Russian Technological Journal. 2024;12(2):16-27 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNndopmannonnbie cucrembl. UndopmaTuka. [IpodaemMbl nHPOPMALHOHHON 0€30TaCHOCTH

UDC 004.056
https.//doi.org/10.32362/2500-316X-2024-12-2-16-27 @)y |

RESEARCH ARTICLE

Analysis of information flow security using
software implementing business logic based
on stored database program blocks

Aleksey A. Timakov @

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: timakov@mirea.ru

Abstract

Objectives. Verification of software security is typically performed using dynamic and static analysis tools. The
corresponding types of analysis do not usually consider the business logic of the software and do not rely on data
access control policies. A modern approach to resolving this problem is to implement language-based information
flow control. Despite a large amount of research, mechanisms for information flow control in software are not widely
used in practice. This is because they are complex and impose increased demands on developers. The aim of the
work is to transfer information flow control from the language level to the level of formal verification. This will enable
the functions of controlling data integrity and confidentiality in software to be isolated into a separate task, which can
be resolved by information security analysts.

Methods. The research is based on general formal security methods for computer systems and formal verification
methods. The algorithm developed by the author for checking security specifications and resolving security violations
uses temporal logic of actions.

Results. The technology is presented as a step-by-step approach to resolving specific tasks, including the following:
designing a database (DB) for storing and processing sensitive information; analyzing dependencies and identifying
relevant sets of program blocks in the DB; generating TLA+ specifications for the identified program blocks; labeling
specifications according to global security policy rules and additional constraints; applying the specification
verification algorithm, and resolving security violations while providing recommendations for software developers.
The procedure also involves analyzing labeled data, in order to control the spread of verified program block output
values in external software modules.

Conclusions. The technology presented herein does not require developers to include redundant annotations
describing security policy rules. The function of analyzing information flows with reference to predefined access
restrictions is moved to a separate stage of the software development life cycle.

Keywords: information flows, information flow control, formal verification, language platform, security policy,
abstract semantics, non-interference

e Submitted: 11.05.2023 ¢ Revised: 03.10.2023 ¢ Accepted: 07.02.2024

Forcitation: Timakov A.A. Analysis ofinformation flow security using software implementing businesslogic based on stored
database program blocks. Russ. Technol. J. 2024;12(2):16—27. https://doi.org/10.32362/2500-316X-2024-12-2-16-27

Financial disclosure: The author has no a financial or property interest in any material or method mentioned.

The author declares no conflicts of interest.

© A.A. Timakov, 2024
16

https://doi.org/10.32362/2500-316X-2024-12-2-16-27
mailto:timakov@mirea.ru
https://doi.org/10.32362/2500-316X-2024-12-2-16-27

Analysis of information flow security using software implementing Aleksey A. Timakov
business logic based on stored database program blocks

HAYHYHAA CTATbA

Texnosiorus anajausza 0e30MaCHOCTH UH(POPMAIMOHHBIX
IOTOKOB B IPOrPaMMHOM O0eCIeYeHn M,
peajm3ymeM OM3HeC-JI0TUKY ¢ UCI0JIb30BaAHUEM
XPaHUMBIX IPOTPAMMHBIX 0JIOKOB 023 TaHHBIX

A.A. Tumakos ©

MUWP3A — Poccuiicknii TEXHOI0rm4eckuii yHmsepcutet, Mocksa, 119454 Poccus
@ AsTOp AN nepenvcku, e-mail: timakov@mirea.ru

Pe3iome

Llenn. MpoBepka cBOMCTB 6€30MacHOCTN nporpaMmmMmHoro obecnedveHus (MO) Npu NOCTPOEHUM NHPOPMALIMOHHBIX
CUCTEM C BbICOKMM YPOBHEM O0BEPUS, Kak NPaBuiO, OCYLLECTBASETCH C UCMNOJIb30BAHWEM MHCTPYMEHTOB [AMHA-
MWYECKOro 1 cTaTtuyeckoro aHann3a. COOTBETCTBYOLIME BUAbI aHanM3a OObIYHO HE YYMUTbIBAIOT OM3HEC-N0orm-
Ky MO n He onMpatTCs Ha NONMUTKKY YNPaBAeHUs OOCTYNOM K AaHHbIM. COBPEMEHHbLIM HanpaBieHNEM PELLEHUSs
npobnembl ABASETCA KOHTPOJIb MHDOPMALMOHHBIX NOTOKOB. HecMoTps Ha 60onbluoe KOMMYECTBO MPOBEAEHHbIX
1CCcnenoBaHnin, MexaHn3Mbl KOHTPONSE MHPOPMALMOHHbIX NOTOKOB B 1O noka He HaxoasaT LWMPOKOro NPUMEHEHMUS
Ha NpakTuKe, NOCKOJIbKY 00N1aal0T 3HAYUTENbHOW COXHOCTBLIO 1 ANKTYIOT NOBbILLEHHbIE TPEOOBaHNSA K pa3paboT-
ynkam. Llenbio paboTbl SBNSETCSA NePEHOC KOHTPOS MHPOPMALMOHHBLIX MOTOKOB C A3bIKOBOIO YPOBHSI HA YPOBEHb
dopmMasnbHO BepndurKaLmn 1 BolaeneHne GyHKUUM KOHTPOSS LeNIOCTHOCTU U KOHPUAEHUMANBHOCTU AaHHbIX B 10O
B CAMOCTOSATENIbHYIO 3a4a4y, PeLlaeMyto aHannTukaMm MHGopmMaLoOHHOM 6e30NacHOCTU.

MeTopbl. ViccnenoBaHue onuvpaeTcsa Ha obwme dopmasnbHble MeToabl 6€30MaCHOCTU KOMMbIOTEPHBLIX CUCTEM
1 MeToabl popManbHOW Bepudukaumm. PaspaboTaHHbIi aBTOPOM anropuTM NPoBEPKM cneundukaumi ncnonb3yeT
annapat TeMNopPasibHOW NOrMkKu AenNCTBUA.

PesynbTaTtbl. [peacrasneHa TexHonorus, npegnonararLllas nosTanHoe peLleHre YacTHbIX 3a4a4: NPoeKTMpoBa-
Hue 6a3bl AaHHbIX (BM) ona xpaHeHns n o6paboTkn noasexallen 3awmte MHpopmMaLmn, aHanm3 3aBUCUMOCTEN
1 BblOgNeHne peneBaHTHOro MHOXecTBa NporpaMmMHblx 610koB B, reHepaumsa cneundukauumin TLA+ BblaeneHHbIX
nporpaMmmHbIx 6510koB B], padmeTka cneundukauunii B COOTBETCTBUM C NpaBuiiamMmu rnobanbHOM NoanTrukm 6e3o-
MacHOCTU U JOMONIHUTESbHBIMW OrPaHNYEHNAMIN, MPUMEHEHNE anropnuTMa NPOBEPKM cneLmndukalmin n ycTpaHeHne
HapyLleHW nHBapraHTa 6€30MacHOCTU C BHECEHMEM pekoMeHaaumn ana paspabotymkos MO, npumeHeHne npo-
LLeypbl aHanM3a NoOMeYeHHbIX AaHHbIX AN151 KOHTPOIS pacnpoCTPaHeHUs BbIXOAHbIX 3HaYeHUN BEPUPULIMPOBAHHbIX
nporpaMmmMHbIx 6,10koB B, BO BHELLHMX MPOrPaMMHbIX MOAYNSIX.

BbiBoAbI. [peacTaBneHHas TEXHONOrs He TpebyeT OT pa3paboT4YMKOB BHECEHUS U3ObLITOYHbLIX aHHOTALMIA, OMUChHI-
BalOLWMX NpaBuia noamtukm 6esonacHocTn. OyHKLUMS aHann3a MHHOPMAaLMOHHbIX MOTOKOB C NMPUBSA3KOW K 3aaaH-
HbIM B CUCTEME OrpPaHNYEeHNsIM 00CTYNa BbIHOCUTCA Ha OTAENbHbIV 3Tan XXU3HEHHOrO uukia paspadoTku MO.

KnioueBble cnoBsa: MHGOPMALIMOHHBLIE MOTOKM, KOHTPOJIb MHDOPMALMOHHBIX MOTOKOB, popMasibHas Bepudmrka-
LM, a3bikoBas nnatdopma, NoamTrka 6e30MnacHoOCTn, abCcTpakTHas CeMaHTUKa, MHHOPMAaLMOHHOE HEBUSIHNE

* Moctynuna: 11.05.2023 » flopa6oTaHa: 03.10.2023 ¢ MpuHaTa k ony6nukoeaHuto: 07.02.2024

Ang untnpoBaHusa: TumakoB A.A. TexHonorus aHanusa 6e30nacHOCTM MHGOPMALMOHHBIX MOTOKOB B MPOrpaMMHOM
obecneyeHnn, peannayoLemMm 6U3HEC-10rnky ¢ UCrosib3oBaHNEM XPaHUMBbIX MPOorpaMMHbIX 6710koB 6a3 AaHHbIX. RUSS.
Technol. J. 2024;12(2):16—27. https://doi.org/10.32362/2500-316X-2024-12-2-16-27

Mpo3payHocTb GUHAHCOBOW AeaTeNbHOCTU: ABTOP HE MMeeT GMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEACTaBNEH-
HbIX MaTepuanax uam meTogax.

ABTOp 3asBNseT 06 OTCYTCTBUM KOHMIMKTA UHTEPECOB.

Russian Technological Journal. 2024;12(2):16-27
17

mailto:timakov@mirea.ru
https://doi.org/10.32362/2500-316X-2024-12-2-16-27

Analysis of information flow security using software implementing

business logic based on stored database program blocks

Aleksey A. Timakov

INTRODUCTION

The conditions for assigning automated systems to
certain protection classes are determined by evaluation
standards. At present, such security requirements are
formulated in terms of “General Criteria for Assessing
the Security of Information Technologies”! and include
functional and trust requirements [1]. Based on an
analysis of the regulatory documents,? 34 it follows that
there are three important categories of conditions to be
taken into account when determining the protection class:
control of legal trajectories and media of information
distribution’; control of hidden channels; and formal
proof of the effectiveness of the implemented protection
mechanisms or security of computing.

Atthe application level, verifying computing security is
mostdifficult. Inpractice, acomplete solution to this problem
has not been achieved, even in the context of controlling
legal information dissemination trajectories. Information
dissemination trajectories in software (software) which
conform to the rules provided by its logic can be obtained
from the control flow graph. This is provided that the control
flow has integrity. In order to ensure data confidentiality
and integrity in software, a combination of formal, semi-
formal and informal techniques is used at different stages
of system development. Some of these techniques include
dynamic and static code analysis, symbolic (cosymbolic)
execution, formal verification, and fuzzing testing.®
Additional protective measures such as randomization
of dynamic memory offsets, stack execution protection,
control-flow integrity control, among others, can be applied
at the platform and compiler level. Although the checks

I GOST R ISO/IEC 15408-1-2002. State Standard of
the Russian Federation. Information technology. Security
techniques. Evaluation criteria for IT security. Part 1. Moscow:
IPK Izdatelstvo standartov; 2002 (in Russ.).

2 Order of the Federal Service for Technical and Export
Control of Russia No. 31 dated March 14, 2014. “On Approval of
Requirements for Information Protection in Automated Control
Systems for Production and Technological Processes at Critically
Important Facilities, Potentially Hazardous Facilities, as well
as Facilities Presenting an Increased Risk to Human Life and
Health and to the Natural Environment” (in Russ.). https://fstec.
ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-14-
marta-2014-g-n-31. Accessed March 12, 2023.

3 GOST R 56939-2016. National Standard of the Russian
Federation. Information protection. Secure sofiware development.
General requirements. Moscow: Standartinform; 2018 (in Russ.).

4 GOST R 51583-2014. National Standard of the Russian
Federation. [Information protection. Sequence of protected
operational system formation. General provisions. Moscow:
Standartinform; 2018 (in Russ.).

5 Legal trajectories and environments for information
dissemination mean the trajectories and environments envisioned
by the system developer for user access to data, as well as data
exchange between users and individual system components.

6 Fuzzing testing is a software testing technique of giving
incorrect, unexpected, or random data as input to an application.

implemented using the above methods play an essential
role in ensuring information protection, they mostly do
not take into account the specifics of processed data and
business logic of the application. Formal methods which
take into account the specifics of data include methods
based on information flow control (IFC).

Any technology of computing security analysis
based on instrumentation in software (IFC) has four
commonly accepted components: alphabet of restrictive
labels; formal security conditions (semantics security);
security condition checking (enforcing mechanism)
mechanism; and implementation. The full-fledged
implementation of the instrumentation in an information
system implies coverage of all four components.

The difficulty of describing security policy at
the application and special software level is due to
two factors: firstly, the need to take into account the
access control rules implemented at the system level,
and secondly, the need to take into account additional
restrictions, usually checked directly in the program
code. Studies devoted to the description of security
policy at the level of program code can be found in [2].

Most of the studies concerning computational
security (IFC) [3-6], take the concept of information
noninterference as a basis. In the case of software,
the essence is reduced to verifying the absence of
influence of sensitive (untrusted—in the context of
integrity control) input values on sensitive (trusted—
in the context of integrity control) output values. The
necessary formal definitions will be presented below.
The literature also describes other approaches to the
definition of computational security: staticity of intruder
knowledge [7], non-inference [8], and others.

Verification methods are most often realized at
the language level in the form of separate types of
static (dynamic) analysis. The methods of static analysis
of information flows based on safe (secure type system)
type systems have gained special popularity [9, 10].
They enable the principle of safe composition to be
applied which is essential in view of the large size of the
verified code of industrial applications.

Well-known implementations of IFC
JIF [11], Joana [12], and Paragon [13].

A comprehensive review of the results already
achieved in this subject area is presented in [2—4].

Despite its long history, IFC in software remains
only a subject of academic research. The reason is
the complexity of procedures for marking source
code (source code markup) with safety (security) labels
and interpreting the results obtained (warnings).

include

1. METHODOLOGICAL BASIS

The hypothetical basis of this article is that in
order to transfer the research of instrumentation
methods (IFC) into practice, the function of analyzing

Russian Technological Journal. 2024;12(2):16-27

18

https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-14-marta-2014-g-n-31
https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-14-marta-2014-g-n-31
https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-14-marta-2014-g-n-31

Analysis of information flow security using software implementing

business logic based on stored database program blocks

Aleksey A. Timakov

information flows with reference to access restrictions
set in the system needs to be positioned at a separate
stage of the software development life cycle. This can be
achieved by turning to the theory of formal verification
of software properties.

Before proceeding to a description of the proposed
technology, we note that the idea of using the
theory of formal program verification in the field of
instrumentation (IFC) is not new. Significant results
were obtained by Clarkson et al. [14]. In particular, the
authors extended the apparatuses of linear temporal
logic (LTL) and branching time logic (computational
tree logic, CTL) by quantizers (quantifiers) over
computation trajectories. As a result, properties of
information flow security were formulated (based on the
notion of information non-influence noninterference),
which, in fact, are hyperproperties. The papers also
outline an approach to verifying these properties
using model playback (model checking tools) tools.
The essence of the approach involves a description
of the Kripke structure for the program to be verified,
description of security properties using HyperLTL
formulas—LTL extension and subsequent generation
and verification of the automata model.” Describing an
industrial application in the form of a Kripke structure
may in practice be a difficult task. The authors of this
study and the corresponding prototype themselves note
the impossibility of scaling the application area of the
developed toolkit to systems of medium complexity (the
number of states does not exceed 1000). In [15],
an interesting way of representing safety (security)
properties of information flows as standard safety
properties is proposed. This method is based on the idea
of transforming the program being checked using an
own composition and certain standard (inference rules)
rules of inference of the system of safe types (secure
type system). The limitations here include a certain
difficulty in interpreting the verification results, since the
procedure requires modification of the original program,
and the remaining labor-intensity of analyzing programs
with a large number of states.

In order to overcome the limitations of formal
verification, the present study also borrows the
previously mentioned approach based on secure type
systems. However, in contrast to [14] and [15], a
transition from operational semantics to a simplified
abstract semantics of information flows is proposed
for modeling computations. In addition, we introduce
a restriction related to developers’ compliance with
the principle of minimizing the attack surface. This,
inter alia, implies compact storage of sensitive
information (in a limited set of tables) and the desire
to clearly separate critical and non-critical services

7 1In these studies, Biichi automata are taken as a basis.

of the system. The physical separation of services
based on the levels of confidentiality and integrity
of processed data is now becoming possible. This
is due to the rejection of monolithic architecture of
business applications and the wide development of
platforms supporting modular development. The
type inference rules in our study are assumed to
be replaced by rules of abstract information flow
semantics. The rejection of operational semantics in
favor of abstract semantics in modeling computations
allows a significant reduction in the number of states
of the automata model to be achieved, and the security
properties of information flows in the form of standard
reliability (safety) properties to be formulated. All this
enables a mechanism for checking software security
properties (in the sense of information flows) to be
implemented on the basis of widely used in practice
tools for creating program specifications and playing
TLA+ and TLC models (TLA checker).

In this study, an intruder is defined as any system
user who is not an administrator. The intruder knows
the source code, can interact with the program, and
has access to output values generated at all stages of
execution and possessing a security label corresponding
to his own label. We also believe that the intruder is
unable to exploit hidden probabilistic information
channels and time channels.

2. METHOD OF INFORMATION
FLOW SECURITY ANALYSIS

As already mentioned, the purpose of the technology
developed is to detect and eliminate prohibited
information flows in the software of enterprise-level
automated information systems. The previously
mentioned MAC (IFC) implementations mainly rely on
the system of safe types (secure type systems) and static
analysis (static analysis is a separate compilation step).
Safe (secure) types in such platforms define security policy
rules along with rules of data conversion and restrictions
on the amount of allocated memory dictated by standard
types. For example, an extended variable type might look
like this: int x {Alice — Bob}. This means that the owner
of the data stored in variable x is Alice, and reading is
allowed to Alice, Bob, and any other users acting on their
behalf. Thus, the known IFC implementations already
mentioned assume that the software developer is assigned
additional functions of marking up the source code and
interpreting security warnings generated by the static
analyzer. The proposed technology is based on the idea of
automatic generation of specifications based on the source
code of database (DB) program blocks (services) with
their subsequent verification by security specialists—
analysts [16]. The stages of the analysis are presented
in Fig. 1.

Russian Technological Journal. 2024;12(2):16-27

19

Analysis of information flow security using software implementing Aleksey A. Timakov

business logic based on stored database program blocks

‘('ssy ut) 6002
SWIOJUIIIBPUR)S MOJSOIN "SUIYDUL WDISAS PAIDUOIND L0f SUONI2A1P [DIIUYIJ] “SUdISAS pajpulonn 40f spappunis Jo 12 A3ojouysa) uonvuLiofi “pIepue)s 2)eISIANU] “68-209° 7€ LSOD o1

('ssty ur) 00T ‘WHOFUILEBPUR)S (MOISOIN FUdUId0]aAdp J0 S2SDIS "SWIdISAS paIpuioIny “SuidisAs pajpuwoiny 40f spavpupis Jo 328 «(8ojouy2a) uoypuLOfi] prepuels 4eIsId] “06-1097€ LSOD

‘('ssmy un) 8102
SWLIOJUIIIBPUR)S :MOJSOIN “S21114110D [DI1UYDA] Ul 2SDGDID(“A714119D [pUoD.L2do pup juauidinba [0 Surinsua [puoyPULIOfi] “UOT)RIIP URISSNY AY) JO pIEPUL)S [BUONEN +10Z-11°0' Sy d LSOD 3

uoISJan paloalold e ul WalsAs pajewoine—AdSY
‘WB)SAS UOIleW IOl palewolne—g|y ‘924N0s elep—Sd Y00|q weiboid—gd ‘@jnpow weiboid—N\d "SisAjeue Jo sabels * | "6i4

suoneoyioads

weaboad +V1li0 jusawuoJinug 1sijeroads
sjoo} sisAjeue sisAjeue aoeu} 1sAleue Aioreioqe) X0qjoo | uonesauab juswdojeneq ubisep
apoo onels yoeqgAe|d |apow J7L aseqeleq yoleasay +V1L onjewolne pajesbaqu; 12dojpaeq aseqeleq
L) ; Jojweibord |
i [1]
cd _
Nd [BUIBIXD O}
» uonebedoud 1 -
N leusalxa Buixy 1oy soneAandinogd W | u011991100) 9p02 92IN0S
SUOIEPUBIWIODBY gQ J0 |0,ju0 - suoneoyoads 1oy welbold
T SUOIIEPUSWIWIODaY
h dad 9seqgelep Jo (vy ¥
R [rd
pPO92 8y} Bunuawnisul uo 3
| SUONE|OIA JO
< SuoiepusWILoodY uonY3LI0d pue —1
sBuIas WalsAs |0J1U0D SS800. #oeqherd |SpoiN
Hu11081109 104 SUOITEPUBWIWOODY
_ y v 3 J Aoljod Ayunoas ayi jo
€d SUEIETE] u\ | | [l L uonduosap e Buipnjoul
- uoneoyioads jo s pue ‘syuswalinbal
_;, dn Buppen ad aa uo1308304d uoIeULIOU|
|opow [BOIIO JO 18I
1L
X h
ﬁ ¢d sajouapuadap
.J suonesyoads Jo uonduosag
+V11 JO uoneisusn
 —
(. A 1
ld \
/.
suoneoyloads / sapuegd gaqio
V1L 19siuengpieo ¢
g uoneoo|y
/
apoo L +
90INn0Ss gd 9a 1 0d
L 7 v ubise N :
- - 'sep g4d wa)sAs ayj 1oy
uonduosap saba|inud sjuswalnbai
sa 109ldo Jeuonouny
«21emyos jo sishjeue (9102-6€69S H 1LSO0D) (r102-€8G1S H 1SOD ‘(,68-209° Y€ LSOO
d11els 10} SBUIIAPINY 91EMHOS 2.1Nd3s Jo Juswdojanaq «Judwdojanag a1emiyos aIndasg,, ‘606-109°VE LSOY ‘g 1L0Z-L L 0"EY H LSOD) ubisap AdSY
*uoI}0310.1d uonew.ojul,, 4 1SOH pPiepuels jeuoneu yeiq pJepue)s jeuoijeu ay} Jo sjuawalinbay pue S|V ‘9d 40 PIdy 3y} ul Spiepue)ls [euolleu Jo sjudwalinbay

Russian Technological Journal. 2024;12(2):16-27

20

Analysis of information flow security using software implementing

business logic based on stored database program blocks

Aleksey A. Timakov

The stored database program blocks (PL/SQOL
blocks) in the context of technology represent a
convenient mechanism for implementing business logic.
These modules, as a rule, are characterized by small
code size, absence of redundant calculations, and focus
on working with data.

A subset of the PL/SQOL, language is used in the
description of the technology, and its BNF-grammar!!
is presented below:

n|b

x number | x, x, | d|;d, | type
x, is object (xﬂ Xy Xg, x,) |
type x, is table of x | exception
x | procedure xp(xl,...xn) as d
begin c, [exception] c, end;|
function xfn(xl,...xn) return

x,, as d begin ¢, [exception

(values) V=

(declarations) d ::=

c,] end; |...
(expressions) e = vix|x;.x, e, Oe,lx(e,...e) | ...
(conditions) c¢nd = e, * e, | cnd, ® cnd,

(statements) ¢ ::= x:=elcpe,| xf(x1 —e,.X, =
e,) | if e then ¢ else c, | while
e do ¢ | end if | end while
| ¢, Ve, | select e,,...e, into
xl,...xn. from -xll,...xm where
cnd | insert into x, (x,...x,)
values (¢,...e,) | update x, set
x, = e,..x, = e, where cnd |
delete from x, where cnd|
throw x, .| when x,_.then c |
null| return(x_,, — e)|...

Declare d begin ¢, [exception

c,] end;

(program) p =

2.1. Database design

The first stage of analysis is database design. It
should be performed in such a way that confidential
data is placed compactly—in a limited set of tables. This
requirement does not contradict the generally accepted
principles of secure development, while at the same time
allows us to isolate critical calculations from the general
PL/SQOL code more effectively.

2.2. Allocation of arelevant set
of database program blocks and data sources

The next step is to select PL/SQL procedures and
functions which implement critical computations, i.e.,
computations over confidential data and data requiring

I Backus—Naur formisa formal system for describing syntax.

a high level of trust. An integral function of modern
databases is the management of direct and transitive
dependencies.!? 13- 14 They are used by the system
kernel to check the states of objects before their calls and
to avoid critical errors at runtime.!> Such mechanisms
work in approximately the same way. In Oracle DBMS,
in order to obtain the direct and indirect dependencies
associated with some table T, the following commands
may be executed:

execute deptree fill(‘TABLE’, ‘T);
select * from deptree.

The next three steps: generation, markup, and
application of the specification validation algorithm, are
the key and most labor-intensive ones.

2.3. Generation of TLA+ specifications

Let PC be the security label of the instruction
counter (program counter). It defines the implicit
information flows occurring in conditional if statements
and while loops; c is the current instruction in the process
associated with the user session; M is the abstract state of
the computing environment, which defines the mapping
of variables (local and global), input and output flows
to their corresponding restrictive labels; n is the total
number of user sessions. Then the execution of program
blocks in the DBMS environment can be described by
the system of state transitions (state transition system) in
the following form:

<<<PC1, c1>. . .<PCn, cn>> ,M>,

The generation of specifications describing the
behavior of such a system is performed using the
“Generation of TLA+ specifications based on database
program blocks” software tool, in accordance with the
abstract semantics of information flows [2].

As an example, consider the rule of calculating
an abstract expression and the assignment rule. The
result of an abstract expression (), is calculated as
the minimum (least) upper bound of the labels of the
operands included in it:

12 https://docs.oracle.com/cd/A84870 01/doc/server.816/
a76965/c19depnd.htm. Accessed March 12, 2023.

13 https://www.postgresql.org/docs/current/catalog-pg-depend.
html. Accessed March 12, 2023.

14 https://learn.microsoft.com/en-us/sql/ssms/object/
object-dependencies?view=sql-server-ver16.AccessedMarch 12,
2023.

15 Database program environment is not monolithic, and in
the process of database instance operation separate objects: tables,
program blocks, views, etc., may undergo changes that are critical
for the operation of other dependent objects.

Russian Technological Journal. 2024;12(2):16-27

21

https://docs.oracle.com/cd/A84870_01/doc/server.816/a76965/c19depnd.htm
https://docs.oracle.com/cd/A84870_01/doc/server.816/a76965/c19depnd.htm
https://www.postgresql.org/docs/current/catalog-pg-depend.html
https://www.postgresql.org/docs/current/catalog-pg-depend.html
https://learn.microsoft.com/en-us/sql/ssms/object/object-dependencies?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/ssms/object/object-dependencies?view=sql-server-ver16

Analysis of information flow security using software implementing

business logic based on stored database program blocks

Aleksey A. Timakov

(et, M)V p1 (e2,M) U p2
(el@eZ,M)UplI_Jp2 .

(E-OPER)

The resulting labels for comparison expressions *
and logical expressions ® are calculated in the same
way. As a result of the assignment operation, the
abstract state of the computing environment changes
according to the label of the value to be assigned and
the label of the instruction counter in the current
session:

<€,M >U p
(((-)-{PCox=e)..{..)),M)~
—><<(...)...<PC,null>...(...)),M[prUpcl. . .pcn]>

(C-ASSIGN)

Rules of type EXT are used to check information
flows associated with the elements-stocks possessing
stationary security labels. These include output
streams, attributes of relations, which can be
accessed outside the context of calls of the checked
program blocks. /nv conditions correspond to the
security (safety) invariant:

(e,M)Up (x,M)pr inv: pUpcl...penC px
() PCxme). (o)), M)
= (((-)-{PC,null)..{..)),M)

(C-ASSIGN-EXT)

Transitions between parallel sessions are
represented as equally probable. Thisis a fair assumption
for the chosen intruder model and the corresponding
information non-influence (noninterference) scheme.
They are described by global rules in the following
form:

0(d) = ci

systems (role-based, mandate-based, mandatory, etc.).
Arguments regarding the necessity of interfacing
the IFC mechanisms implemented at the level of
special (application) software and system-level access
control mechanisms, as well as a comparative analysis
of known security policy description languages that
justify the choice of Paralocks, are given in [2].

Formally, the security label P, is defined by a
first-order predicate logic formula of the following
form: £ £C/ ACyA..., here C, is a separate
expression of information flow admissibility:
Vxpsee s X (O AL ()AL C)... = Flow(u), Flow(u) is
a predicate denoting the data flow to u (u is a bound
variable or constant denoting a user), /; ... [, are
conditions (or locks) whose fulfillment is required for
Flow(u) to be true. Predicates /, ... [, can be parametric
or non-parametric. The set of possible locks depends
on the access restrictions set at the system level and
additional restrictions realized by the application
software.

As an example, let us consider the policy
requirement: “A flow to an arbitrary user x is possible
if: (a) the guest role is set for x and the w_hours lock
is open—the attempt is made during business hours,
or (b) the account role is set for x.” Logically it can be
represented as:

Vx.(w_ hours A guest(x) = Flow(x)) A

A(account(x) = Flow(x)).

For the convenience of analyzing the traces leading
to the occurrence of prohibited information flows, a
separate software tool with a graphical user interface

(PCi,ci,M) — (PCk,ck,M")

(GLOB-1)
<<<PC1,01>. . .(PCn,cn>>,M> N |

O(d) =ci
(GLOB-2) :

/in<<<PC1,c1>...<PCi ~1,¢i =1){PCk,ck)...(PCn,cn)), M)

(PCi,ci,M)~ (PCi,M)

i

({(Pcret)...(pCn.cn)) M)~ /z

2.4. Layout (Marking up)
of specification elements

Specification markup is performed on the basis of
the described security policy requirements and valid
access restrictions. In order to perform this step, the
modified language for describing security policies
Paralocks [13] is used. Its main advantages include
the ability to embed data declassification conditions
into policy expressions (or labels), flexibility, and
the ability to integrate with various access control

n<<<PC1,c1>...<PCi ~1,¢i—1)(PCi+1,ci+1)...(PCn,cn)), M) |

was developed: “Analysis of TLC model playback
traces built on the basis of TLA+ specifications of
database program blocks and leading to the violation of
the invariant of information flows security.” Labels are
displayed in accordance with the simplified notation,
in which the example under consideration appears as
follows:

X :account(x)

X : guest(x), t_expire

Russian Technological Journal. 2024;12(2):16-27

22

Analysis of information flow security using software implementing
business logic based on stored database program blocks

Aleksey A. Timakov

P, P, RCP P, P, RCP
- FALSE -
X: manager(x) X: reviewer(x) X: manager(X) X: reviewer(x) X: manager(x)
- FALSE . .
x: reviewer(x) X: manager(x) X: reviewer(X) alice:
reviewer(alice)
TRUE
X: manager(x) X: manager(x),
t_expire
X: manager(X) X: t_expire X: manager(x),
X: reviewer(x) t_expire
TRUE X: reviewer(x),
X: manager(x) bob: t_expire
manager(bob)
bob alice: t_expire T

Fig. 2. Work of the label comparison operator and calculation of the minimum upper boundary

A partial order relation = on the set of security
labels is defined as follows:

B EPR,if Ve,eP 3¢ e Cc,. (D)

From a logical point of view B C P can be
interpreted as

BED,.)

In[17] it is shown that condition (1) is necessary and
sufficient for the truth of expression (2). The comparison
of security label proposals in [17] is described
algorithmically, through a set of rules.

Figure 2, using simplified notation, shows several
examples of how the comparison operator works on a set
of labels and calculates the least upper bound.

The confidentiality level of the data used by the
program may not only decrease, but also increase in
the process of their processing. In order to take this into
account, the Paralocks language syntax is extended
with a one-parameter Unknown lock. It permits rules
of classification to be specified by content (whar)'®
for separate elements. Unknown lock can be used
in the left part (premise) of a policy clause of some
element, if in the course of calculations the policy of the
element should become stricter when some additional
information is disclosed.!” For example, a policy of the
form “Salary (of an employee) can be read only by a

16 Tt is assumed that data classification is characterized by
the same aspects: when, who, what, where, as for declassification.

17 Tt is also allowed the approach when the classification
conditions are not taken into account, i.e., the strictest policy
(account _emp(x) = Flow(x)) is initially selected for the
element. At the same time, in case of false positives (when there
are no grounds for classification), the reverse declassification
procedure is applied.

specialist of the financial department” provided that the
attributes identifying the employee are: emp id, email,
Iname, can be expressed as:

Vx.(Unknown(emp _id) A
A Unknown(email) A Unknown(Iname) =
= Flow(x)) A account _emp(x) = Flow(x).

Using TLA+ formulas, finite sets of possible
proposals of security policies (labels) and policies
themselves can be defined.!® Using the TLA PS (proof
system), we prove that the set of policies with a partial
order relation defined on it forms a complete algebraic
lattice.

2.5. Model playback and correction of
irregularities of the safety invariants

The property of progress-dependent information
noninterference (PDIN) [3] is adopted as a formal
condition of computational security. In contrast to
strict information noninterference, intermediate states
are subject to verification. No restrictions are imposed
on the values of internal variables (inaccessible for
observation).

Definition 1. Program P satisfies the progress-
dependent information noninterference property for
initial and final mappings of a set of variables to a set of
security labels M| and M,—PDIN(P) MM,y if for any
two states S, and S, of the computation environment
consisting of a low equivalence relation with respect to
some security level L at mapping M,: (a) each
computation step is accompanied by the generation of
the same observed values with respect to level L or leads
to a divergence for both states, (b) corresponding final

18 https:/github.com/timimin/plif. Accessed March 12, 2023.

Russian Technological Journal. 2024;12(2):16-27

23

https://github.com/timimin/plif

Analysis of information flow security using software implem
business logic based on stored database program blocks

enting Aleksey A. Timakov

(Start)

Y

4

Entering values for model constants:
U - set of actors; UU - set of bound variables;
EOQ - set of names of nonparametric locks;
E1 - set of names of parametric locks;

GPol - a structure describin
interfacing with the

g the hierarchy of locks (for
role model of AC);

Session_number — number of simulated sessions

Y

4

Running the model with parameters:
Deadlock: true; Invariant: ParalockslInv; Depth: 100: Maximum Length of each Trace: 100

Paralocksinv error

No

Yes

Correction of specifications by applying declassification (Ignore, openLock) or changing
the value of variables Slocks, Vpol in initial state

Y

Deadlock: true; Properties: Complnv; Dept

Running the model with parameters:

h: 100: Maximum Length of each Trace: 100

Complnv error

No

Yes

Correction of
by changing the value of

specifications
Vpol variable in initial state

\ 4
(End)

Fig. 3. Specification verification algorithm. AC—access control

states S| and S} of the computation environment consist
of a low equivalence relation with respect to some
security level L at mapping M,:

PDIN(P) 7. g, = VL.S].55.01.0, 18y =y 1 Sy A
A P(Sl)¢<S',ol>/\P(Sz)~L<S2',02>:>

~ [’
=01 X(q) 0 A S ML A

The expression 0; =4y 0, denotes the equivalence
of the observed behaviors with respect to the
level L (taking into account the declassification [18]).
Two states of the computation environment are assumed
to be in a low equivalence relation with respect to a given
privacy level L, if all pairs of similarly labeled elements
with label not exceeding L have the same values.

Condition (b) is easily verified for individual expressions
and PL/SQOL commands using the abstract semantics
rules defined for them, and is important for formal proof
of the security of computation in general under flow-
sensitive conditions and the absence of restrictions on
the number of executable blocks in one session.
Algorithm. The preliminary step of the
algorithm (Fig. 3) defines constants which specify
the number of simulated sessions, the set of user
names, the set of user (bound) variables, the set of
single-parameter locks, and the set of non-parameter
locks, etc. When the model is replayed, the main
security invariant Paralockslnv (guaranteeing that
condition (a) of Definition 1 is met for individual
commands and expressions) and the action property
ComplInv (guaranteeing that the initial and final
mappings of the set of global variables to the set of

Russian Technological Journal. 2024;12(2):16-27

24

Analysis of information flow security using software implementing

business logic based on stored database program blocks

Aleksey A. Timakov

labels are equivalent). If Paralocksinv is violated, a data
declassification procedure may be applied. It usually
implies code correction or changing the privileges of
accessing database objects. In the event of an error caused
by the violation of the ComplInv property, the label of
the corresponding global variable—table column—is
incremented in the initial state.!” Bringing the labels
of global variables to stationary values allows the
fulfillment of condition (a) of Definition 1 to be verified
for individual PL/SQL commands and expressions for
all possible initial and final abstract states M| and M,.
This, in turn, is required to prove the correctness of the
computation model checking algorithm.

Proof of convergence of the algorithm and fulfillment
of security conditions of infinite computations in an
unlimited number of user sessions in accordance with
the definition of PDIN at successful completion of the
algorithm is given in [5].

2.6. Control of distribution of output values of
verified database program blocks in external
program modules

Control of the propagation of output values of
verified procedures and functions in application software
is performed using standard taint tracking analysis by
means of tools such as CodeQL [19].

CONCLUSIONS

The key stages of the technology herein presented
have been tested on training examples. Despite a certain
loss of analysis accuracy, due to abstraction inevitable
for formal verification, the possibility of graphical
interpretation of problematic calculation traces using
a utility entitled “Analysis of TLC model playback
traces built on the basis of TLA+ specifications of
database program blocks and leading to violation of
information flows security invariant” developed with the
author’s participation significantly simplifies the task of
identifying false alarms.

The development of comprehensive methodological
recommendations on the application of data reclassifi
cation (declassification and classification) procedures
is a promising area for further research. At the present
time, the general principles of reclassification have
been formulated and a number of schemes have been
proposed. However, they require adaptation to the
described technology. It is recommended that separate
research on the last stage of the proposed procedure be
conducted.

19" Fulfillment of the CompInv property can be achieved in a finite number of iterations because the policy alphabet is a finite lattice
and the transition functions of the global variable policy computation are monotonically increasing.

Russian Technological Journal. 2024;12(2):16-27

25

Analysis of information flow security using software implementing Aleksey A. Timakov
business logic based on stored database program blocks

10.

11.

12.

13.

14.

15.

16.

REFERENCES

. Devyanin P.N., Telezhnikiv V.I., Khoroshilov A.V. Building a methodology for secure system software development on

the example of operating systems. Trudy Instituta sistemnogo programmirovaniya RAN = Proceedings of the Institute
for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(5):25-40 (in Russ.). https://doi.org/10.15514/
ISPRAS-2021-33(5)-2

. Timakov A.A. Information flow control in software DB units based on formal verification. Program. Comput. Sofi.

2022;48(4):265-285. https://doi.org/10.1134/S0361768822040053

. Hedin D., Sabelfeld A. A Perspective on Information-Flow Control. In: Software Safety and Security. 2012;33:319-347.

https://doi.org/10.3233/978-1-61499-028-4-319

. Kozyri E., Chong S., Myers A.C. Expressing Information Flow Properties. Foundations and Trends® in Privacy and Security.

2022;3(1):1-102. http://doi.org/10.1561/3300000008

. Volpano D., Smith G. Probabilistic noninterference in a concurrent language. Journal of Computer Security (JCS).

1999;7(2):231-253. http://doi.org/10.3233/JCS-1999-72-305

. Sabelfeld A., Sands D. Probabilistic noninterference for multi-threaded programs. In: Proceedings 13th IEEE Computer

Security Foundations Workshop (CSFW-13). 2000. P. 200-214. https://doi.org/10.1109/CSFW.2000.856937

. Askarov A., Chong S. Learning is Change in Knowledge: Knowledge-Based Security for Dynamic Policies. In: Proceedings

25th IEEE Computer Security Foundations Symposium (CSF 2012). 2012. P. 308-322. https://doi.org/10.1109/CSF.2012.31

. Sutherland D. A model of information. In: Proceedings of the 9th National Security Conference. 1986. P. 175-183.
. Volpano D., Irvine C., Smith G. Sound type system for secure flow analysis. Journal of Computer Security (JCS).

1996;4(2-3):167-187.

Mantel H., Sudbrock H. Types vs. PDGs in information flow analysis. In: Albert E. (Ed.). Logic-Based Program Synthesis
and Transformation. The 22nd International Symposium, LOPSTR 2012. Proceedings. Springer. 2012. P. 106—121. https://
doi.org/10.1007/978-3-642-38197-3 8

Myers A.C., Liskov B. A decentralized model for information flow control. ACM SIGOPS Operating Systems Review.
1997;5:129-142. https://doi.org/10.1145/268998.266669

Graf J., Hecker M., Mohr M., Snelting G. Checking applications using security APIs with JOANA. In: 8th International
Workshop on Analysis of Security APIs. Proceedings. 2015. P. 118—129.

Broberg N., van Delft B., Sands D. Paragon for practical programming with information-flow control. In: Shan C. (Ed.).
Programming Languages and Systems: The 11th Asian Symposium, APLAS 2013. Proceedings. Springer. 2013. P. 217-232.
https://doi.org/10.1007/978-3-319-03542-0_16

Clarkson M.R., Finkbeiner B., Koleini M., Micinski K.K., Rabe M.N., Sanchez C. Temporal logics for hyperproperties. In:
Abadi M., Kremer S. (Eds.). Principles of Security and Trust: The Third International Conference, POST 2014. Proceedings.
Berlin, Heidelberg: Springer; 2014. P. 265-284. https://doi.org/10.1007/978-3-642-54792-8 15

Terauchi T., Aiken A. Secure information flow as a safety problem. In: Hankin C., Siveroni I. (Eds.). In: Static Analysis: The
12th International Static Symposium, SAS 2005. Proceedings. Berlin, Heidelberg: Springer. 2005. P. 352-367. https://doi.
org/10.1007/11547662 24

Timakov A.A. Scenario of Information Flow Analysis Implementation in PL/SQL Program Units with PLIF Platform.
Program. Comput. Soft. 2023;49(4):215-231. https://doi.org/10.1134/S0361768823040114

[Original Russian Text: Timakov A.A. Scenario of Information Flow Analysis Implementation in PL/SQL Program Units with

17.

18.

19.

PLIF Platform. Programmirovanie. 2023;4:215-231 (in Russ.).]

Broberg N., Sands D. Paralocks: Role based information flow control and beyond. In: Proceedings of the Conference
Record of the Annual ACM Symposium on Principles of Programming Languages. 2010. P. 431-444. https://doi.
org/10.1145/1706299.1706349

Sabelfeld A., Sands D. Declassification: Dimensions and principles. Journal of Computer Security (JCS). 2009;17(5):517-548.
http://doi.org/10.3233/JCS-2009-0352

Youn D., Lee S., Ryu S. Declarative static analysis for multilingual programs using CodeQL. Software: Practice and
Experience. 2023;53(7):1472—1495. https://doi.org/10.1002/spe.3199

26

Russian Technological Journal. 2024;12(2):16-27

https://doi.org/10.15514/ISPRAS-2021-33(5)-2
https://doi.org/10.15514/ISPRAS-2021-33(5)-2
https://doi.org/10.1134/S0361768822040053
https://doi.org/10.3233/978-1-61499-028-4-319
http://doi.org/10.1561/3300000008
http://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1007/978-3-642-38197-3_8
https://doi.org/10.1007/978-3-642-38197-3_8
https://doi.org/10.1145/268998.266669
https://doi.org/10.1007/978-3-319-03542-0_16
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24
https://doi.org/10.1134/S0361768823040114
https://doi.org/10.1145/1706299.1706349
https://doi.org/10.1145/1706299.1706349
http://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1002/spe.3199

Analysis of information flow security using software implementing

Aleksey A. Timakov
business logic based on stored database program blocks

About the author

Aleksey A. Timakov, Cand. Sci. (Eng.), Associate Professor, Department of Information Security, Institute of
Artificial Intelligence, MIREA - Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia).

E-mail: timakov@mirea.ru. Scopus Author ID 57809572100, RSCI SPIN-code 3163-2170, https://orcid.org/0000-
0003-4306-789X

06 aBTOpE

TumakoB Anekceilt AHaTONbeBUY, K.T.H., JOLEHT, OOUEHT kadenpbl MHOPMaALMOHHOM B6e3onacHocTn, UH-
CTUTYT UCKyCcCTBEHHOro uHtennekta @reQy BO «MUPBA — Poccuiickunii TeXHOSIOrMYecknin yHmepcuteT» (119454,
Poccusa, Mocksa, np-T BepHagckoro, a. 78). E-mail: timakov@mirea.ru. Scopus Author ID 57809572100, SPIN-kop,
PWHLL, 3163-2170, https://orcid.org/0000-0003-4306-789X

Translated from Russian into English by Lyudmila O. Bychkova
Edited for English language and spelling by Dr. David Mossop

Russian Technological Journal. 2024;12(2):16-27

27

mailto:timakov@mirea.ru
https://orcid.org/0000-0003-4306-789X
https://orcid.org/0000-0003-4306-789X
mailto:timakov@mirea.ru
https://orcid.org/0000-0003-4306-789X

