, which can hardly be called an optimization,
since the CPU load has an instantaneous, peak character,
and the monitoring system collects data once a minute.
For this reason, there can be sharp jumps in readings.
The obtained results can be taken into account when
designing the system.

“CPU usage distribution” graphs shown in the figures
during testing display the information that the resources
are directly spent for the PostgreSQL DBMS operation
and not for other processes, for example, iowait, which
occurs at the maximum load on the disk subsystem.

Summarized data of the conducted testing are
presented in Tables 2—4.

CONCLUSIONS

The study has demonstrated the effectiveness of
PgBouncer software for managing a PostgreSOL DB
connection pool. The testing revealed an improvement
in system performance by reducing the resources
spent on PostgreSOL DBMS, namely, the load on the
CPU decreased by 15%, RAM—by 25-50%, and disk
subsystem—by 20%.

This balancer has a flexible and easy system of
customization of operation modes, allowing the most

Russian Technological Journal. 2024;12(3):7-24

22

Evaluation of connection pool PgBouncer efficiency
for optimizing relational database computing resources

Anton S. Boronnikov,
etal.

suitable option to be selected depending on the specific
needs of applications and DB settings.

Using of PgBouncer increases DB reliability and
reduces query processing time. This is especially
important for applications working with a large amount
of data that process many queries simultaneously.

Thus, PgBouncer can be concluded to represent
a useful tool for PostgreSQL DB management. It can
be successfully applied in many applications and
infrastructures where high performance, scalability and

platform and to conduct load testing to determine the
feasibility of migrating systems, as well as to conduct
testing as part of a high-availability cluster.

Authors’ contributions

A.S. Boronnikov—the research idea, conducting
research, writing the text of the article, interpretation and
generalization of the results of the research, scientific
editing of the article.

P.S. Tsyngalev—consultations on research issues,
writing the text of the article.

V.G. llyin—consultations on research issues, writing

security are required.

this architectural solution on the basis of the Russian

10.
11.
12.
13.
14.

15.

the text of the article.
T.A. Demenkova—the research
planning, scientific editing of the article.

In the future, it is planned to study ways of deploying

idea, research

REFERENCES

. Sharaev E.V. Using Algorithmic Compositions in PostgreSQL Optimization with Machine Learning Methods. Nauchnomu

Progressu — Tvorchestvo Molodykh. 2019;3:135—137 (in Russ.).

Borodin A., Mirvoda S., Porshnev S., Kulikov I. Optimization of Memory Operations in Generalized Search Trees of
PostgreSQL. In: Kozielski S., Mrozek D., Kasprowski P., Malysiak-Mrozek B., Kostrzewa D. (Eds.). Beyond Databases,
Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017.
Communications in Computer and Information Science. 2017;716:224-232. https://doi.org/10.1007/978-3-319-58274-0 19
Varakuta P.S., Kozlov R.K. Simulation of the capacity of connection pools to the PostgreSQL database. Tribuna uchenogo =
Tribune of the Scientist. 2022;5:48-53 (in Russ.).

Mukhamedina A., Aidarov A.K. Modern load balancing tools. Nauchnye issledovaniya 21 veka = Scientific Research of the
21st Century. 2021;2:105-109 (in Russ.).

Gudilin D.S., Zvonarev A.E., Goryachkin B.S., Lychagin D.A. Relational Database Performance Comparation. In: Proc.
Sth International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). March 16-18, 2023.
Moscow. https://doi.org/10.1109/REEPE57272.2023.10086872

Tupikina M.A. Comparison of database management systems SQLite, MySQL and PostgreSQL. In: Student Science for the
Development of the Information Society: collection of materials of the 8th All-Russian Scientific and Technical Conference.
Part 2; May 22-23, 2018. Stavropol: North Caucasian Federal University; 2018. P. 345-347 (in Russ.).

Vinogradova M.V., Barashkova E.S., Berezin L.S., Orelikov M.G., Luzin D.S. An overview of the full-text search system in
PostgreSQL post-relational database. E-SCIO. 2020;5(44):754-778 (in Russ.).

Pantilimonov M. V., Buchatskiy R.A., Zhuykov R.A. Machine code caching in PostgreSQL query JIT-compiler. Trudy Instituta
sistemnogo programmirovaniya RAN = Proceedings of the Institute for System Programming of the RAS (Proceedings of
ISP RAS). 2020;32(1):205-220 (in Russ.).

Portretov V.S. Comparison of PostgreSQL and MySQL. Molodezhnaya Nauka v Razvitii Regionov. 2017;1:136—139 (in Russ.).
Chauhan C., Kumar D. PostgreSQOL High Performance Cookbook. 2nd ed. Birmingham: Packt Publishing; 2017. 360 p.
Rogov E.V. PostgreSQL 15 iznutri (PostgreSQL 15 from the Inside). Moscow: DMK Press; 2023. 662 p. (in Russ.).
Novikov B.A., Gorshkova E.A., Grafeeva N.G. Osnovy tekhnologii baz dannykh (Bases of Technologies of Databases).
2nd ed. Moscow: DMK Press; 2020. 582 p. (in Russ.).

Boichenko A.V., Rogojin D.K., Korneev D.G. Algorithm for dynamic scaling relational database in clouds. Statistika i
Ekonomika = Statistics and Economics. 2014;6-2:461-465 (in Russ.).

Afanas’ev G.I., Abulkasimov M.M., Belonogov I.B. How to create a PostgreSQL Docker image on Ubuntu Linux. Alleya
nauki = Alley of Science. 2018;2(1-17):913-918 (in Russ.).

Smolinski M. Impact of storage space configuration on transaction processing performance for relational database in
PostgreSQL. In: Kozielski S., Mrozek D., Kasprowski P., Malysiak-Mrozek B., Kostrzewa D. (Eds.). Beyond Databases,
Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017.
Communications in Computer and Information Science. 2018;928:157—167. https://doi.org/10.1007/978-3-319-99987-6 12

CNUCOK JINTEPATYPbI

. lapaer E.B. Mcnonb3oBanue aJropuTMHUECKUX KOMIIO3UIUI 1Tpu ontuMu3anuu PostgreSQL meTogamu MammmHHOTO 00y-

uenust. Hayunomy Ilpoepeccy — Teopuecmeo Monoowix. 2019;3:135-137.

Borodin A., Mirvoda S., Porshnev S., Kulikov I. Optimization of Memory Operations in Generalized Search Trees of
PostgreSQL. In: Kozielski S., Mrozek D., Kasprowski P., Matysiak-Mrozek B., Kostrzewa D. (Eds.). Beyond Databases,
Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017.
Communications in Computer and Information Science. 2017;716:224-232. https://doi.org/10.1007/978-3-319-58274-0 19

Russian Technological Journal. 2024;12(3):7-24
23

https://doi.org/10.1007/978-3-319-58274-0_19
https://doi.org/10.1109/REEPE57272.2023.10086872
https://doi.org/10.1007/978-3-319-99987-6_12
https://doi.org/10.1007/978-3-319-58274-0_19

Evaluation of connection pool PgBouncer efficiency Anton S. Boronnikov,
for optimizing relational database computing resources etal.

. Bapaxyta I1.C., Koznos P.K. IMuTannoHHOE MOIEIUPOBAHUE IPOILYCKHOM CIIOCOOHOCTH IMYJIOB COSAUHEHUH K 0a3e JaHHbIX

PostgreSQL. Tpubyna yuenoeo. 2022;5:48-53.

. Myxamenuna A., AiinapoB A.K. CoBpemeHHbIe cpescTBa OallaHCUPOBKU Tieperpy3ku. Hayuusie uccnedosanus XXI eexa.

2021;2:105-109.

. Gudilin D.S., Zvonarev A.E., Goryachkin B.S., Lychagin D.A. Relational Database Performance Comparation. In: Proc. 5th

International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). March, 16-18, 2023.
Moscow. https://doi.org/10.1109/REEPE57272.2023.10086872

. Tynukuna M.A. CpaBHeHue cucteM yrpasieHus 0a3amu aanHbix SQLite, MySQL u PostgreSQL. B ¢0.: Cmydenueckas

HayKa 015 pazeumus UHGOpmMayuoHHo2o oouecmea. coopruk mamepuanos VII Bcepoccutickoll HayyHO-mexHU4ecKol KoH-
¢epenyuu. Yacts 2; 22-23 mas 2018 1. CraBpomnonb: CeBepo-Kapkaszckwuii ¢enepanbhbiii yansepcutet; 2018. C. 345-347.

. Bunorpanosa M.B., bapamkosa E.C., bepe3un 1.C., OpenuxoB M.I", JIy3un JI.C. O630p cucTeMbl IOIHOTEKCTOBOIO IIOMCKA

B MOCTpPEISIIMOHHOM 0a3e nanHbIX PostgreSQL. E-SCIO. 2020;5(44):754-778.

. HMantunumonos M.B., Byuanxuii P.A., XKyiikoB P.A. KsmupoBanue MalIMHHOTO KOAa B JIMHAMUYECKOM KOMIMJIATOpPE

SQL-3anpocoB mis CYBJI PostgreSQL. Tpyour Hncmumyma cucmemnoeo npoepammuposarusi PAH. 2020;32(1):205-220.
https://doi.org/10.15514/ISPRAS-2020-32(1)-11

. Ioptperor B.C. Cpasuenue PostgreSQL u MySQL. Monooescnasn nayka 6 pazeumuu pecuoros. 2017;1:136—139.
10.
11.
12.

Chauhan C., Kumar D. PostgreSQL High Performance Cookbook. 2nd ed. Birmingham: Packt Publishing; 2017. 360 p.
Poros E.B. PostgreSQL 15 uznympu. M.: IMK Ilpecc; 2023. 662 c.
Hosuxos Bb.A., Topmikosa E.A., I'padeesa H.I. Ocrosbi mexnonozuii 6asz oanusix. 2-e n3n. M.: JIMK Ilpecc; 2020. 582 c.

13. Boituenko A.B., Poroxun J.K, Kopuees J[.I. Anroput™ JHHAMHUYECKOTO MAaCIITAOMPOBAHMS PEISIIMOHHBIX 0a3 JaHHBIX
B 001auHbIX cpenax. Cmamucmuxa u Ixonomuka. 2014;6-2:461-465.

14. Adanacwe I'.U., AbynkacumoB M.M., benonoros U.b. Meroauka cozganusi Docker-o6pa3za PostgreSQL B cpene Ubuntu
Linux. Annes nayxu. 2018;2(1-17):913-918.

15. Smolinski M. Impact of storage space configuration on transaction processing performance for relational database in
PostgreSQL. In: Kozielski S., Mrozek D., Kasprowski P., Malysiak-Mrozek B., Kostrzewa D. (Eds.). Beyond Databases,
Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017.
Communications in Computer and Information Science. 2018;928:157-167. https://doi.org/10.1007/978-3-319-99987-6 12

About the authors

Anton S. Boronnikov, Postgraduate Student, Senior Lecture, Computer Engineering Department, Institute of
Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia).
E-mail: boronnikov-anton@mail.ru. RSCI SPIN-code 8232-6328, https://orcid.org/0009-0008-4911-6609

Pavel S. Tsyngalev, Student, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454
Russia). E-mail: pstsyngalev@mail.ru. https://orcid.org/0009-0007-6354-1364

Victor G. llyin, Student, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454
Russia). E-mail: vgilyin@yahoo.com. https://orcid.org/0009-0001-0304-3052

Tatiana A. Demenkova, Cand. Sci. (Eng.), Associate Professor, Computer Engineering Department,
Institute of Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: demenkova@mirea.ru. Scopus Author ID 57192958412, ResearcherlD AAB-3937-2020,
RSCI SPIN-code 3424-7489, https://orcid.org/0000-0003-3519-6683

06 aBTOpax

BopoHHukoB AHTOH CepreeBud, acnvpaHT, CTaplunii npenogasaTenb, kadenpa BbIHUCIUTENBHON TEXHU-
K1, MHCTUTYT nHdopMaumoHHbIx TexHonorunin, re0yY BO «MUP3A — Poccuiickuii TEXHONOMMYECKUIA YHUBEPCU-
TeT» (119454, Poccus, Mockea, np-T BepHaackoro, A. 78). E-mail: boronnikov-anton@mail.ru. SPIN-kog PUHLL
8232-6328, https://orcid.org/0009-0008-4911-6609

LbiHranée Naeen CepreeBud, ctyaeHt, Pre0Y BO «<MUPI3A — Poccuiickinia TEXHONOMMHYECKNIA YHUBEPCUTET»
(119454, Poccus, Mocksa, np-T BepHagckoro, a. 78). E-mail: pstsyngalev@mail.ru. https://orcid.org/0009-0007-
6354-1364

UnbnH Buktop Meopruesny, ctyneHt, Pre0yY BO «MUPOA — Poccuincknii TEXHONOMMYECKNIA YHUBEPCUTET»
(119454, Poccus, Mockea, np-T BepHagckoro, a. 78). E-mail: vgilyin@yahoo.com. https://orcid.org/0009-0001-
0304-3052

AemeHkoBa TaTbsiHa AfleKCaHApPOBHA, K.T.H., A0LEHT, kKadeapa BblYNCANTENbHON TEXHUKU, MHCTUTYT MHDOP-
MaunoHHbIX TexHonoruin, PreQy BO «MUP3A — Poccuiickuii TexHonormdecknin ynmsepcutet» (119454, Poccus,
Mocksa, np-T BepHagckoro, a. 78). E-mail: demenkova@mirea.ru. Scopus Author ID 57192958412, ResearcherlD
AAB-3937-2020, SPIN-kon PUHL], 3424-7489, https://orcid.org/0000-0003-3519-6683

Translated from Russian into English by Lyudmila O. Bychkova
Edited for English language and spelling by Thomas A. Beavitt

Russian Technological Journal. 2024;12(3):7-24
24

mailto:boronnikov-anton@mail.ru
https://orcid.org/0009-0008-4911-6609
mailto:pstsyngalev@mail.ru
https://orcid.org/0009-0007-6354-1364
mailto:vgilyin@yahoo.com
https://orcid.org/0009-0001-0304-3052
mailto:demenkova@mirea.ru
https://orcid.org/0000-0003-3519-6683
mailto:boronnikov-anton@mail.ru
https://orcid.org/0009-0008-4911-6609
mailto:pstsyngalev@mail.ru
https://orcid.org/0009-0007-6354-1364
https://orcid.org/0009-0007-6354-1364
mailto:vgilyin@yahoo.com
https://orcid.org/0009-0001-0304-3052
https://orcid.org/0009-0001-0304-3052
mailto:demenkova@mirea.ru
https://orcid.org/0000-0003-3519-6683
https://doi.org/10.1109/REEPE57272.2023.10086872
https://doi.org/10.15514/ISPRAS-2020-32(1)-11
https://doi.org/10.1007/978-3-319-99987-6_12

