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Abstract
Objectives. The purpose of the article is to build different models of bagging, to compare the accuracy of their 
forecasts for the test period against standard models, and to draw conclusions about the possibility of further use of 
the bagging technique in time series modeling.
Methods. This study examines the application of bagging to the random component of a time series formed after 
removing the trend and seasonal part. A bootstrapped series combining into a new random component is constructed. 
Based on the component thus obtained, a new model of the series is built. According to many authors, this approach 
allows the accuracy of the time series model to be improved by better estimating the distribution.
Results. The theoretical part summarizes the characteristics of the different bagging models. The difference 
between them comes down to the bias estimate obtained, since the measurements making up the bootstraps are 
not random. We present a computational experiment in which time series models are constructed using the index of 
monetary income of the population, the macroeconomic statistics of the Russian Federation, and the stock price of 
Sberbank. Forecasts for the test period obtained by standard, neural network and bagging-based models for some 
time series are compared in the computational experiment. In the simplest implementation, bagging showed results 
comparable to ARIMA and ETS standard models, while and slightly inferior to neural network models for seasonal 
series. In the case of non-seasonal series, the ARIMA and ETS standard models gave the best results, while bagging 
models gave close results. Both groups of models significantly surpassed the result of neural network models.
Conclusions. When using bagging, the best results are obtained when modeling seasonal time series. The quality 
of forecasts of seigniorage models is somewhat inferior to the quality of forecasts of neural network models, but is 
at the same level as that of standard ARIMA and ETS models. Bagging-based models should be used for time series 
modeling. Different functions over the values of the series when constructing bootstraps should be studied in future 
work.
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НАУЧНАЯ СТАТЬЯ

Применение беггинга  
в прогнозировании временных рядов

Я.В. Грамович,  
Д.Ю. Мусатов,  
Д.А. Петрусевич @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail:  petrusevich@mirea.ru, petrdenis@mail.ru

Резюме 
Цели. Цель работы состоит в построении различных моделей беггинга, сопоставлении точности их прогно-
зов на тестовый период со стандартными моделями и получении выводов о возможности дальнейшего ис-
пользования техники беггинга при моделировании временных рядов. 
Методы. Исследуется применение беггинга к случайной составляющей временного ряда, формируемой по-
сле удаления тренда и сезонной части. Строится серия псевдовыборок, совмещающихся в новую случайную 
составляющую. На основе полученной компоненты строится новая модель ряда. По мнению многих авторов 
такой подход позволяет повысить точность модели временного ряда, лучшим образом оценив распределе-
ние. 
Результаты. В теоретической части приведены характеристики различных моделей беггинга. Разница меж-
ду ними сводится к оценке смещения, получаемой из-за того, что измерения, которые составляют псевдо-
выборки, не являются случайными. Представлен вычислительный эксперимент, в котором модели времен-
ных рядов строятся по индексу денежных доходов населения макроэкономической статистики Российской 
Федерации и по курсу акций Сбербанка. Прогнозы на тестовый период, полученные стандартными, нейро-
сетевыми моделями и моделями на основе беггинга для некоторых временных рядов, сравниваются в вы-
числительном эксперименте. В самой простой реализации беггинг показал результаты, сравнимые со стан-
дартными моделями ARIMA и ETS и несколько уступающие нейросетевым моделям для сезонных рядов; для 
несезонных рядов лучшие результаты дали стандартные модели ARIMA и ETS, модели беггинга дали близкие 
результаты. Обе группы моделей существенно превзошли результат нейросетевых моделей. 
Выводы. При использовании беггинга лучшие результаты получены при моделировании сезонных времен-
ных рядов. Качество прогнозов моделей беггинга несколько уступает качеству прогнозов нейросетевых мо-
делей, но оказывается на том же уровне, что у стандартных моделей ARIMA и ETS. Модели на основе беггинга 
следует использовать для моделирования временных рядов, различные функции над значениями ряда при 
построении псевдовыборок должны быть исследованы в дальнейшей работе.

Ключевые слова: динамические ряды, макроэкономическая статистика, ARIMA, псевдовыборка непере-
крывающихся блоков, псевдовыборка перекрывающихся блоков, стационарный беггинг 
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INTRODUCTION

This work considers the application of bagging [1–5] 
in time series modeling. The use of bagging in time 
series modeling can be considered as an expression 
of the general idea of building a more accurate model 
based on several available models. The approach of 
making a weighted combination of forecasts of several 
time series models and averaging several forecasts is 
discussed in [6, 7]. The main difference between bagging 
and combining forecasts of time series models is that it 
combines only noise components. The main objective in 
both approaches is to improve the quality of forecasts 
on the basis of building a  combination of forecasts of 
several time series models.

The approach under consideration is relevant 
due to the expediency of improving the accuracy 
of time series forecasting based on the best estimate 
of the distribution of the random component. The 
article contains new research results expressed in the 
experimental realization of models built on the basis of 
bagging of time series and comparison of forecasting 
results against results obtained using alternative 
ARIMA1 and neural network models. The aim of the 
work is to build different bagging models, to compare 
the accuracy of their forecasts for the test period with 
standard models and to draw conclusions about the 
possibility of further use of the bagging method in time 
series modeling.

The time series is represented as a combination of 
three parts: seasonal component St, trend Tt, and noise 
Rt in additive  or multiplicative  form (index t stands for 
time):

	 t t t t ,= + +y S T R  � (1)

	 t t t t .= × ×y S T R  � (2)

Bagging is applied to the noise component Rt. 
This strategy was originally successfully applied in the 
classification task, where it involves building an ensemble 
model by training independent classifiers on different 
samples  [8]. The predictions obtained by each model 
are then averaged, in order to obtain the final result (the 
weighted averaging can be applied depending on how 
accurate the predictions of each model participating in 
the ensemble are on the test sample). In this way, the 
forecasting accuracy is improved.

In addition to the idea of combining models, bagging 
is based on bootstrap. This approach consists in replacing 
the unknown distribution of data  (characterizing the 
time process under consideration) with an empirical 
distribution constructed by the researcher. When using 

1   ARIMA is an autoregressive integrated moving average 
model or Box–Jenkins model.

bootstrap in classification tasks, the data have no 
temporal dimension, so they can be mixed randomly. 
Things get more complicated when such ideas are 
applied to time series. In this case, the different sample 
values must follow each other according to the time 
dimension, even if chosen randomly. Here, the idea is 
transformed into constructing a set of bootstraps based 
on the original time series data. Several times in fact, 
(the number of patterns is specified by the user), based 
on a certain principle, values are selected from the series 
data to represent a new time sequence. Since there are 
usually many values of the time series, it is possible to 
build a set of new time series based on the original one, 
randomly selecting new values for each bootstrap. It is 
assumed that the characteristics of the time series under 
study will be close to the parameters of the resulting 
bootstraps.

CONSIDERED BAGGING METHODS

The approaches to obtaining bootstraps from the 
time series values are as follows:

1.	Construction of bootstraps from nonoverlapping 
blocks  (nonoverlapping block bootstrap, block 
bootstrap, circular bootstrap, NBB)  [9, 10]. The 
time series data is divided into a  given number 
of nonoverlapping blocks. The block length is 
a  customizable parameter. When constructing 
bootstraps, each block can fall into any of them with 
some probability. For example, let us build blocks 
with the length of 3  elements from a  row with 
12 values: X = {X1, …, X12}:

(X1, X2, X3), (X4, X5, X6), (X7, X8, X9), (X10, X11, X12).

When compiling a bootstrap, any blocks can be 
selected from them with return. If the length of the 
bootstrap is 12, you can take 4 blocks, e.g.:

(X4, X5, X6), (X1, X2, X3), (X10, X11, X12), (X4, X5, X6).

Note that blocks can be repeated. The 
measurements in the bootstrap do not have to follow 
the same temporal order as the original data, so the 
stationarity of the original time series does not have 
to be preserved.

2.	Constructing a  bootstrap from overlapping 
blocks (moving block bootstrap, MBB) [11–13]. The 
blocks into which the time series data are divided 
can overlap. The block length is a  customizable 
parameter. When constructing bootstraps, each 
block can fall into any block with some probability. 
In general, this case differs from the first, in that the 
blocks can overlap. The example from the previous 
paragraph can be transformed as follows:
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(X1, X2, X3), (X3, X4, X5), (X5, X6, X7), (X7, X8, X9),  
(X9, X10, X11), (X10, X11, X12).

Note that the beginning of each block (except for 
the first one) overlaps with the end of the previous 
block. The number of overlapping elements is, of 
course, adjustable. In general, further construction 
of the bootstrap follows point 1, so stationarity of the 
initial series, if any, does not guarantee stationarity 
of the bootstraps.

3.	Constructing a stationary bootstrap [14]. This differs 
from the first two cases in that the researchers set 
the idea of preserving the stationarity property for 
the extracted bootstraps, provided that the original 
time series X is stationary. The length of the blocks 
is not fixed. Instead, a  certain block termination 
probability p is given. The first element of the block 
Xi is selected randomly. Then each subsequent 
element either falls into the block with probability 
1  −  p, or the block is terminated and a  new one 
begins. The block lengths L1, L2, … are subject 
to geometric distribution, so the probability of 
obtaining a block of length l:

1( ) (1 ) .−= = − l
jp L l p p

The length Lj and initial position Xi of a block are 
set. We thus obtain the set of blocks 

* * *
1 2( , ) { , , ..., }.=

jj j LB i L X X X  Here the asterisk denotes 
that the values selected from the series do not have to 
form a  continuous interval, but that the elements are 
selected following the initial element Xi of the bootstrap: 

*
1 .= iX X  Figure 1 schematically represents the process 

of selecting elements of the time series into the bootstrap 
when applying stationary bagging: Xi is the sequence of 
values of the time series, *

iX  is the bootstrap selected by 
bagging). Each subsequent element must be later than 
the previously selected element *

1( +iX  is always later 
than the moment corresponding to the element of the 
row *).iX  That said, there may be gaps between them.

X1X2... Xi Xi+1 Xi+2... Xi+k...Xn

↓ ↓ ↓
X1* X2* XLj

*

Fig. 1. Example of selecting time series elements X into 
the bootstrap X* when applying the stationary 

bagging (element *
1iX +  always comes later than the 

previously selected *)iX

The work  [15] studies the selection of the optimal 
block length and concludes that the length should be 
proportional to the cube root of the length of the time 
series.

The present work also considers the fourth method 
which in many respects repeats stationary bagging. The 
main difference is the prohibition to use blocks (values 
in the next block could refer to an earlier time interval 
than the previous one). Instead, a single block is actually 
used, where each previous value refers to an earlier 
measurement than the next. Interpolation is used when it 
is necessary to align the length of the bootstrap with the 
length of the row.

In  [16] the author compares methods by the bias 
of the expectation  (which appears due to the fact that 
independent quantities cannot be extracted from the 
time process), while in [15] a simpler bias estimation for 
the mathematical expectation E and the dispersion V is 
suggested:

	  

1

2

1ˆ( ( )) ,

1ˆ( ( )) .

 = +  
 
 = +  
 

A
B E b o

b b
A

B V b o
b b

 � (3)

Here b  is the block length in the bagging scheme. 
A1,  A2  are constants, the calculation details of which 
are given in  [16]. Thus, when considering first-order 
estimates, the different approaches to bagging remain 
theoretically identical.

The MBB  (overlapping blocks) method has 
smaller second order moments compared to NBB (non-
overlapping blocks) and stationary bagging [15, 16]. The 
estimates for each method are given in formulas (4)–(6):

	

2
1

NBB 3 3

2
2

NBB 3 3

4 (0)ˆ( ( )) ,
3

4 (0)ˆ( ( )) ,
3

π  = +  
 

π  = +  
 

g bV E b b o
n n
g bV V b b o
n n

 	   (4)

	

2
1

MBB 3 3

2
2

MBB 3 3

2 (0)ˆ( ( )) ,

2 (0)ˆ( ( )) ,

π  = +  
 

π  = +  
 

g bV E b b o
n n
g bV V b b o
n n

 	   (5)

	

2
1 1

SB 3 3

2
2 2

SB 3 3

4 (0) 2ˆ( ( )) ,

4 (0) 2ˆ( ( )) ,

π + π  = +  
 

π + π  = +  
 

g G bV E b b o
n n

g G bV V b b o
n n

 	   (6)

where g1, g2, G1, G2 are functions, the type and properties 
of which are described in [15, 16]. Here n is the number 
of time series elements. The method based on overlapping 
MBB blocks has lower second order moments than NBB. 
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The bias estimation for stationary bagging differs 
significantly in the type of expression from the other two 
cases, so the comparison is difficult. The variance for 
stationary bagging is believed to be higher. At the same 
time, it has certain advantages. In  [14] the properties of 
stationary bagging are studied. Here it is shown that the 
bootstrap is a Markovian chain, the order of which depends 
on how many matching blocks fall into the bootstrap.

Various statistical packages mainly implement the 
MBB algorithm as theoretically superior to other basic 
bagging strategies. Modifications of bagging for time 
series are widely used for modeling and forecasting of 
time processes [2–5, 17].

The algorithm for processing of time series values 
to apply one of the bootstrap strategies is presented 
in [17, 18]. Its block diagram is shown in Fig. 2.

In this way, the standard models ARIMA and 
exponential time smoothing  (ETS), neural network 
models  (long-short term memory  (LSTM), gated 
recurrent unit (GRU), recurrent neural network (RNN), 
fully-connected multilayer perseptron) are presented 
in the computational experiment. Their comparison is 
presented in Table 1.

The purpose of the work is to compare the forecast 
accuracy of models built using different bagging 
approaches: with each other; and with other models 
often used for time series modeling and forecasting.

CALCULATION EXPERIMENT

The computational experiment considers several 
time series models: real personal income  (HHI)2; 
and real agricultural production  (AGR)3 according to 
macroeconomic statistics of the Russian Federation; as 

2   Unified archive of economic and sociological data. 
Dynamic series of macroeconomic statistics of the Russian 
Federation. Index of money incomes of the population. http://
sophist.hse.ru/hse/1/tables/HHI_M_I.htm  (in Russ.). Accessed 
September 01, 2023.

3   Unified archive of economic and sociological data. Dynamic 
series of macroeconomic statistics of the Russian Federation. 
Index of real agricultural production. http://sophist.hse.ru/hse/1/
tables/AGR_M_I.htm (in Russ.). Accessed September 01, 2023.

Start

End

To calculate the optimal value of λ 
for the Box–Cox transformation

Box–Cox  
transformation

Residual bootstrap Rt (MBB)

Row rearrangement  
with a new residue Rt

Reverse Box–Cox  
transformation

LOESS 
transformation

STL decomposition 
(seasonality, trend, 

residual)

Is the time series 
seasonal?

New iteration of the 
bootstrap?

No

No

Yes

Yes

Fig. 2. Illustration of an example of selecting time series 
elements X into the bootstrap X* when using stationary 

bagging (element *
1iX +  always comes later  

than the previously selected *).iX   
λ is the parameter for the Box–Cox transformation; 
LOESS—locally estimated scatterplot smoothing;  

STL (seasonal and trend decomposition using LOESS)—
method of time series decomposition into trend, 

seasonality, and residuals

Table 1. Comparison of the groups of models involved in the calculation experiment

Group of models Learning algorithm (principle of model 
fitting to series values) Additional model comparison indicators

Standard (ARIMA, ETS) Principle of maximum plausibility Akaike, Bayes (Schwartz) information 
criteria

Neural networks (LSTM, GRU, RNN, 
fully-connected neural networks) [19]

Error back propagation algorithm (with 
added batch normalization, dropout)/
gradient descent

Absent

Models based on bagging After dividing by the trend-seasonality 
residual using STL processing the 
residual and rebuilding the model with 
the new residual

Absent

http://sophist.hse.ru/hse/1/tables/HHI_M_I.htm
http://sophist.hse.ru/hse/1/tables/HHI_M_I.htm
http://sophist.hse.ru/hse/1/tables/AGR_M_I.htm
http://sophist.hse.ru/hse/1/tables/AGR_M_I.htm
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well as Sberbank shares on the Moscow stock exchange4. 
This article does not address economic issues. The data 
is used for modeling and forecasting. All data except the 
last year is used for training purposes. The test period 
for which the forecast is made is the last year of the time 
series. It should be emphasized that the beginning of the 
global economic crisis in 2008 and the beginning of the 
crisis relating to the shift in power in Ukraine in 2014 are 
excluded from consideration. This is because the 
behavior of indicators at this time undergoes significant 

4   Sberbank  (SBER) stock price. https://www.moex.com/
ru/issue.aspx?board=TQBR&code=SBER  (in Russ.). Accessed 
September 01, 2023.

change  (changes in the mathematical expectation, 
variance of the series, heteroscedasticity appears). The 
data of the previous and the next year are glued together 
with respect to the crisis year. The graph for the series of 
real monetary income of the population (the ratio of the 
average per capita money income in the current month 
to the same indicator for the corresponding month of 
the last year) and its autocorrelation function (ACF) and 
partial autocorrelation function (PACF) [1] are presented 
in Figs. 3  and 4. The graphs for the series of real 
agricultural production are presented in Figs. 5 and 6.

Mean absolute error  (MAE) and root mean square 
error  (RMSE) estimates are measured as similarity 
metrics [1]. The results of processing the index of money 
income of the population are presented in Table 2 (the 
best models according to various criteria are marked in 
bold, accuracy is 0.01). In addition to models based on 
bagging and standard ARIMA and ETS models  [20], 
models based on neural networks GRU, LSTM, 
RNN [21–24] are also presented in the experiment.

Table 2. Monetary income index models according 
to macroeconomic statistics of the Russian Federation 
and their forecasts for the test period

Time series model МАЕ RMSE
NBB 4.67 5.53
MBB 4.78 5.57
Stationary bagging 4.10 4.91
LOESS method 3.49 4.57
ARIMA 5.86 7.01
ETS 6.57 8.47
RNN 3.88 4.45
LSTM model 5.91 6.63
GRU model 3.94 4.36

0.0	 0.5	 1.0	 1.5	 2.0 0.5	 1.0	 1.5	 2.0
Time Time
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Fig. 4. Diagrams of ACF (a) and PACF (b) functions for the time series of money incomes  
of the population according to macroeconomic statistics of the Russian Federation

300

250

200

150

100

50
1995	 2000	 2005	 2010	 2015

Time

Index of money income of the population

Fig. 3. Time series of the index of money income of the 
population (in %) according to macroeconomic statistics 

of the Russian Federation for 1993–2019

https://www.moex.com/ru/issue.aspx?board=TQBR&code=SBER
https://www.moex.com/ru/issue.aspx?board=TQBR&code=SBER
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Bagging-based time series models show better 
results than the ARIMA and ETS standard series models. 
Among them, the best forecast was given by the model 
based on stationary bagging. At the same time, the 
forecast quality of the model based on stationary bagging 
is inferior to certain neural network models (RNN and 
GRU) and LOESS method (STL series decomposition).

Experiment 2 considers the index of real agricultural 
production in Russia for the period 2000–2020. 
Figures 5 and 6 show the plots of series and functions 
of ACF and PACF. All the models considered were 
adjusted for the training period 2000–2020  (the crisis 
years 2008  and 2014  were removed from it, the data 
were glued together). The results of their forecasts for 
the test period (2021) are compared in Table 3.

800

600

400

200

1995	 2000	 2005	 2010	 2015
Time

Real volume of agricultural production

Fig. 5. Time series of real volume of agricultural 
production (in %) according to macroeconomic statistics 

of the Russian Federation

Table 3. Models of the index of real volume of 
agricultural production according to macroeconomic 
statistics of the Russian Federation and their forecasts 
for the test period

Time series model МАЕ RMSE

NBB 15.01 22.47

MBB 16.63 25.80

Stationary bagging 17.11 25.59

ARIMA 13.24 18.51

ETS 17.22 25,40

LSTM model 8.78 15.41

GRU model 10.11 16.34

RNN 10.51 16.17

In this experiment, the NBB approach  (based on 
non-intersecting blocks) showed the best result among 
the bagging-based models. It showed approximately 
equal characteristics in terms of forecast quality for the 
test period with the ARIMA and ETS standard models. 
At the same time, the neural network models LSTM, 
GRU and RNN outperformed the standard and bagging-
based models in terms of forecasting  (the former—
significantly, the latter two—insignificantly).

Let us separately consider a series of exchange rate 
of exchange-traded shares: those of Sberbank of the 
Russian Federation. This series has heteroscedasticity. 
Since the stock rate is non-seasonal, only two approaches 
are possible for each neural network system: to make 
a forecast for the entire test period at once (integral); or 
to make step-by-step forecasts, declaring each new step 
as a part of the training sample to move to the next point 
in time. The plots of the ACF and PACF functions are 
shown in Fig. 7.

0.0	 0.5	 1.0	 1.5	 2.0 0.5	 1.0	 1.5	 2.0
Time Time

1.0

0.5

0.0

–0.5

0.6

0.4

0.2

0.0

–2.0

–0.4

–0.6

AC
F

P
ar

tia
l A

C
F

(а) (b)

Fig. 6. Diagrams of ACF (a) and PACF (b) functions for the time series of real volume  
of agricultural production according to macroeconomic statistics of the Russian Federation 
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Table 4. Stock price time series models for Sberbank of 
the Russian Federation

Time series model МАЕ RMSE
NBB 23.78 25.53
MBB 24.60 26.39
Stationary bagging 20.94 22,61
ARIMA 11.23 42.11
ETS 4.95 20.68
RNN network 80.53 86.39
LSTM model 76.95 81.40
GRU model 24.66 85.05

The best results are shown by classical methods of 
series modeling: ETS and ARIMA models. Stationary 
bagging shows slightly worse results, although 
significantly outperforming all neural network models. 
It should be noted that the standard ARIMA and ETS 
models describe the time series statistically better in 
the absence of seasonality. The main idea of bagging 
is to determine the properties of the noise component 
of the series. Obviously, it makes sense to do this for 
series with seasonal or cyclical patterns. Modeling 
noise for non-seasonal series does not lead to better 
forecasting (standard models gave better forecasts than 
models based on bagging application).

CONCLUSIONS

The work presents an analysis of different 
approaches to time series bagging and examples of their 
application to non-seasonal and seasonal time series. 
In computational experiments, the results of models 

applying bagging are compared with the forecasts of 
standard models (ARIMA and ETS), and models based 
on neural networks (RNN, LSTM, GRU).

When processing a  non-seasonal time series, 
modeling of the noise component did not improve the 
modeling of the whole series and its forecast. In this 
experiment, the best results among all three groups of 
models were obtained by ARIMA and ETS standard 
models. It should be noted that neural network models, 
often used in modeling processes of a different nature, 
gave forecasts of worse quality compared to ARIMA 
and ETS models (Table 4).

When modeling seasonal time series, the best 
results were shown by neural network models, actively 
used in time series modeling, and the LOESS method. 
Bagging-based models outperformed the standard 
ARIMA and ETS models. Bagging was better able 
to model the residual of the series  (which is obtained 
by removing the trend and seasonal component of 
the series). Thus, work on various bootstrap schemes 
should be continued and their accuracy improved. In 
addition, it may be possible to improve the accuracy of 
modeling and forecasting by working separately on the 
trend, seasonality, and residual. At the same time, it is 
not possible to determine which bootstrap type will best 
model the residual of a given series. Each type is best 
suited for a different set of seasonal time series. In this 
work, the different bootstrap approaches are implemented 
in the simplest form. Based on the experimental results, 
the work should be continued by editing the differing 
bootstrap features and combining the various approaches 
to model trend, noise and residual.
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