Russian Technological Journal. 2023;11(6):68-75 ISSN 2500-316X (Online)

Mathematical modeling

MaremaTHuecKoe Moae/JIMpoBaHue

UDC 517.926
https://doi.org/10.32362/2500-316X-2023-11-6-68-75 @)y |

RESEARCH ARTICLE

Properties of the Wronskian determinant of a system
of solutions to a linear homogeneous equation:
The case when the number of solutions is less than
the order of the equation

Dmitry A. Khrychev @

MIREA - Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: dakford@yandex.ru

Abstract

Objectives. The work sets out to study the properties of the Wronskian determinant of the system of solutions
to a linear homogeneous equation in cases when the number of solutions is less than the order of the equation,
comparing them with the known properties of the same determinant when the number of solutions is equal to the
order of the equation.

Methods. The work uses the methods of linear algebra according to the theory of ordinary differential equations,
as well as mathematical and complex analysis.

Results. Itis shown that the vanishing of a considered determinant on an arbitrarily small interval implies its vanishing
on the entire domain of definition; the solutions turn out to be linearly dependent. A stronger result is obtained in three
cases: (1) if the coefficients of the equation are analytic functions; (2) if the number of solutions is equal to one;
(3) if the number of solutions is one less than the order of the equation. Namely, if the set of zeros of the considered
Wronskian has a limit point belonging to the domain of definition of solutions, then the determinantis identically equal
to zero and the solutions are linearly dependent.

Conclusions. According to the obtained results, the Wronskian of a system of solutions of a linear homogeneous
equation can serve as an indicator of the linear dependence or independence of this system in cases where the
number of solutions is lower than the order of the equation; here, the solutions are linearly dependent if and only
if their Wronskian is identically equal to zero. In this case, there is no need to check whether the determinant vanishes
over the entire domain of definition, since it is sufficient to do this on an arbitrarily chosen interval or even (in the
special cases listed above) on an arbitrarily chosen set having a limit point.
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Peslome

Llenu. Lenbto paboTbl SIBNSIETCS M3ydeHre CBOMCTB onpenenmtens BpoOHCKOro cucTemMbl peLleHmnii IMHeMHOro ogHo-
poaHoro AnddepeHUnanbHOro ypaBHeHMs B Cllyydae, Koraa YMCo peLleHnii MeHbLUe nopsaka ypaBHEeHNs!, U CpaBHEHMEe
VX C U3BECTHbIMW CBOCTBAMM TAKOr O Xe ONpPeaennTens, HoO B Cllydae paBeHCTBa YMCa PeLleHni nopsiaky ypaBHEHWS.
MeTopabl. B paboTe ncnonb3oBaHbl MeToObl IMHENHOW anrebpbl U TEOPUN 0ObIKHOBEHHBIX AnddepeHLUmnanbHbIX
ypaBHEHUI, a Takke MaTeMaTUYECKOro 1 KOMIMIEeKCHOro aHanmaa.

PesynbTaTthl. [loka3aHo, 4TO o6palleHne B HyJlb paccMaTpMBaeMOoro onpenennTens Ha ckoslb yrogHo MasioM UH-
TepBasie Bne4yeT 3a cobon obpalleHne ero B HyJib Ha BCceil 0611acTu onpeaeneHns, a pelleHns Npn 3ToM okasbl-
BalOTCA JIMHENHO 3aBUCUMbIMKU. B Tpex cnyyasx: 1) ecnn KoaddUUMEHTbI ypaBHEHUS SBASIOTCS aHAIMTUYECKUMU
DYHKUMAMK, 2) eClv YACNO PELLEHUIA paBHO eanHnLe U 3) eCnuv YUCO PeLLeHnii Ha eauHuLy MeHbLUe nopsiaka
ypaBHeHUs1 — nony4eH 6onee CunbHbI pe3ynbtaT. IMEHHO, eciv MHOXECTBO HyJeli paccMaTpmMBaeMoro onpeae-
nutens BpoHcKoro nmeeT npeaesibHyo ToUKy, NpuHaafiexallyto obnacTn onpeneneHns peweHunii, To onpeaenm-
Tesb TOXOECTBEHHO PaBeH HyJIO 1 peLleHnst IMHeHO 3aBUCUMbI.

BbiBOoAbI. [1ony4eHHble pe3dynbTaTbl 03HAYal0T, YTO OnpeaenmTesib BpoHCKOro cucTemsl peLleHnin IMHeHoro oa-
HOPOOHOr0 YpaBHEHNS B CUTyaLMM, KOrga YACHO peLleHnin MeHbLUe Nopsiaka ypaBHEHUS, CIY>XUT UHOMKATOPOM Jin-
HelrHO 3aBMCUMOCTU UM HE3ABMCMMOCTW 3TON CUCTEMbI: PeLUeHUs IMHENHO 3aBMCKMMbI TOrga M TONbKO TOraa,
Korga ux onpegenutenb BpoHCKoro ToxaecTBEHHO paBeH Hysio. [Mpu 9ToM HeT He0HBX0AMMOCTM NMPOBEPSTL 0bpa-
LeHne onpeaennTens B Hy/lb Ha BCell 061acTu onpeaenieHns, 40CTaTouYHO CAeNiaTb 3TO HAa NPON3BOJIbHO BblOpaH-
HOM MHTepBasne Unn gaxe (B NepeyvncieHHblX Bbille YaCTHbIX Cllyd4asix) Ha NPOu3BOJIbHO BbIOPAHHOM MHOXECTBE,
MMeloLEeM NpeaesibHYIO0 TOUKY.

KnioueBble cnoBa: nvHenHoe ogHopoaHoe anddepeHumanbHoe ypaBHeHWe, onpenentens BpoHCKOro, Hynu
onpeaenutens BpoHcKoro, nMHenHas 3aBUCMMOCTb, IMHEHAs HeE3aBUCUMOCTb

e Moctynuna: 21.06.2023 » fopa6oTaHa: 03.07.2023 ¢ MpuHaTa k ony6nukosaHuio: 04.09.2023

Ana uutnpoBanusa: Xpoides [.A. CeoricTBa onpeaenntens BpOHCKOro CUMCTEMbI PeLleHUn IMHENHONO OAHOPOLHOIO
ypaBHEHWS: Cy4al, KOraa YMCno peLleHnin MeHbLUe nopaaka ypaBHeHus. Russ. Technol. J. 2023;11(6):68-75. https://
doi.org/10.32362/2500-316X-2023-11-6-68-75

Mpo3payHocTb GUHAHCOBOW AeATeNIbHOCTU: ABTOP HE UMeeT GMHAHCOBOWM 3aUHTEPECOBAHHOCTM B NPEACTaBNEH-
HbIX MaTepuanax uim mMeTogax.

ABTOp 3asBnseT 06 OTCYTCTBUM KOHMAMKTA MHTEPECOB.

INTRODUCTION differential equations, primarily in terms of checking the
linear dependence or independence of their solutions, is
One of the main tools of mathematical modeling  the Wronskian.
is ordinary differential equations, which serve as It should be recalled that the Wronskian of the system
models for describing a wide variety of phenomena and  of functions y,(x), y,(x), ..., y,(x), x € (a, b) consists in
processes [1-5]. In turn, an important tool for studying  the following function:
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W(x)= Wyw’zww)’k (x)=
N (x) s (x) Yk (x)
~ (%) V5 (x) Yy (%) )
W@ P L P

The Wronskian determinant theory is presented
in practically every textbook on ordinary differential
equations [6—12]; with few exceptions, such determinants
are based on n solutions to the nth-order linear
homogeneous equation. The remarkable properties of
such determinants permit their use as indicators of linear
dependence or independence of the considered system of
solutions. State more precisely, a system of n solutions
to the nth-order linear homogeneous equation is linearly
dependent if and only if the Wroniskian of this system is
identically equal to zero, and is linearly independent if
and only if its Wronskian is not equal to zero at any point
in the definition domain of the considered solutions.
It is also well-understood (see the corresponding
examples in [6, 9, and 12]) that the situation is quite
different for a Wronskian of a system of functions not
presenting solutions to a linear homogeneous equation;
the determinant can be zero, even identically, if the
functions are linearly independent. Otherwise stated, if
the Wronskian of some system of functions turns out to
be identically equal to zero, no answer to the question
about the linear dependence or independence of this
system could be obtained by this means.

Here, a natural question arises: would the “good”
properties of the Wronskian of a system of solutions to
the nth-order linear homogeneous equation be preserved
if we take k£ < n instead of » solutions? If so, could the
Wronskian of such a system be used just as effectively
to find out its linear dependence or independence?
This question is formulated, for example, in [9]; here
however, the study of this question is limited to an
example showing that the Wronskian of a linearly
independent system of k& < n solutions (in the example,
k =2 and n = 3), unlike that of a linearly independent
system of n solutions, can go to zero at some points of
its definition domain.

It is not difficult to provide an example for arbitrary
n and k<n, when the Wronskian of a linearly independent
system of solutions goes to zero even in an infinite set
of points. In what follows, we shall consider equation
Y +31=2) = 0, whose fundamental system of solutions
consists of the functions 1, x, x2, ..., X"~ 3, sin x, cos x.
For arbitrary £ <n — 1, we take the set of k£ solutions 1, x,
x2, ..., xk72 sin x (for k= 1, we take one solution sin x),
whose Wronskian coincides either with sin x or with cos
x to the nearest numerical factor and consequently has an
infinite number of zeros on the numerical axis.

The Wronskian of a system from the (z — 1)th solution
to the nth-order linear homogeneous equation is studied
in [13], where, in particular, it is shown that, in the case of
linear independence of such system, its Wronskian cannot
have an infinite number of zeros on any finite segment. In
the cited work, the case of arbitrary number of solutions
less than the order of the equation  is considered. The main
result is contained in Theorem 1 stating that the equality to
zero of the Wronskian of such system of solutions on any
interval implies its linear dependence. Thus, in the case of
linear independence of solutions, the Wronskian cannot be
zero on any interval, even an arbitrarily small one.

Theorem 2 shows that this result can be strengthened
in a number of special cases, including the above-
mentioned case k=n — 1. Precisely stated, the set of zeros
of the Wronskian of a linearly independent system of
solutions cannot have limit points in its definition domain,
and, hence, cannot have an infinite number of zeros on
any finite segment. For the case k=n — 1, a proof different
from that given in [13], which allows weakening the
conditions on the coefficients of the equation, is provided.

Thus, it can be said that the Wronskian of a system
of k < n solutions to the nth-order linear homogeneous
equation by its properties occupies an intermediate position
between the Wronskian determinant of an arbitrary system
of functions and that of a system of » solutions, according
to which properties such a determinant can be used to find
out whether the considered system of solutions is linearly
dependent or independent.

MAIN RESULT

We shall consider the following nth-order linear
homogeneous equation:

W ta, (D ey =0, ()

whose coefficients are a, (x), ..., a)x) € C(a, b),
—0<g<b<+oo,

As is known, any solution to such equation continues
over the entire interval (a, b). In the following, only
solutions defined on (a, b) are considered.

Let y,(x), ¥,(x), ..., y,(x) be solutions to Eq. (2),
k<n-—1, W)’l’)’z’-~-’)’k(x) be their Wronskian (1).
We shall also consider determinants of the following
form:

K0 W@y

(0L2) ((Xz) (az)
e B R (x) = N (x) ) (x) Vi (%)
VsVaoees Vg ool

WP W L )

where 0 < a, a,, ..., a; < n.
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It is clear that if among the numbers «, ...,

oq,09,...,0
woT2 Tk (x) =0, Th
Vs V2se o ( ) ¢

determinants W 192 "% with 0 < o, < @, < ...<
V1oV Vi - 1 2

<, <n — 1 will be called generalized Wronskians.

o, there

are coincident ones, then

Obviously, there are exactly C,If of different generalized
Wronskians of the system of & solutions including the

Wronskian Wy oo O.L,....k-1 itself. It should be

7yk T VY n Vg

noted that in the case of linear dependence of the system
of solutions y,, v, ..., y; on some interval (a, B) < (a, b)
(and hence, due to the uniqueness theorem of the solution
to the Cauchy problem, on the entire interval (a, b)), all its
generalized Wronskians are identically zero on (a, b).

LEMMA 1. Lety, y,, ..., Vi, k <n—1 be solutions
to Eq. (2), and let determinant Wy1 " (x) be
identically zero on some interval (o, B) C (a, b). Then for
an arbitrary solution y, , , all generalized Wronskians of
the system of solutions y|, y,, ..., ¥, , ; are identically
zero on (a, b).

The PROOF is carried out by induction on k. For
k=1, the statement is true due to the uniqueness theorem
of the solution to the Cauchy problem. Let us assume it
is true for some k <n — 2, and prove its validity for £+ 1.

Lety,, ¥, ..., ¥, be solutions to Eq. (2) and

Wyp e Vi (x)=0 Vxe(a,p)c(a,b). 3)
We shall take the one less order determinant

Wyl7""yk (x). There are two possible cases: either

..., Y (x)=0 on the interval (a, ) or x, € (a, p)

w,.. i (xg)#0 at some point. We shall consider
these cases.

1. Let Wyl""ryk(x)=0 Vxe(o,B). Then by

inductive assumption, all generalized Wronskians of solutions
V15 Yas -+ Yy 41 € identically zero on (a, b). Take an arbitrary
solution y, | , and consider the generalized Wrofiskian

W“l seen Oy . Decomposing it by the last column, we obtain:
Moo Vies2
Qs ey Opyn —
EREED) yk+2 (X)
(“1’(x> yé“”(x) e
N D)y @) Ly ()

_ k+3 (o) A),ens O
=Dy H(x )W 2 ykk1+2 (x)+

DR )W“l’“f;k () 4k

) (x )W“l’ ’“kﬂ (x)=0 Vxe(a,b),

and thus, the statement of the lemma is proved.

2. Now let WJ’p e (xp) #0 at point x, € (a, P).

Then due to continuity, Wy1’---’ e

interval (o, B,) containing point x,,. We shall show that
the functions y,, y,, ..., v, , ; are linearly dependent on
this interval.

(x)#0 on some

Dueto(3), the columns of determinant Wy1 v Viea] (x)

are linearly dependent at each point x € (a, B), i.e., there
exist constants A, (x), Ay(x), ..., A, , ;(x) being not equal
to zero simultaneously (in general, different for each
point x), such that

M@y () +. A (X)), () =0,
(4)
k k
M@ @)+ h L 0pE () =0.
It should be noted that at x € (a;, B;) A, , ;(x) # 0.

Indeed, otherwise, the following is obtained from the
first k equalities (4):

My () +. A (X)y (x) =0,
(5)
2 )V + g P =0,

from which A, (x) = A,(x) = ...
determinant of system (5) is determinant Wy

= M (x) = 0, since the
ey ()
not equal to zero on the interval (a,, ;).

For each x € (a,;, B;), we shall solve the equations
of system (4) with respect to the function y, , | and its
derivatives, as follows:

Vir1 () = () y (X)) +..o 4+ 1y () yy (X)),
Viee1 () =R ()1 (%) +.. 4 py () g (%),

2800 =y )y P @)+ (P (),

where 1 (x) = =4, (x) /Ay, (x),i =Lk.

Considering the first £ equalities in (6) as a system
of linear algebraic equations with respect to unknowns
1, (x), ..., w(x), and with the same nonzero determinant,
the following is obtained:

(€9 J—

V1o Vi—15) + 7y'+ seee) .
1 i—1>7k+1>Yi+1 k ,l 1’k’

Hi(x) =
ooy )

from which, in follows  that

K, (x)e C! ((11 »Bl)-

Next, we proceed as follows. We differentiate both
parts of the first equation from (6) and subtract the
second equation from the resulting equality:

particular, it
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0=p )y () +...+p, ()y(x), x € (o, By)- The
same is done with the second and third equation, the
third and fourth equation, etc. As a result, the following
homogeneous system of equations with respect to

derivatives pj(x), ..., i (x) is obtained:

0=p(X)y () +... 4 Wy ()3 (%),
0= p () y;(0) +... 4+ py () 3y (%),

0= V) + i (0 T (),
the determinant of which is Wyl, Y (x)#0 again.
Hence, it may be concluded that pj(x)=...=u; (x) =0
Vx e (o,By), and therefore 1, (x), ..., j1,(x) are constants.
Thus, due to the first equality in (6), solutions
V1> Yps -+s Vi 4 are linearly dependent on the interval
(a;, B;) and hence on (a, b). If an arbitrary solution y, , ,
is taken now, then all generalized Wronskians of the
linearly dependent system y,, ..., ¥, , |, ¥, , would be
identically zero on (a, b). The lemma is proved.

Now, the main result of the work can be easily
established.

THEOREM 1. Let y(x), yy(x), ..., y(x) k<n—1
be solutions to Eq. (2), and let
Wyp o Y (x)=0 Vxe(a,p)c(a,b). Then functions
V|> Vos ---» ¥ are linearly dependent on the interval
(a, b).

PROOF. Suppose that solutions y,, y,, ..., y, are
linearly independent. We supplement the system
V1> Vs +--» V;, to the fundamental system of solutions y,,
Vs voos Vo Vi s 1> > ¥, Of EqQ. (2). Applying Lemma 1
sequentially, it may be concluded that W (x) =0,

Yo oo Vsl
Vo s Vean (x)=0, ..., Wyl’m’yn (x)=0 on (a, b). But

the equality to zero of the Wronskian of the system of
n solutions even at one point means their linear
dependence. The obtained contradiction proves the
theorem.

SPECIAL CASES

The following result shows that in some cases for
linear dependence of solutions y|, y,, ..., itis sufficient
to zeroize the Wroniskian WJ’p---a Ve (x) on the set having
a limit point.

THEOREM 2. Let the set of zeros of the Wronskian
WYp Y (x) of solutions y,(x), y,(x), ..., y(x) k<n—1
to Eq. (2) have the limit point x, € (@, b). Let, further,
one of the following conditions be satisfied: (a) the
coefficients of Eq. (2) are analytic functions (in particular,
constant values) on the interval (a, b); (b) k£ = 1;
(c) k=mn — 1, and the coefficients of Eq. (2) satisfy the
following smoothness conditions:

ay(x) € C(a,b), a;(x)e C'Y(a,b), 1=1,2,....n-2,
a, | (x)eC"3(a,b).

Then solutions y|, y,, ..., y, are linearly dependent
on (a, b).

PROOF. If condition (a) is satisfied, all solutions to
Eq. (2) are analytic functions on the interval (a, b)
([14],Ch. 1, § 6), and hence the Wronskian Wyl’ v (%)

is analytic on (a, b). By the uniqueness theorem for

.....

on the interval (a, b), and it remains to refer to
Theorem 1.

Let condition (b) be satisfied, i.e., £ = 1. The
Wronskian of one solution is the solution itself, so our
statement is an obvious consequence of the uniqueness
theorem of the solution to the Cauchy problem.

We shall finally consider case (c). It should be noted
that the result of differentiation of any generalized

L. Oy, ey . . . .
Wronskian Wyl1 yk" is a linear combination of some
set of generalized Wronskians of the same solutions

Vs Vs -+ Yy Indeed, if @ <n — 1 in our determinant, then

i 01,00y 5.0 Ol :W(x1+1,a2,...,ak
dx y]ayZa---,yk ylayZa---ayk

oy ,0n+],..., 0 Oly,0ln,..., 0 +1

1-%2 k + W 12 k ,
Y1V Vi NoY2sees Vi

+

(7

where some of the obtained determinants may be equal
to zero due to the presence of coincident lines in them.

If oy, = n — 1, then the last line of the last determinant
in (7) will contain the nth derivatives of functions
V15V -5 ;- Replacing the nth derivative of each solution
by a linear combination of lower order derivatives due to
Eq. (2), the following is obtained:

Olps s O _ Op5 -enr O 5011
VYoo oo Vi n-1 VoV2s oo Vi (8)
Oy ey O _1,n—2 _ o5 -ee O 150

—a e—a
n—2 V1Yo oo Vi 0 VYoo Vi

Each of the determinants in the right-hand side of (8)
is either zero or coincides with one of the generalized
Wrofiskians of solutions y,, ..., y,.

We shall apply these observations to the case of
k = n — 1. It should be noted that there are exactly

n different generalized Wronskians of solutions
Vi e Y, to Eq. (2): the Wronskian
0,1,...,n-2 . .
W — sy >
Voo Iy oo Pt itself, determinants of the
0,1, ...,I-LI+1, ..., n—1 1,2,...,n-1
W ohy > 5! > > W 2%y > A
o I form, and, finally, Vi1 We
simplify the notations assuming Wy] Yyt = w,
O
0,1,..., I-LI+1, ..., n—1 1,2, ..., n-1
sty > > > > — W and W 2% > — W .
Vi oo Yl I D ERTE 0

Differentiating the determinants /# and W, according to
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Egs. (7) and (8) and discarding the resulting determinants
equal to zero, the following is obtained:

W! = Wn_2 . (9)

W/ =W, —a, W, - aw,
l=n-2,1

(10)

We show that the Wronskian derivatives W of
order 2 to n — 1 are expressed through the generalized
Wronskians using the following formulas:

n-2
w =w, _ it D« AW B (W,
I=n—j (11)

j=2,n-1,

where functions o ;(x),;(x) C" i Y(a,b) (we
already have Eq. (9) as the expression for the first
derivative).

Indeed, we obtain the formula for W" by
differentiating (9) and substituting W,_, according
to (10): W'=W, _s-a, W, ,—a, ,W, which
corresponds to (11), and the coefficients at the
determinants in the right-hand side are functions of the
C"3(a,b) class due to the condition of the theorem.
Further, assuming that formula (11) is true for some j,
2 <j < n — 2, then, differentiating both parts of it and
using (10), the following is obtained:

W(j+1) p— Wn o~ an—an_j_l - (_1)]+1 an_j_lW +

-J
n—2

£ X [0 oy 0Py —a, Y~ D))+
I=n—j

n—2

! pa—
+ BjW"'BjanZ = anj72 + Z ajHJWl +Bj+1W’
I=n—j-1
where O =1 = "y T O
— ! —
Oy = Oy = Oyl + 0y

l=n—j,n—j+1,...,n=3 (for j=3),
g2 = 0 =0, 0a, |+,
n=2
_ j -l ’
Bin=CDa, ;- > (= o jyay + P
I=n—j
It can be easily seen that due to the inductive

assumption and the conditions of the theorem concerning
the smoothness of the coefficients of equation

Qgps B € C"~J=2(a,b), and thus (11) is proved.

Now let x = x,,in (9) and (11). The point x,,, being the
limit point for zeros of function W(x), is such due to
Rolle’s theorem, and also for zeros of its derivatives
W'(x),..., W D(x). Hence, due to continuity,
W(xg)=W'(xy)=...=W"D(x,)=0. We obtain
a linear homogeneous system of algebraic equations with
respect to the unknowns W, ,(x,), W, _5(x,), ..., Wy(x,)
with triangular determinant different from zero:

0=W,_»(x),
n=2
0= Wn—j—l (xo) + z Q7 (xo)Wl (xO)’
I=n—j
j=2,n-1,
from which W,_,(xy) =W, _3(xy) =...=W,(x,) =0.

Then we use the already familiar technique:
assuming that solutions y,, ..., y,, are linearly
independent, we add one more solution to them to obtain
the fundamental system of solutions y,, ..., v, ;,y, and,

decomposing determinant Wy1 by the last column,
yees Vg

5y
we obtain Wyl,..., », (xg) =0, which means linear
dependence y,, ..., y,. The obtained contradiction proves
the linear dependence of solutions y,, ..., y, ;. The
theorem is proved.

COROLLARY. Let y;(x), y,(x), ..., y(x), x € (a, b)
be linearly independent solutions to Eq. (2). Then
their Wronskian cannot be identically zero on any
interval (o, B) € (a, b). If one of conditions (a), (b)
or (c¢) of Theorem 2 is satisfied, then the set of zeros
of the determinant W(x) cannot have limit points
on the interval (a, b), or, equivalently, W(x) cannot
have an infinite number of zeros on any interval

[a, B] = (a, b).
CONCLUSIONS

It follows from the above results that, in cases
where the number of solutions is less than the order of
the equation, the Wronskian of a system of solutions
to a linear homogeneous equation can be used to
check whether the system is linearly dependent or
independent; the solutions are linearly dependent if and
only if their Wronskian is identically equal to zero, and
independent if the determinant is different from zero
in at least one point. In this case, as Theorems 1 and 2
show, the verification of the identical equality to zero
of the Wronskian over the entire definition domain can
be replaced by the verification of its equality to zero on
a significantly smaller set, which facilitates the practical
application of the results obtained.
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