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В статье предложены новые функциональные соотношения для деформаций и на-
пряжений в рамках линейных реологических моделей Максвелла и Кельвина-Фогта. 
Полученные соотношения справедливы для всего интервала времени, что позволяет 
рассмотреть многочисленные частные случаи ползучести и релаксации напряжения, в 
частности, следующие практические режимы: постоянное напряжение, постоянная де-
формация, постоянная скорость деформации. Все расчёты основаны на использовании 
единичной функции Хэвисайда, дельта-функции Дирака и решении задачи Коши, выве-
денном профессором Э.М. Карташовым. Использование обобщённых функций позволя-
ет рассмотреть и более сложные трёхэлементные модели, например, с двумя пружинами 
и одним демпфером и наоборот. Принципиальная сторона подхода при этом не меняет-
ся, математические выкладки практически не усложняются. Предложенные соотноше-
ния могут быть использованы в реологии как обобщающая форма записи, содержащая 
известные частные случаи. Настоящая работа представляет методический интерес для 
кафедр полимерного профиля.
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Новые функциональные соотношения для линейных реологических моделей Максвелла 
и Кельвина-Фогта

The article proposes new functional relationships for deformations and stresses within the 
framework of the linear rheological Maxwell and Kelvin-Vogt models. The relations obtained 
are valid for the entire time interval, which allows one to consider numerous special cases of 
creep and relaxation tension, in particular the following practical regimes: constant tension, 
constant deformation, constant strain rate. In calculations, the Heaviside step function, the 
Dirac delta function, and the solution of the Cauchy problem proposed by E.M. Kartashov 
were used. Using of generalized functions allows us to consider more complex three-element 
models, for example, with two springs and one damper and vice versa. At the same time, the 
principal aspect of the approach does not change, the mathematical calculations are practically 
not complicated. The proposed relations can be used in rheology as a generalizing form of the 
record containing known special cases. This work presents a methodological interest for the 
departments of polymeric profile.
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Voigt model, Cauchy problem, elasticity, viscosity, differential equations.

Введение

Необходимость в построении механических моделей полимерных тел возникла 
вследствие неприменимости обычных уравнений упругости и вязкости к полиме-

рам. Полимеры в одних случаях ведут себя как упругие тела, а в других – как вязкие 
жидкости, поэтому их механическое поведение не подчиняется ни закону Гука 

σ = Еε, 
ни закону вязкого течения Ньютона 

σ = ,
где σ – напряжение [Па];

ε – деформация (безразмерная величина);
Е – модуль упругости [Па];
η – коэффициент вязкости [Па∙с]. 
Для описания механического поведения полимерных тел были разработаны соответ-

ствующие модели, которые учитывают одновременно протекающие процессы упругого 
деформирования и вязкого течения [1−3]. При этом под механической моделью матери-
ала подразумевается не только набор пружин (упругость) и демпферов (вязкость), но и 
соответствующие моделям дифференциальные уравнения вида

 ,  t > 0                                                                                                    (1)

с заданными начальными условиями для напряжения σ(t), либо для деформации ε(t):
здесь аk, bk (k = ) – постоянные коэффициенты, которые определяют механические 
свойства изучаемого материала. 

Модельные представления на основе уравнения (1) неизменно излагаются в лите-
ратуре по механике и физике полимеров [1−4]. И как это ни странно, но в столь, каза-
лось бы, завершенной области реологии еще остались «математические резервы» для 
переосмысления аналитических решений уравнения (1). Математической формой этих 
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решений относительно напряжения при заданной деформации или деформации при за-
данном напряжении традиционно является система кусочно-гладких функций, каждая 
из которых описывает процесс в своем интервале времени. Однако, по нашему мнению, 
можно иначе описать эти решения, используя единое функциональное соотношение для 
всех t >0. 

Используем для расчетов обобщенные функции [4]:
единичную функцию Хэвисайда 

Н(х) =                                                                                                                            (2)

и дельта-функцию Дирака

δ(х) = Нʹ(х). 

При этом: 

                                                                                     (3)

Используем также предложенное автором [4] решение задачи Коши 

                                                                                                         (4)

в виде компактного соотношения 

 .                                                                                                   (5)

Рис. 1. Последовательное соединение демпфера и пружины.

Модель Максвелла является наиболее простой моделью, описывающей поведение 
вязкого тела, осложненного упругостью. В модели Максвелла упругие и вязкие элементы 
соединены последовательно, как это показано на рис. 1, напряжение σ(t), приложенное к 
модели, вызывает деформацию в каждом элементе: 
упругую деформацию пружины 

ε1(t) =  

и деформацию вязкого элемента

ε2(t) = . 
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Общая деформация складывается из деформации элементов ε = ε1 + ε2, то есть 

ε (t) =  +  , 

откуда после дифференцирования приходим к уравнению вида (1) для модели Максвелла

 , t > 0.                                                                                                           (6)

Рассмотрим частные случаи для уравнения (6). 

Рис. 2. Графики зависимости напряжения и деформации от времени 
в случае действия постоянного напряжения на модель Максвелла.

Постоянное напряжение (модель Максвелла)

Пусть в начальный момент времени (при t = 0) приложено постоянное напряжение σ0, 
действующее до момента времени t0, после чего строятся графики зависимости напряже-
ния и деформации от времени (рис. 2).

Имеем: 

σ(t) = σ0Н(t0 – t), t > 0.                                                                                                                 (7)

Так как   = – σ0δ(t0 – t), 

где σ0 = Еε0, 
ε0 – величина мгновенной деформации упругого элемента, 

то (6) и (7) дают следующую задачу Коши:

                                                                                (8)

решение которой, согласно (5), имеет вид:

.                                                                       (9)



55Российский технологический журнал   2017   Том 5  № 5

В.Д. Карлов

Рис. 3. Графики зависимости напряжения и деформации от времени 
в случае действия постоянной деформации на модель Максвелла.

При вычислении интегралов в (9) следует проявить особую внимательность: необ-
ходимо перевести t0 в нижний или верхний пределы в зависимости от значений времени 
t относительно t0 и далее воспользоваться соотношениями (2) и (3). Если ввести также 
время релаксации  и учесть, что

 = , 

то из (9) окончательно находим:

, t > 0.                                                                      (10)

Это и есть общая формула, описывающая деформацию в модели Максвелла в полном 
интервале времени t >0 (рис. 2). 

Для интервала времени 0 ≤ t <t0 имеем из (10): 

.

 Остаточная деформация после снятия напряжения (t > t0) есть: 

; 

деформация в момент времени t0 (t → t0 − 0, так что Н(t - t0) → 1) равна 

.

Постоянная деформация (модель Максвелла) 

Пусть в начальный момент времени (при t = 0) модели дана мгновенная постоянная 
деформация ε0, действующая до момента времени t0, снимается график зависимости на-
пряжения и деформации от времени (рис. 3). 
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Имеем:

 ,   t > 0.                                                                                                         (11)

Уравнение (6) относительно изменения напряжения σ(t) дает следующую задачу 
Коши:

,                                                                            (12)

решение которой, согласно (5), имеет вид:

 .                                                                                                            (13)

После вычисления интеграла по схеме, изложенной выше, находим соотношение, со-
держащее полную информацию об изменении напряжения при всех t > 0:

 t > 0.                                                                                     (14)

Для времени t < t0 имеем из (14): 

 
при t > t0 напряжение

, 

в момент времени t0 (t → t0+0) напряжение равно величине 

.

Модель Кельвина-Фогта в отличие от модели Максвелла учитывает упругость, от-
личную от гуковской, которая возникает в полимерах за счет развертывания макромоле-
кул. В этой модели упругий и вязкий элементы соединены параллельно, как это показано 
на рис. 4. Деформация такой модели является общей для обоих элементов, а напряжение 
складывается из напряжений в каждом элементе: 

σ = σ1 + σ2. 

Дифференциальное уравнение для этой модели имеет вид:
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Рис. 4. Параллельное соединение демпфера и пружины.

, t > 0.                                                                                                                 (15)

Здесь, как и выше, могут быть рассмотрены частные случаи напряжения.

Постоянное напряжение (модель Кельвина-Фогта)

Так как начальное напряжение σ0 не может вызывать мгновенную деформацию 
(демпфер не дает пружине мгновенно деформироваться), то задача Коши для уравнения 
(15) имеет вид (рис. 5):

                                                                                 (16)

Рис. 5. Графики зависимости напряжения и деформации от времени 
в случае действия постоянного напряжения на модель Кельвина-Фогта.

Опуская выкладки, приведем конечный результат:

, t > 0,                                                             (17)

где , если учесть, что деформация возрастает по времени, асимптотически 

стремясь к гуковской. 
Рассмотрим интервалы времени t < t0 и t ≥ t0. В первом из них , во 

втором –  . 
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Так как мгновенные возникновение и сокращение деформации отсутствуют, то при 
снятии напряжения в момент времени t0 деформация должна быть непрерывной, что и 
подтверждают приведенные соотношения (рис. 5).

 Постоянная скорость деформации (модель Кельвина-Фогта)

Модель Кельвина-Фогта не допускает мгновенной деформации, однако допускает де-
формацию с постоянной скоростью v0. 	

Рассмотрим следующий режим нагрузки (рис. 6):

                                                                                                        (18)

Рис. 6. Графики зависимости напряжения и деформации от времени в случае 
действия постоянной скорости деформации на модель Кельвина-Фогта.

Уравнения (15) и (18) приводят к соотношениям:

 t > 0,                                                                                                (19)

, t > 0.                                                                   (20)

и в такой же форме позволяют описать напряжение для времени t < t0:

 

и для времени t > t0:

.

Использование обобщенных функций позволяет рассмотреть и более сложные трехэ-
лементные модели, например, с двумя пружинами и одним демпфером и наоборот. Прин-
ципиальная сторона подхода при этом не меняется, математические выкладки практически 
не усложняются.

Предложенные соотношения могут быть использованы в реологии как обобщающая 
форма записи, содержащая известные частные случаи. Настоящая работа представляет 
также методический интерес, особенно для кафедр полимерного профиля. 

Автор благодарит профессора Карташова Э.М. за предоставленную информацию.
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