Russian Technological Journal. 2024;12(2):7-15 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMbl. UHdopmaruka. IIpodaembl nHGOpMALMOHHON 0€3011aCHOCTH

UDC 004.042
https.//doi.org/10.32362/2500-316X-2024-12-2-7-15 (@)Y |

RESEARCH ARTICLE

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumov ': @,
Boris N. Kozeyev 2: @,

Vladimir V. Belikov 3,

Andrey V. Korolkov 3

1 SFB Laboratory, Moscow, 127083 Russia

2 ALFA-BANK, Moscow, 107078 Russia

3 MIREA — Russian Technological University, Moscow, 119454 Russia

@ Corresponding author, e-mail: studkkso0416@mail.ru, kozeev.boris2018@yandex.ru

Abstract

Objectives. This paper examines the various approaches to analyzing the impact of software changes, and suggests
a new method using function control flows. Impact analysis of software change can require the investment of a lot
of time and competence on the part of the expert conducting it. There is no detailed description of methodology for
analyzing the impact of changes and it is not established at a legislative level. The proposed method has three aims:
reducing the level of requirements for an expert when conducting software research; localizing code areas to establish
defects in information protection functions; and reducing the time spent on analyzing the impact of changes.
Methods. The study analyzes the common methods for analyzing software changes with a description of their
positive and negative sides. The possibility of analyzing changes in the control flow of software functionsis considered
as an alternative to line-by-line comparison of the full volume of source codes. Represented as tree-shaped graphs,
the control flows of different versions of the same software are subject to a merging procedure. The final result
is analyzed by an expert from the research organization.

Results. The research results of the software change analysis methods are presented with a description of their
disadvantages. A description is given of the method for change analysis using function control. This complements
existing methods, while eliminating their disadvantages. The study also analyzes the possibility of using this method
beyond the tasks defined in the introduction.

Conclusions. The use of methods to localize the most vulnerable code sections is considered one of the most
promising areas for analyzing change impact. In addition to searching for vulnerable code sections, it is important
to evaluate the effectiveness of the control flow comparison method in the analysis of source code when transferred
to another code base.

Keywords: static analysis, cryptographic protection tool, change impact analysis, graph merging, program code
analysis

© A.A. Legkodumov, B.N. Kozeyev, V.V. Belikov, A.V. Korolkov, 2024

https://doi.org/10.32362/2500-316X-2024-12-2-7-15
mailto:studkkso0416@mail.ru
mailto:kozeev.boris2018@yandex.ru

Methods for analyzing the impact of software changes Alexander A. Legkodumov,
on objective functions and safety functions etal.

e Submitted: 02.08.2023 ¢ Revised: 25.09.2023 ¢ Accepted: 05.02.2024

For citation: Legkodumov A.A., Kozeyev B.N., Belikov V.V., Korolkov A.V. Methods for analyzing the impact of software
changeson objective functions and safety functions. Russ. Technol. J. 2024;12(2):7—-15. https://doi.org/10.32362/2500-
316X-2024-12-2-7-15

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

HAYYHAA CTATb4

MeToabl aHAJIU3A BJAUAHUA U3MEHEHUN
NPOrpaMMHOI0 O0ecreYeHUs HA 1eJieBble PyHKIUU
U PyHKUUHN 0€30IACHOCTH

A.A. NNerkopymos - @,
B.H. Ko3eeB 2: @,

B.B. Benukos 3,

A.B. Koponbkos 3

1 CPE Jlabopatopus, Mocksa, 127083 Poccus

2 AJIbA-BAHK, Mocksa, 107078 Poccusi

3 MUP3A — Poccuiickuii TexHonornyeckmii yamsepceutet, Mocksa, 119454 Poccus

@ AsTop Ansa nepenvcku, e-mail: studkkso0416@mail.ru, kozeev.boris2018@yandex.ru

Pe3iome

Llenun. B ctatbe paccMaTpuBaloTCs pasivyHble NoaxoAbl K BbIMOJAHEHUIO MPoLeaypbl aHann3a BANAHNUS N3MEHEHN
nporpammHoro obecneyveHus (MO) Ha ero 6€30MacHOCTb, a TakXke NPeasoXeH HOBbIN MeTo, MPOBEAEHUS NMPOoLeay-
pbl aHaNM3a, NCMNOJb3YOLWNIA NOTOKN yNpaBneHns GyHKUMIA. AHaNn3 BIUsSHUS naMeHeHni NO — 4OoCTaTovyHO TPYAO-
emMkas npoueaypa, TpebyoLwas 3HaYNTENIbHbIX BDEMEHHbIX 3aTpaT U Hann4msg Heo6xoaMMOM KOMNETEHLMN Y NPO-
BOASILLIErO ee aKcnepTa. MeToamka NpoBeaeHNs aHanm3a BNnaHUS naMmeHeHni MO He MeeT AeTanbHOro OnNMcaHus
M He 3akpersieHa Ha 3aKkoHOAaTeNbHOM ypoBHe. Llenb npepnaraeMmoro Metoaa — CHUXEHME YPOBHS TpeboBaHMA
K 9KCnepTy, NpoBoAsLemy nccnenosanuve NO; nokanusauma obnacTtenn Koaa Ans UCCNefoBaHUA Ha Hanuyve ae-
deKkToB B PyHKUMAX, 06ecneymBaowLmx 3amTy MHGOopMaLMm; CoKpaLlleHe BpeEMEHN, 3aTpayMBaeMoro Ha npoBe-
[eHne aHann3a BANSHUA NUSMEHEHWNIA.

MeTopabl. [lpoaHann3npoBaHbl HaMboJsiee pacnpPoCTPaHEHHbIE METOAbI aHaNIN3a N3MEHEHWNIA: MOCTPOYHOE CPaBHe-
HUe, cMcTemMa yrnpasiieHUs BEPCUAMM, BbINOIHEHNE aBTOMaTU3NPOBAHHbIX TEKCTOB. [pnBeaeHO onncaHue nosao-
XUTENbHbIX N OTpULATENbHbIX CTOPOH METOA0B aHann3a. PaccMoTpeHa BO3MOXHOCTb aHann3a M3MeHEHNM NoToka
ynpasneHms yHkumamm MO kak anbTepHaTyBa CTaHOAPTHOMY NOCTPOYHOMY CPaBHEHMIO MOJIHOFO 00beMa NCX0oa-
HbIX TEKCTOB. Mocne NocTpoeHus NOTOKM YNpaBieHUs pasnunyHbix Bepcuii ogHoro MO, npeacTaBneHHble B BUOE
OpeBOBUAHbIX rpadoB, NPOXOAAaT Npoueaypy 06beanHeHNs. KOHeYHbIN pe3ynbTaT aHaIn3npyeTcs SKCNepPTOM.
Pe3ynbTathl. [1prBeaeHbl pesynbTaTbl UICCNef0BaHNSA METOO0B aHanu3a naMmeHeHuin NO ¢ onncaHMem HepgocTat-
KoB. lpencraBneHo onucaHve MeTona MpPoBeAEHUSA aHann3a U3MEHEHWUIM, UCMOJMb3YIOLLEro NOTOK YrNpaBieHus
GYHKUMN, KOTOPbIV LONOMHAET CYLLECTBYIOLLME METOObI, YCTPAHASA UX NPeACTaBIEHHbIE HegoCTaTKW. [poaHannan-
poBaHa BO3MOXHOCTb MPUMEHEHNS AAHHOIo METOAa 3a paMkaMu 3a4a4, onpeneneHHbIX BO BBEAEHUM.

Russian Technological Journal. 2024;12(2):7-15

mailto:studkkso0416@mail.ru
mailto:kozeev.boris2018@yandex.ru
https://doi.org/10.32362/2500-316X-2024-12-2-7-15
https://doi.org/10.32362/2500-316X-2024-12-2-7-15

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumoy,
etal.

BbiBoabl. VIcnonb3oBaHMe METOA0B, JIOKANN3YIOLWMX Hanbonee yasBuMble y4aCTKM KOOA, BbIOENeHO Kak OAHO
13 Hanbosiee NepcneKkTUBHbLIX HaMNpaBeHUn Ais NPoBeAeHNs aHann3a BANAHUA N3MEHeHUn. NMoMnMo noucka yss-
BUMBbIX Y4aCTKOB KOJa, BaXHOM ABNseTCA oueHka a(pPekTUBHOCTN METOAa CPaBHEHMA MOTOKOB YrpaB/ieH!s B aHa-
NIM3€e UCXOJIHOr0 KOofia Npu ero nepexoje Ha Apyrylo koaosyto 6asy.

KnioueBble cnoBa: CTaTM4eCKnin aHanna, CPeaCcTBO KPUNTOrpadmn4eCckon 3amTbl, aHaNnU3 BIAUSHUA U3MEHEHWA,

ob6beanHeHve rpadoB, aHanM3 NPorpamMMHOro koga

e Moctynuna: 02.08.2023 fopaboTaHa: 25.09.2023 * MpuHaTa k ony6nukoeaHuio: 05.02.2024

Ansa umtuposanus: JlerkogymoB A.A., Kosees b.H., bennkos B.B., Koponbkos A.B. MeToabl aHann3a BAMsHUS U3MeHe-
HUI NporpamMMHoro obecneyeHuns Ha LeneBble GYHKUMN U QyHKUMK 6e3onacHocTn. Russ. Technol. J. 2024;12(2):7-15.

https://doi.org/10.32362/2500-316X-2024-12-2-7-15

Mpo3payHocTb hpMHAHCOBOIN AeATEJNIbHOCTU: ABTOPbI HE UMEIOT PMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEACTAB/IEH-

HbIX MaTepunanax nin metogax.

ABTOpbLI 32aBNSI0T 00 OTCYTCTBUWN KOHMNNKTA MHTEPECOB.

INTRODUCTION

Software is deeply integrated into the life of modern
man. It is used in medical equipment, cars, banks,
airplanes, phones, and many other areas. Much of today’s
software interacts with the personal data (PD) of its users
ormay even be installed at a critical facility (CF) allowing
interaction with highly valuable data. Compromised CF
or theft of PD can result in infrastructure destruction,
facility control failure, theft of user resources, and other
negative consequences. The security of user data and
infrastructure requires embedding certified information
security equipment (CISE). This can be specialized
software designed to protect private information [1]. In
order to protect against new threats, new information
security features are constantly being added to the
source codes of the information security software, or
existing ones are changed. After such a change, special
examination of CISE needs to be carried out. The need
for such examination is justified by orders of the Federal
Service for Technical and Export Control (FSTEC)! and
the Federal Security Service of Russia.?

Developing and maintaining any software is
a continuous process wherein the existing functionality
is constantly changing. New functions are added, coding
styles are updated, optimizations are made, and errors
are corrected. Any change made to the software or
hardware product (hereinafter referred to as a product)
may have an unpredictable impact on a certain part or
even on all functions performed by the product. The

more changes made to the product, the more difficult it is
to trace their impact. In order to detect the changes made,
and to establish their nature and quality, a special study
called change impact analysis (CIA) [2] is conducted.
This is performed, in order to test the software used and
to determine the degree of risks associated with any
changes made.

Note: in the following text, the expert referred to is
an employee of a testing laboratory involved in the CISE
change impact analysis.

CIA is a labor-intensive procedure. A significant
amount of work is performed manually by the expert
and the developer of the protection system. Based on the
results of CIA, the aim of the expert is to obtain answers
to the following questions:

1. Which program modules and functionalities
would be affected by the specific change and how
exactly?

2. Would this implementation affect the functionality
of the application or individual application
modules?

Orders No. 55 of the Federal Security Service
of Russia and No. 66 of FSTEC the CISE state
that CIA is required after each change. In this way
a significant number of changes may accumulate
between two versions of the same product, thus
increasing the working time of the expert. Thus, the
complexity and the amount of resources spent on CIA
is additionally affected. Furthermore, a special study

! Paragraph 71 of the FSTEC Order No. 55 from April 03, 2018 “Regulation on the Information Protection Equipment Certification

System.” The paragraph of the Order specifies that the developer of an information protection system should conduct tests of the
information protection system involving a testing laboratory (in Russ.). https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-
rossii-ot-3-aprelya-2018-g-n-55. Accessed May 02, 2023.

2 Paragraph 41 of the Order of the Federal Security Service of Russia No. 66 dated February 09, 2005 “Regulations on the
Development, Production, Implementation, and Operation of Encryption (Cryptographic) Means of Information Protection (Regulations
PKZ-2005).” The paragraph specifies that all changes in the design of cryptographic information protection means and their manufacturing
technology should be coordinated by the manufacturer of cryptographic information protection means with a specialized organization
and the Federal Security Service of Russia (in Russ.). http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=102900265&backlink=1&nd
=102097894&rdk=0. Accessed May 02, 2023.

Russian Technological Journal. 2024;12(2):7-15

https://doi.org/10.32362/2500-316X-2024-12-2-7-15
https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-3-aprelya-2018-g-n-55
https://fstec.ru/dokumenty/vse-dokumenty/prikazy/prikaz-fstek-rossii-ot-3-aprelya-2018-g-n-55
http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=102900265&backlink=1&nd=102097894&rdk=0
http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=102900265&backlink=1&nd=102097894&rdk=0

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumov,
etal.

is required to be conducted by an expert from a third-
party organization, unfamiliar with the software and
organization of the internal operation of the CISE
functions. All the above constitutes the main problem
of change analysis [3].

The expert conducting CIA should be highly
qualified. They are required to possess:

e an understanding of the software operation;

e knowledge of the programming language in which
the product is developed;

¢ an understanding of the operation of libraries used in
the product implementation;

e the ability to search for changed code sections and
analyze these sections to evaluate the impact of
changes on the product functionality.

The paper considers different approaches to
conducting CIA. It presents a method aimed at
optimizing the analysis, in order to reduce the level of
requirements of the expert and reducing the time needed
to obtain meaningful results. When used in this paper,
meaningful results are understood to be finding code
changes and determining their impact on the CISE
quality characteristics.

1. ANALYSIS OF EXISTING CIA METHODS
1.1. Line-by-line comparison

Line-by-line comparison is a method by which an
expert performs a line-by-line comparison of different
source code versions of the same product, in order to
find and evaluate differences. The procedure can be
performed using software source code comparison
tools such as Beyond Compare®, Araxis Merge* or the
Linux built-in diff utility. Source code modification for
this method consists of deleting, adding, or changing
a line. In most practical cases, the changes found during
line-by-line comparison are erroneous insertions which
have no effect on functions implemented by the product.
Changes which can be classified as erroneous can be
divided as follows:

e changing the names of functions or variables;

e removing or adding line breaks;

e deleting or adding comments;

e deleting or adding code lines which do not relate
to the functionality implemented by the product (if
only not regulated by requirements).

The latter represents idle code sections [4]. This
may be code which only participates in developer
tests or operates in a certain environment. In addition
to erroneous occurrences, this method is relatively

3 https://www.scootersoftware.com/. Accessed May 02,
2023.

4 https://www.araxis.com/merge/index.en. Accessed May 02,
2023.

ineffective in situations when the product code base
switches to another programming language. In this case,
any line could be marked as mismatched by automatic
analysis tools.

The advantage of this method is that it covers the
entire volume of software source code, thus enhancing the
possibility of detecting a vulnerability when compared
to automated analysis [5]. However, line-by-line
analysis is a very costly procedure requiring a lot of
expert man-hours along with an in-depth knowledge of
the programming language.

1.2. Version control systems

In order to reduce the amount of work performed
“manually” by the expert of the research organization,
the development company may provide additional
materials together with the research materials. These
may be, for example, the history of changes generated
by a version control system. In modern practice,
a version control system is used to optimize the
organization of work of several developers on any
given product.

This system consists of software to facilitate the
management of changing information. This allows
changes in the program code to be tracked. It also
enables version control, organizing the simultaneous
work of several developers, supporting several
development directions, and ensuring their interaction.
The use of information about source code modifications
focuses the attention of the expert and simplifies its
understanding.

The advantage of this method is that the change
report can be built in automatic mode. There is no
need for a separate search of every change by using
the line-by-line comparison of two source code
versions [6]. However, this advantage contains its main
disadvantage. Due to the widespread use of version
control systems, the history of changes is available
when developing most software. Despite this, the
examination can be difficult since the quality of the
description of changes depends directly on the employee
engaged in describing the changes made during the
development. The generated report or change history
may provide incomplete or even incorrect information
which may hinder a correct CIA.

1.3. Automated tests

Another CIA method implies comparing the test
results of two versions of the same software. This
method enables checking and confirming that the logic
of functions has not changed. This method allows any
changes leading to the appearance of defects in the
operation of product functions and safety functions to
be tracked [7].

Russian Technological Journal. 2024;12(2):7-15

10

https://www.scootersoftware.com/
https://www.araxis.com/merge/index.en

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumov,
etal.

The advantages of this method include the possibility
of automating testing of a large amount of data. However,
any conclusion based on test results cannot be considered
reliable, since the developer may add undocumented
features to the software. The tests are based on known
product features and cannot signal the presence of
a software anomaly. Although automated test systems
are quite capable of finding errors when changes are
implemented incorrectly, the automated test approach
may show incomplete or incorrect results in the context
of the tests being performed [8]. Depending on the code
size being tested and the quality of changes being made,
the test set or regression testing, as another approach,
lose out to CIA in terms of the amount of resources spent
and accuracy [9]. The advantage of CIA is the possibility
of testing separate code sections while ignoring the rest
of'the protection system. Thus, testing modified software
using common practices may not be enough to ensure
compliance with security requirements. Some code
parts may require double checking, deeper analysis, or
another approach to testing [10]. The disadvantages of
the method also include additional work on creating or
modernizing tests for software, if existing functionality
has been added or removed. In rare cases, experts of
research organizations have to work with incomplete
source code, excluding the possibility of conducting
CIA using tests.

2. METHOD FOR CONDUCTING CIA

The main problem with CIA is the amount of
resources required to conduct it, whether in terms
of time required by experts or software knowledge.
In order to reduce the time required to analyze test
results or carry out line-by-line comparison, the
difference in the product logic and the relationships
between the functions of the first and second versions
of the product may be analyzed [11]. Analysis using

the proposed method is divided into the following
steps:

o performing static analysis of software to obtain data;

e building the function call sequence based on the data
obtained as a result of static analysis [12];

e representing the function call sequence in the form
of a tree-shaped graph [13];

e combining the tree-shaped graphs of two versions.
The static analysis of source codes should result in

the following data:

o data types used;

e class structures;

e function call sequence [14].

The resulting root graph representing the software
control flow shows the first function in the control flow
as a root. The graph nodes are other functions which
participate in the call chain [15]. In the process of
merging the plotted tree-shaped graphs, deleted or added
nodes are selected. Based on data obtained from the new
graph, the expert can develop hypotheses.

The following hypotheses are selected for testing:

e the node is deleted, implying the functionality is
excluded from the software or transferred to another
node;

o the node is added, implying a new functionality
has been added to the software or it is a transferred
functionality from a remote node;

e the order of node calling is changed, meaning changes
in the data processing logic have taken place.

We shall consider the following example. Figures 1
and 2 show the sequences of function calls in the form
of root graphs G, and G,. The main node is the initial
call of all other software functions. The func N node
represents any function implemented in the software,
where N is a number from 1 to the maximum possible
number of function calls.

The result of merging graphs G, and G, is shown
in Fig. 3.

main
func_1 func_2 func_3
/ \ ! !
func_4 func_5 func_6 func_7
func_8 func_9 func_10 func_11

Fig. 1. Flow of function calls for the old software version represented as a tree-shaped graph

Russian Technological Journal. 2024;12(2):7-15

11

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumov,
etal.

main

func_12

func_4

func_13

func_7

2N

func_9 func_10 func_11

Fig. 2. Flow of function calls for the new software version represented as a tree-shaped graph

main
func_1 f 2 f &
/ A \ \ 2
func_4 func_12 func_5 func_6 func_7
/ A \ / \
f 8 func_13 func_9 func_10 func_11

Fig. 3. Result of merging two graphs

Based on the data obtained, the following hypotheses
are proposed for testing:

e the func 12 node is added to the left branch.
Hypothesis: the node implements new
functionality;

o the middle branch has undergone most changes. The
func 2 and func_8 nodes are removed. Hypothesis:
new func 13 node has either new functionality or
implements the capabilities of func 2 and func_8;

e the top func 3 node in the right branch is removed.
Hypothesis: the functionality is removed completely
or moved to the nodes below it.

Thus, the task is localized and reduced to the task of
analyzing versions of specific functions with no direct
interaction with the software source code:

e in the left branch, the impact is determined by
analyzing operation of func 12;

e in the middle branch, the impact is established
by analyzing the result of comparing func 2 and
func 8 nodes with func 13 node;

e in the right branch, the impact is established by
measuring the significance of the functionality

implemented by func 3 and checking the
code (using the search program) for the presence of
the func 3 implementation in the nodes below it.

CONCLUSIONS

This paper considers the most common methods and
tools used to conduct CIA. It also presents the concept of
a new method aimed at remedying the disadvantages of
the existing methods for studying the impact of software
changes on its security. The advantage of the method
is in its ability to calculate code sections which have
undergone the biggest changes even before the expert
interacts with the source code directly.

In addition to its use by experts in research
organizations, this method can also be implemented
in software development companies, in order to track
anomalies in software logic during the development phase.

Further research will focus on using the method in
CIA related to transition to a new code base, as well as
on improving the accuracy of identifying vulnerable
nodes when tainted data is used in the analysis.

Russian Technological Journal. 2024;12(2):7-15

12

Methods for analyzing the impact of software changes
on objective functions and safety functions

Alexander A. Legkodumov,
etal.

Authors’ contributions

A.A. Legkodumov—ijustification of the research
concept, development of the research methodology, writing
a prototype of the program implementing the method, and
writing the text of the article.

B.N. Kozeyev—literature review, analysis and
generalization of literature data, conducting research on

V.V. Belikov—collection and systematization of data,
formulation of conclusions, analysis of research results,
and editing the article.

A.V. Korolkov—creation of the research model,
planning the research, analysis of the research results, and
editing the article.

open source code, and editing the article.

10.

11.

12.
13.

14.

15.

REFERENCES

Karpov Yu.G. Model checking. Verifikatsiya parallel’nykh i raspredelennykh programmnykh system (Model checking.
Verification of Parallel and Distributed Software Systems). St. Petersburg: BHV-Petersburg; 2010. 560 p. (in Russ.).
ISBN 978-5-9775-0404-1

Belikov D.V. The use of static source code analysis in software development and testing. Studencheskii forum = Student
Forum. 2021;41:90-93 (in Russ.).

Belikov D.V. Methods for conducting static analysis of program code. Studencheskii forum = Student Forum.
2022;13(192):15-18 (in Russ.).

Kazarin O.V., Skiba V.Yu. About one method of verification of settlement programs. Bezopasnost’ informatsionnykh
tekhnologii = IT Security (Russia). 1997;3:40-33 (in Russ.).

Shchedrin D.A. Application of machine learning methods and analysis of static code of intelligent systems.
Nauchno-issledovatel skii tsentr “Technical Innovations” = Scientific Journal “Research Center Technical Innovations.”
2023;16:28-32 (in Russ.).

Ivannikov V.P., Belevantsev A.A., Borodin A.E., Ignatiev V.N., Zhurikhin D.M., Avetisyan A.l., Leonov M.I. Static analyzer
Svace for finding of defects in program source code. Trudy Instituta sistemnogo programmirovaniya RAN = Proceedings of the
Institute for System Programming of the RAS. 2014;26(1):231-250 (in Russ.). https://doi.org/10.15514/ISPRAS-2014-26(1)-7
Viktorov D.S., Samovolina E.V., Mokeeva O.A. The effectiveness of static analysis for finding software defects. Vestnik
Voennoi akademii vozdushno-kosmicheskoi oborony = Bulletin of the Military Academy of Aerospace Defense. 2021;6:25-39
(in Russ.).

Buryakova N.A., Chernov A.V. Classification of partially formalized and formal models and methods of software verification.
Inzhenernyi Vestnik Dona = Eng. J. Don. 2010;4:129—134 (in Russ.).

Efimov A.l. The problem of technological security of software for weapons systems. Bezopasnost’ informatsionnykh
tekhnologii = IT Security (Russia). 1994;3-4:22-33 (in Russ.).

Efimov A.L, Palchun B.P., Ukhlinov L.M. Methodology for constructing tests for checking technological safety of
programming automation tools based on their functional diagrams. Voprosy zashchity informatsii = Information Security
Questions. 1995;3:30:52—54 (in Russ.).

Glukhikh M.L, Itsykson V.M., Tsesko V.A. Using dependencies to improve precision of code analysis. Aut. Control Comp.
Sci. 2012;46(7):338-344. https://doi.org/10.3103/S0146411612070097

[Original Russian Text: Glukhikh M.L., Itsykson V.M., Tsesko V.A. Using dependencies to improve precision of code analysis.
Modelirovanie i Analiz Informatsionnykh Sistem, 2011;18(4):68—79 (in Russ.).]

Malikov O.R. Automatic detection of vulnerabilities in the source code of programs. Izvestiya TRTU. 2005;4:48-53 (in Russ.).
Nesov V.S., Malikov O.R. Using information about linear dependencies to detect vulnerabilities in the source code of
programs. Trudy Instituta sistemnogo programmirovaniya RAN = Proceedings of the Institute for System Programming of
the RAS. 2006;9:51-57 (in Russ.).

Vorotnikova T.Yu. Reliable code: static analysis of program code as a means of improving the reliability of software for
information systems. /nformatsionnye tekhnologii v UIS = Information Technologies in the UIS. 2020;2:22-27 (in Russ.).
FritzC., Arzt S., Rashofer S., et al. Highly Precise Taint Analysis for Android Applications. Technical Report TUD-CS-2013-0113.
EC SPRIDE. May 2013. 14 p. Available from URL: http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf

Russian Technological Journal. 2024;12(2):7-15
13

http://V.Yu
https://doi.org/10.15514/ISPRAS-2014-26(1)-7
https://doi.org/10.3103/S0146411612070097
http://T.Yu
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf

Methods for analyzing the impact of software changes Alexander A. Legkodumov,
on objective functions and safety functions etal.

10.

11.

12.

13.

14.

15.

CNMNCOK IUTEPATYPbI

. Kapnos YO.I. Model checking. Bepuguxayus napannenvuvix u pacnpedeienHvix npozpammusix cucmem. CIIO.:

BXB-Iletepbypr; 2010. 560 c. ISBN 978-5-9775-0404-1

. benukos I[.B. Hcnonbs3oBaHue cTaTUYECKOrO aHallM3a UCXOJIHOTO KOJa B pa3pa60TI<e 1 TECTUPOBAHUU IPOTrPAMMHOTO o0e-

cnieuenust. Cmyodenuecxuii hopym. 2021;41:90-93.

. benukor /1.B. MeTtoibl pOBeIeHNS CTATHYECKOTO aHaIM3a MPOrpaMMHOro koaa. Cnydenueckuti ghopym. 2022;13(192):15-18.
. Kazapun O.B., Ckuba B.}O. O06 onHOM MeTo/Ie BepUBHUKAIIMU PACUCTHBIX IPOrpaMM. Be30nacHocms UHGOPMAYUOHHBIX meX-

nonoeuti. 1997;3:40-33.

. Wlenpun JI.A. TlpuMeHeHHE METOJOB MAIIMHHOTO OOYYECHHS M aHalli3a CTATHUECKOTO KOJla MHTCIUICKTYalIbHBIX CHCTEM.

Hayuno-uccneoosamenvckuii yenmp « Technical Innovationsy. 2023;16:28-32.

. VBannukos B.I1., benesannes A.A., boponun A.E., UrnateeB B.H., Xypuxun [I.M., Asetucsu A.U., JleonoB M.U. Cratu-

yeckuil aHanu3aTop Svace Uil IOUCKa Je(EeKTOB B UCXOTHOM KOzie IporpamMm. Ipyosr Uncmumyma cucmemuno20 npospam-
muposanus PAH. 2014;26(1):231-250. https://doi.org/10.15514/ISPRAS-2014-26(1)-7

. Bukropos JI.C., CamoBonuna E.B., MokeeBa O.A. D¢ HeKTHBHOCT CTATUYECKOrO aHANW3a Ui TOMCKa J1e(eKTOB IMpo-

rpaMMHOTO obecrieueHust. Becmuux Boennotl akademuu 6030yuHo-kocmuueckoi 0ooponst. 2021;6:25-39.

. BypsixoBa H.A., YepHoB A.B. Knaccudukanus yactuuHo ¢popMaan30BaHHbIX ¥ (HOpMaNbHBIX MOJEIECH U METOI0B BepHudu-

KalluK [PpOrpaMMHOTo obecrieueHust. Muoiceneproiii Becmuux JJona. 2010;4:129—134.

. Epumor A.U. Ilpobrema TeXHOJIOTHYECKOIT OE30MACHOCTH MPOrpaMMHOIO OOCCIICUECHHS CHCTEM BOOpYkeHUs. Besonac-

HoCcmb uH@opmayuonnwvlx mexronoauti. 1994;3—4:22-33.

Edpumor A.U., [Manpayn B.I1., YxaunoB JI.M. MeTonuka nocTpoeHusi TECTOB IPOBEPKH TEXHOJIOTMYECKON 0€30MacHOCTH
MHCTPYMEHTAIBHBIX CPEJICTB aBTOMATH3ALMK MPOTPaMMHPOBAHMS Ha OCHOBE MX ()YHKIHMOHAIBHBIX AUAarpamMM. Bonpocw
sawumsl ungopmayuu. 1995;3(30):52-54.

I'myxux M.U., Upikcon B.M., llecbko B.A. Mcmonp3oBanue 3aBUCUMOCTEH JUIS TOBBIMIECHUS TOYHOCTH CTATHYECKOTO
aHanm3a nporpamm. Mooenuposanue u ananus ungopmayuonnvix cucmem. 2011;18(4):68-79.

MasukoB O.P. ABromarnueckoe 0OHapyKEHHE YSI3BUMOCTEH B HCXOIHOM Kojie Tiporpamm. Mzeecmus Tacanpoeckozo paduo-
mexuuueckozo ynusepcumema (Mseecmusa TPTY). 2005;4:48-53.

Hecos B.C., Manukos O.P. Mcnons3oBanue nHGOpMAIINK O TUHEHHBIX 3aBUCUMOCTSIX [UIsl OOHAPY)KCHHUS YSI3BUMOCTEH B HC-
XOJHOM KoJie iporpamM. Tpyost Hucmumyma cucmemnozo npocpammuposanus PAH. 2006;9:51-57.

Boporaukosa T.}O. HanexHblit koa: cTaTHUECKH aHAINA3 TPOrPAMMHOTO KOJ1a KaK CPEICTBO MOBBIIICHHSI HASKHOCTH TIPO-
rpaMMHOT0 obecrnedeHus HHHOPMALMOHHbIX cucteM. Ungopmayuonnvie mexnonozuu ¢ YUC. 2020;2:22-27.

Fritz C., Arzt S., Rashofer S., et al. Highly Precise Taint Analysis for Android Applications. Technical Report
TUD-CS-2013-0113. EC SPRIDE. May 2013. 14 p. URL: http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf

About the authors

Alexander A. Legkodumov, Cryptographic Analysis Specialist, SFB Laboratory (56/2, Mishina ul., Moscow,

127083 Russia). E-mail: studkkso0416@mail.ru. https://orcid.org/0000-0002-2562-4333

Boris N. Kozeyev, Chief Specialist, ALFA-BANK (27, Kalanchevskaya ul., Moscow, 107078 Russia). E-mail:

kozeev.boris2018@yandex.ru. https://orcid.org/0009-0009-0993-8082

Vladimir V. Belikov, Cand. Sci. (Military), Docent, Assistant Professor, Department of Information Security,

Institute of Artificial Intelligence, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454
Russia). E-mail: belikov_v@mirea.ru. Scopus Author ID 57983605100, https://orcid.org/0000-0003-1423-1072

Andrey V. Korolkov, Cand. Sci. (Eng.), Senior Researcher, Head of the Department of Information Security,

Institute of Artificial Intelligence, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454
Russia). E-mail: korolkov@mirea.ru. RSCI SPIN-code 3849-6868.

14

Russian Technological Journal. 2024;12(2):7-15

mailto:studkkso0416@mail.ru
https://orcid.org/0000-0002-2562-4333
mailto:kozeev.boris2018@yandex.ru
https://orcid.org/0009-0009-0993-8082
mailto:belikov_v@mirea.ru
https://orcid.org/0000-0003-1423-1072
mailto:korolkov@mirea.ru
https://doi.org/10.15514/ISPRAS-2014-26(1)-7
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf

Methods for analyzing the impact of software changes Alexander A. Legkodumov,
on objective functions and safety functions etal.

06 aBTOpax

JlerkopymoB AnekcaHap AnekceeBud, CneumanucT MHXeHepHo-kpunTorpaduyeckoro aHanmsa, 000 «CPb Jlabo-
paTtopus» (127083, Poccusa, Mockea, yn. MuwunHa, g. 56, ctp. 2). E-mail: studkkso0416@mail.ru. https://orcid.
org/0000-0002-2562-4333

Koseee Bopuc Hukonaesu4, rnaeHbiin cneumanmct, AO «<AJIbA-BAHK» (107078, Mockea, yn. KanaHyeBckas,
n. 27). E-mail: kozeev.boris2018@yandex.ru. https://orcid.org/0009-0009-0993-8082

Benukoe Bnagnmup BAuyecnaBoBuY, K.BOEH.H., JOLEHT, OOLEHT Kadeapbl MHPOPMALMOHHON He3onacHo-
cTn, MHCTUTYT nckycctBeHHoro uHtennekta ®reQy BO «MUP3A — Poccuiickuii TEXHONOMMYECKUIA YHUBEPCUTET»
(119454, Poccusa, Mocksa, np-T BepHaackoro, a. 78). E-mail: belikov_v@mirea.ru. Scopus Author ID 57983605100,
https://orcid.org/0000-0003-1423-1072

Koponbkoe AHgpei BsuyecnaBoBuY, K.T.H., CTapLUMA HayYHbI COTPYAHWK, 3aBedylolwmin kadeopomr WH-
dopmaumoHHo 6e3onacHocTu, NHCTUTYT nckyccTBeHHoro nHtennekta @rb0y BO «MUP3A — Poccuincknin Tex-
Honorunyeckuii yHusepcuteT» (119454, Poccusa, Mockea, np-T BepHaackoro, a. 78). E-mail: korolkov@mirea.ru.
SPIN-kogn PUHL], 3849-6868.

Translated from Russian into English by Kirill V. Nazarov
Edited for English language and spelling by Dr. David Mossop

Russian Technological Journal. 2024;12(2):7-15
15

mailto:studkkso0416@mail.ru
https://orcid.org/0000-0002-2562-4333
https://orcid.org/0000-0002-2562-4333
mailto:kozeev.boris2018@yandex.ru
https://orcid.org/0009-0009-0993-8082
mailto:belikov_v@mirea.ru
https://orcid.org/0000-0003-1423-1072
mailto:korolkov@mirea.ru

