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Abstract

Objectives. A valley is a region of an objective function landscape in which the function varies along one direction
more slowly than along other directions. In order to determine the error of the objective function minimum location
in such regions, it is necessary to analyze relations of valley parameters.

Methods. A special test function was used in numerical experiments to model valleys with variables across wide
ranges of parameters. The position and other valley parameters were defined randomly. Valley dimensionality and
ratio were estimated from eigenvalues of the approximated Hessian of objective function in the termination point
of minimum search. The error was defined as the Euclidian distance between the known minimum position and the
minimum search termination point. Linear regression analysis and approximation with an artificial neural network
model were used for statistical processing of experimental data.

Results. A linear relation of logarithm of valley ratio to logarithm of minimum position error was obtained. Here,
the determination coefficient R2 was ~0.88. By additionally taking into account the Euclidian norm of the objective
function gradient in the termination point, R2 can be augmented to ~0.95. However, by using the artificial neural
network model, an approximation R2 ~ 0.97 was achieved.

Conclusions. The obtained relations may be used for estimating the expected error of extremum coordinates
in optimization problems. The described method can be extended to functions having a valley dimensionality of more
than one and to other types of hard-to-optimize algorithms regions of objective function landscapes.
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Pesiome

Lenu. LUenbio paboTkl 66110 MCCnefoBaHne 3aBUCMMOCTEN, CBA3bIBAIOLLMX XapakTePUCTMKM OBParoB, T.e. y4acT-
KOB penbeda MUHUMN3NPYEMOWN PYHKLIMK, HA KOTOPbIX €€ U3SMEHEHME MO OAHOMY U3 HanpaBIeHUn 3HAYUTENbHO
MeNIeHHee, YeM Mo APYrMM HanpasieHUsM, C MOrPeLLIHOCTbIO ONpeaeneHns KOOPANHAT €€ MUHUMYMA.

MeTopabl. B akcneprmMeHTax ncnonb3oBanachk creunanbHo pasdpaboTaHHas TecToBas GYHKUUS C N3MEHAEMbIMUA
B LUMPOKMUX Npeaenax napameTpamm OBPaXKHOCTU. B cepursx onbITOB cryyaiHo 3a4aBanvch NOJIOXKEHME U NapamMe-
TPbl OBpara 1 KoopanHaTbl CTApPTOBOM TOYKM NOUCKA. PasamMepHOCTb 1 CTEeNEHb OBPaXHOCTU OLEHUBANINCL N0 CO6-
CTBEHHbIM 4MCnam annpokKCUMMPOBAHHOIO reccrmaHa GyHKLMM B TOYKE OKOHYaHUS novcka MuHumyma. Morpetu-
HOCTb OMNpeaensanach kak 3BKJIMA0BO PACCTOAHME MEXAY 3a4aHHbIM MON0XKEHNEM MUHUMYMA DYHKLMN 1 KOHEYHOM
TOYKOWM noucka. [na cratucTnyeckor o6paboTkM pe3ynbTaToB NMPUMEHEHB! JIMHENHbIA PErpeCCUMOHHbIA aHann3
1 annpokcUMaLms ¢ MOMOLLbIO MOAENN UCKYCCTBEHHOM HelpoHHol ceTn (MHC).

Pe3ynbTaTtbl. YCTAHOBNEHO HaNM4Yne NNMHEHON 3aBUCUMOCTN MexXay norapudmMamm CTeNeHn oBPaxHOCTU 1 Mo-
FPeLUHOCTU ONPeAeNieHns KOoOpaMHaT MUHUMYMa GyHKkumK. KoadbdpuumeHTt getepmmHaummn R2 ~ 0.88. Jononnu-
TeNbHbIA YYET 9BKINAOBON HOPMbI FrpagneHTa GyHKLMM B TO4KE OKOHYaHMS noucka no3sBoauni NoBbICUTL KO3 dU-
LMEHT geTepmuHaumm go R2 ~ 0.95, a npu ncnonb3osaHum mogenv MHC — oo R2 ~ 0.97.

BeiBoAbl. HaaeHHblE 32BUCMMOCTM MOXHO MCMOMb30BaTb AN OLLEHKM OXMAAEMOW MOrpeLlHoCcTU onpenene-
HUS KOOPAMHAT 9KCTPEMYMOB ONTUMMU3UPYEMBIX GYHKLMIA. B panbHeliem HeoOXoAMMO paclumpuTb METOAUKY
Ha GYHKLUMKM C pa3MePHOCTLIO OBParoB 6onee eauHNLBI 1 Ha ApYrne TUMbl CIIOXHbBIX A1 anropuTMOB ONTUMM3ALLUN
y4acTKoB penbeda.

KnioueBble cnoBa: penbed ueneBor GyHKLUNM, OBPaAXHOCTb penbeda, CTeneHb OBPaXHOCTU, Pa3MEPHOCTb OB-

PaXXHOCTU, COOCTBEHHbIE 3HAYEHUSA reccuaHa, NMHeliHaa perpeccus, annpokcumMauus, MCKYCCTBEHHAs HelMpoHHasa ceTb

¢ Moctynuna: 10.04.2023 » fopa6oTaHa: 19.05.2023 ¢ MpuHaTa k ony6nukoeaHuio: 07.09.2023

Ana untupoBaHua: CmupHos A.B. ViccnegoBaHue BAUSHUSA CTEMEHU OBPaXHOCTU LENeBON OYHKUMWU HA MOrpeLd-
HOCTb ONpeeneHnsa KoopaguHat ee muHumMmyma. Russ. Technol. J. 2023;11(6):57-67. https://doi.org/10.32362/2500-
316X-2023-11-6-57-67

Mpo3payHocTb GUHAHCOBOW AEeATEeNIbHOCTU: ABTOP HE nMeeT GUHAHCOBOWV 3anHTEPECOBAHHOCTM B NPeACTaB/IEH-
HbIX MaTepuanax uam metogax.

ABTOp 3asB/155€T 06 OTCYTCTBUM KOHDJIMKTA UHTEPECOB.

INTRODUCTION are known, both those having a sufficiently rigorous
mathematical justification and which are applicable in

The problem of searching for an optimal solution of  ¢qe5 where OF satisfies certain conditions (convexity,

X, 18 formulated as follows: smoothness, etc.) [1, 2], as well as heuristic methods
that do not impose strict requirements on the OF
Xope = argmin f (x), (1) properties, but also do not guarantee finding the optimal
xex solution [3, 4].
where X is the search area, while f(x) is the objective The possibility and accuracy of solving problem (1)

function (OF). Numerous methods for solving problem (1)~ are determined by the properties of both the OF and
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the search algorithm. In this connection, considerable
research attention is attracted to an analysis of the OF
landscape where the landscape is understood as a set
of pairs {x € X, f(x)}. In this case, since the analytical
expression of the function f{x) is absent, its values have to
be found by modeling the optimized system (black-box
optimization problems). This research direction is
referred to as exploratory landscape analysis (ELA).

In [5] and other works by the same group of
authors, the classification of high-level OF landscape
properties, determined qualitatively by the method of
expert evaluation, and low-level properties, evaluated
quantitatively by processing the results of the OF
calculations atsampling points and the results of searching
for OF extrema from the starting points, is given. High-
level properties include multimodality, i.e., the presence
of many local extrema, regularity and uniformity of the
OF landscape properties in the search area, the presence
of plateaus, and others. Low-level properties include
statistics of the OF values, curvature and convexity
indices, correlation indices of differences between OF
values and distances between sampling points, and many
others. In [6], more than 300 low-level properties are
considered; a list of publications on this subject is also
provided. Machine learning technologies [5, 7] are used
to search for statistical dependencies between low- and
high-level properties, as well as between landscape
properties and the performance of various optimization
algorithms on this landscape.

However, the above mentioned and other works
known to us almost do not consider such OF landscape
objects as valleys, i.e., areas in which OF along one
or more directions changes significantly slower than
along other directions [8], and walls representing OF
sharp changes along any direction [9]. Meanwhile, in
the presence of such objects, the search may end not
at the extremum, but at some other point at the bottom
of the valley or at the foot of the wall. In such case,
optimization algorithms would find incorrect solutions.
The problems related to the detection of these objects
in the OF landscape and estimation of their quantitative
characteristics have been little investigated.

Theoretical aspects of the occurrence of valleys in
the landscape and methods of solution search in their
presence are considered in [8]. Of the several definitions
of valley proposed in this study, we use the most
convenient for use in applications, which we present
below with some simplification (by omitting additional
conditions).

Let D be some region of the n-dimensional space R”;
let J(x) € C3(D) be a functional with continuous second
derivatives in D; let H(x) be the matrix of second
derivatives (Hessian) of functional J(x) at point x; and

let A,[H(x)], ¢ =Ln be eigenvalues of Hessian H(x) at
point x ordered by descending.

The functional is called valley, i.e., it contains
a valley, if there is such number ¢ > 1 and set Q € D,
that

This means that the largest (n — r) eigenvalues
of the Hessian are significantly larger than the
other r eigenvalues at all points x belonging to the
valley region Q. The number r is called the valley
dimensionality; the number ¢ is called the valley ratio.
The valley ratio shows to what extent in a given valley
the rate of change of the OF along its bottom is smaller
than along the directions orthogonal to the bottom.
These indicators can be generalized as characteristics or
indicators of the landscape’s valley.

The result of the presence of valleys in the OF
landscape, as noted above, consists in the error in
determining the coordinates of the OF extrema; therefore,
this error can serve as an objective characteristic of the
valley. In practice, it is impossible to estimate the error
directly when searching for the OF minimum since the
true position of the minimum is unknown. At the same
time, the valley ratio can be estimated on the basis of
definition (2). In this connection, it is of interest to
investigate the dependence linking the above error with
the valley ratio. This task is not considered in [8] or
other relevant works known to us; a practical means for
estimating the valley ratio when searching for the OF
minimum is also absent.

We also note [10], which introduces the definition
of a valley as a one-dimensional set using the notion of
topological homeomorphism. It also presents a method for
determining the position and direction of a valley based
on selecting a subset of points with the lowest OF values
from a set of sampling points and applying the principal
component analysis method to this subset. Quantitative
characteristics of the valley are not considered in
this study. In [11], the OF landscape properties of the
well-known combinatorial traveling salesman problem
are studied; this landscape is shown to contain groups of
closely spaced depressions, also called valleys; however,
these results are not applicable to optimization problems
for functions of continuous variables.

The present work aims to investigate the dependence
of the error in determining the coordinates of the
sought OF minimum on the valley characteristics in the
neighborhood of the search end points.

Achieving this goal requires performing a series of
experiments on searching from different starting points
for the OF minimum with varied valley parameters
including its position, orientation relative to the
coordinate axes, slope steepness and curvature, etc.
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At the end of each search, it is necessary to determine
the OF Hessian eigenvalues, and according to them, the
valley dimensionality and the valley ratio in accordance
with definition (2). In addition, the error equal to the
distance of the search end point to the true position
of the OF minimum must be calculated in order to
analyze the statistical relationships linking the valley
characteristics and the error in determining the OF
minimum coordinates.

MATERIALS AND METHODS

First of all, it is necessary to choose a method for
finding the OF minimum. The error of the minimum
coordinates in the presence of valleys may significantly
differ for different optimization algorithms. After
selecting an algorithm and performing experimental
studies, it would be possible to construct the valley
estimation scale against which the results of other
algorithms could be compared.

In the paper, the quasi-Newton (QN) Iocal
search algorithm implemented in MATLAB software
environment by the fmincon(..) function is used. This
type of algorithm is recommended in [6] as an exemplary
one for searching local extrema of test functions when
evaluating OF landscape properties. In addition, in
QN methods, the Hessian approximation is an integral
part of the algorithm at each iteration and, therefore, is
automatically obtained at the final search point [1].

The list of output variables of the fmincon(..)
function includes the vector of coordinates of the search

end point x;, , the OF value f; at point xg , the reason
indicator for the search end ExitFlag, the OF gradient
vector, and the Hessian approximation at point x in the
form of the real numbers matrix. In the input variables,
we set the boundaries of the search area

—5<x, <5, i=1,ND, 3)

variant of the sequential quadratic programming (SQP)
search algorithm, maximum number of iterations in each
search is 1000, and other settings are default.

Next, we consider the OF used in the experiments.
Sets of test functions [12, 13] are used for testing and
comparing search algorithms for extrema. Although some
of them possess the valley property, there is no function
in which the valley parameters could be changed within
wide limits. For this reason, the TestValley(..) function,
whose text in MATLAB language is shown in Fig. 1, has
been developed.

Here, x stands for coordinates of the point where the
function value is calculated, X oot and fopt are specified
coordinates of the minimum point and the function value
in it, and R is the orthonormalized matrix specifying the
rotation of coordinate axes. These parameters allow
different positions and orientations of the valley to be
obtained in the search space. Parameter N defines the
valley dimensionality. Parameter /¥ defines the curvature
of the valley slopes. At W = 1, OF is quadratic, i.e.,
convex and smooth. At 1 < W < 0.5, OF is convex, but
not smooth. At W= 0.5, OF increases linearly. Finally, at
W<0.5, OF is concave. Parameter K sets a uniform scale

£3Te=scValley - Valley modeling with variable parameters
function £ = TestValley(x, fopt,xopt,R, B, W, K, HN)

33P - Type of scaling on different coordinates

%3¥P=0 - S5ame acceleration rate for all x(i),

¥%¥F>0 - AT J > 1,

the accretion rate along x(Jj)

i>N
iz faster than along x(i)

23W - Type of dependence on the distance to the bottom of the valley

$3W=0.5 - Linear function

£%W<0.5 - Concave function; W>0.5 - convex function

23K - Total =scale factor in directions from the wvalley axis
33N - Valley dimesionality

n=length (x)
z0=(x—-xopt) =R;
L=eye (n);

for ni1=l1:n

L{nl,nl)=10"(B*(nl-1)/2/(n-1)):

end
z1=z0%L;
z3=z1."2;

f =sum(z3(1:N),2)+E* (sum(z3 (N+1l:n),2) ) "W+fopt:

end

Fig. 1. Text of the program implementing the TestValley(..) function
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(a)
Fig. 2. Graphs of the TestValley(..

of the OF growth rate in all directions, while parameter
P affects the OF anisotropy. At P = 0, OF grows at the
same rate in all directions while at P > 0, the growth rate
in different directions is different; these differences are
greater the greater P is.

Examples of function graphs at the search space
dimensionality ND = 2, parameters P=0, K=10, N=1,
and different values of parameter ¥ are shown in Fig. 2.

Coordinates of starting points in the number of NPnt
within the boundaries of the search area (3) are set using
the Latin hypercube sampling algorithm implemented
in MATLAB by the lhsdesign(..) function. The value of
function f;  in the minimum is set equal to 0. In the paper,
only one-dimensional valleys at N = 1 are investigated.
The values of other parameters are set by random numbers
with uniform distributions in the following ranges:

3 <Xy €3, i=1,ND;
0<P<I; 025<W <125, (4)
0<IgK <4.

The rotation matrix R is formed as a square matrix
ND x ND of random numbers uniformly distributed in
the interval (0, 1) with subsequent orthogonalization
using the MATLAB orth(..) function. Setting the above
parameters is possible both separately for each start, as
well as once for the whole series of NPnt starts.

Calling the minimum search function and processing
the results returned by it are explained by the program
fragment in Fig. 3. In variables X, and GF|, the

F(xq, X5)
—_ N W
ago O O O

) function: (a) W=0.5; (b) W=0.25

coordinates of the search end point x;;  and the OF value
J, in it are returned, respectively. The arrays grad and
hess contain the gradient vector and the approximated
Hessian matrix, respectively. The @FEval pointer
contains a reference to call the TestValley(..) function,
which sets its input parameters as described above.

The program finds the eigenvalue vector of
the Ehess Hessian and orders them by ascending
absolute value in the HessEV array. Then the relations
of adjacent values stored in the SOhess array are
calculated. Finally, the estimation of the valley ratio
SValley as the maximum of these relation values and
the valley dimensionality NValley as the number of
the maximum value in the array is determined. This
definition of the wvalley ratio and dimensionality
corresponds to the above definition (2), with the
unprincipled difference that the ordering of the
Hessian eigenvalues is performed in ascending rather
than descending order. The error in determining the
coordinates of the minimum DX opt is calculated as the
Euclidean distance between points Xt and xg .

The dependencies between variables are analyzed
using two methods. The first one is linear regression
analysis [14]. The MATLAB fitlm(..) function which
approximates the linear model using the original data
is used for implementing it. The second method is
training the artificial neural network (ANN) model that
approximates the desired dependence [15]. For this, the
fitnet(..) function creating the ANN model with a given
structure and the #rain(..) function performing the model
training and testing are used.

[X1,GF1,ExitFlag,~,~,grad, hess]=fmincon (@FEval,Xin, [1,[),([],[],Llb,Ub, [],MICoptions):;

Ehess=eig (hess);

HessEV=sort (abs (Ehess)):
SOhess=HessSEV (2:end) ./HessEV(l:end-1);
[SValley,NValley]=max (SOhess):

$ wvalley ratio and dimensionality

Fig. 3. Search function call and estimation of valley parameters at its end point
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RESEARCH RESULTS

First, we consider the results of preliminary
experiments presented in Fig. 4 giving insight into
the influence of the valley ratio on the error of finding
the minimum point of the TestValley(..) function. The
dimensionality of problem ND = 4, the number of starts
NPnt = 40, the position of the minimum, and the valley
rotation are set once for the whole series. The input
parameters of the function are shown above the diagrams
showing the movement from the start point (red markers)
to the end point x;;  (blue markers). One diagram shows
the changes in all four coordinates, with circles marking
coordinates x; and x, and triangles marking coordinates
x5 and x,.

In the case of weak valley (Fig. 4a), the search
from all starting points comes to the neighborhood of
the minimum point of the test function. The average
value of error DX is 0.019 in this case. In the case
of a strong valley (pFig. 4b), the searches starting from
different points end in different points scattered along
the valley bottom. In this case, the average DX, value
reaches 9.2.

Then a series of experiments are performed to reveal
the dependence between the estimation of the valley ratio
SValley and the error of finding the minimum point of the
test function DX opt: The dimensionality of the ND space
varies within the range from 2 to 12. Each experiment
includes 12 - 103 starts, in each of which the random
position of the search starting point, the position of the
minimum x__, and the rotation R of the TestValley(..)
function, as well as the valley parameters P, W, and K in
the ranges defined by inequalities (4), are set.

The experimental results for all ND values are
similar. As an example, Fig. 5 shows histograms of the

SQPP=1,W=0.5,K=10

Xy, Xg

(a)

values of the experimental results for ND = 4. Due to the
wide ranges of SValley and DX values, their logarithms
are analyzed and plotted. It can be concluded from the
scatter plot of these variables shown in Fig. 6 that there
is a stochastic dependence between them.

Notably, the value ExitFlag = 1 corresponds to the
search end when the gradient modulus at the reached
point does not exceed the specified OptimalityTolerance
value (107 by default), while the value ExitFlag = 2
corresponds to the search end when the last movement
during the search does not exceed the specified
StepTolerance value (also 107° by default). In the second
case, the modulus of the OF gradient at the search end
point can be much larger than OptimalityTolerance since
the OF smoothness conditions are violated on the valley
axis (Fig. 2).

There is not a single case when the search ends
due to exceeding the specified number of iterations
(MaxlIteration = 1000) or due to the algorithm being
unable to find an acceptable point for further movement.
Thus, all search starts end at points that the algorithm
determines to be a local minimum. Similar results are
recorded for all dimensionality values of the ND space.

Next, in most starts, the valley dimensionality is
correctly determined at the search end point NValley = 1.
At ND = 4, the valley dimensionality is determined
incorrectly at 1092 points. These points (colored in
black in Fig. 6) are all located in the region where the
search error DXopt is negligible and the valley ratio
SValley < 1000. At ND > 4, estimations NValley > 3
are encountered, but also only in the region
lg(DXopt) < —4. At ND = 2, values NValley > 1 are
obviously impossible.

We proceed to the statistical processing of the data
collected in the experiments. The influence of parameters

SQPP=1,W=0.25,K=10000

Ay LS -
Q‘,‘c{\‘“ﬁ?
R

Xy, X3
(b)
Fig. 4. Results of TestValley(..) minimum search for weak (a) and strong (b) valley
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Fig. 5. Histograms of the main experiment results. ExitFlag is the reason indicator for search end; NValley
is the estimation of valley dimensionality; SValley is the estimation of valley ratio; DXopt is the error in determining the
position of the OF minimum

P, W, and K of the TestValley(..) function on the valley
ratio SValley is analyzed beforehand. The following
linear model is studied:

lg(SValley) = k\P + k, W + k;lg(K) + b. (5)

The regression analysis of this model shows that the
valley ratio is most strongly influenced by parameter
W determining the curvature and convexity or concavity
of the valley slopes. Parameter K is the next to contribute
to the result, while the influence of parameter P is the
least significant, although it cannot be neglected. The
values of the coefficient of determination RZ, used for
determining the adequacy of model [14], are within the
range of 0.88—0.90 for different NDs.

Next, the linear model linking the error of finding
the OF minimum point with the estimation of the valley
ratio is considered:

lg(DX Opt) = klg(SValley) + b. (6)
The regression analysis results are shown in Table 1,

where the first group of columns corresponds to the
accounting of all points while the second group excludes

SQPND=4,NT=12000,N=1

0 2 4 6 8 10 12 14
Ig(SValley)

|
[ee]

Fig. 6. Scatter plot of the logarithm values of the valley
ratio SValley and the error in determining coordinates
of the minimum DXOpt
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points with NValley > 1. This data selection results in
some improvement in the model accuracy expressed in
increasing coefficient of determination R? and decreasing
root-mean-square (RMS) error (residual) of regression
StdErr.

Next, the possibility of improving the model
accuracy by taking into account the Euclidean norm
(length) of the OF gradient vector ||grad|| at the search
end point is investigated. The following linear model is
considered:

Table 1. Results of the regression analysis of model (6)

lg(DXOpt ) =k 1g(SValley) +k, lg("grad") +b. (7)

The regression analysis results of this model are
given in Table 2. As for the previous model, cases
including all points and excluding points with NValley > 1
are distinguished. Notably, the correlation coefficient
of wvalues lg(||grad||) and lg(SValley) at different
dimensions of ND space varies from 0.91 to 0.95,
i.e., the correlation is significant. Nevertheless, taking
the gradient norm into account provides additional

All points Points with NValley > 1 are excluded

i b k R? StdErr b k R? StdErr
2 —6.97 0.564 0.846 0.825 — - - -
3 —6.81 0.675 0.855 0.755 —6.98 0.702 0.856 0.747
4 —6.80 0.714 0.881 0.686 —7.08 0.758 0.885 0.666
5 —6.82 0.744 0.882 0.685 =7.15 0.797 0.884 0.667
6 -6.79 0.756 0.884 0.674 =7.09 0.806 0.885 0.660
7 —6.72 0.757 0.883 0.673 —=7.03 0.808 0.886 0.656
8 —6.69 0.766 0.876 0.700 =7.00 0.817 0.878 0.687
9 —6.63 0.764 0.874 0.700 —6.94 0.816 0.877 0.684
10 —6.60 0.772 0.868 0.712 —6.93 0.828 0.869 0.699
11 —6.59 0.777 0.865 0.716 —6.90 0.830 0.868 0.702
12 —6.54 0.779 0.857 0.740 —6.86 0.834 0.859 0.729

Table 2. Results of the regression analysis of model (7)
All points Points with NValley > 1 are excluded

e b k, k, R? StdErr b k, ky R? StdErr
2 —-3.53 0.041 0.526 0.936 0.534 - - - - -
3 —-3.84 0.125 0.464 0.929 0.529 -3.97 0.145 0.469 0.937 0.495
4 -3.91 0.163 0.453 0.935 0.507 —4.08 0.184 0.475 0.950 0.439
5 —4.01 0.196 0.438 0.936 0.502 —4.15 0.209 0.479 0.956 0.411
6 —3.98 0.198 0.442 0.937 0.495 —4.07 0.201 0.490 0.956 0.407
7 —3.95 0.199 0.444 0.938 0.490 —4.06 0.204 0.491 0.959 0.395
8 —3.86 0.184 0.460 0.939 0.492 -3.99 0.196 0.501 0.959 0.398
9 —3.89 0.195 0.451 0.937 0.493 —4.02 0.208 0.492 0.959 0.394
10 —3.84 0.190 0.456 0.937 0.492 —4.02 0.211 0.493 0.958 0.397
11 —3.84 0.194 0.458 0.936 0.494 —4.00 0.212 0.496 0.958 0.397
12 —3.84 0.195 0.454 0.934 0.501 —4.03 0.218 0.490 0.957 0.401
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Table 3. Approximation results using ANN models

Approximation along lg(SValley) Along lg(SValley) and 1g(||grad||)
ND All points Without NValley > 1 All points Without NValley > 1
R? StdErr R? StdErr R? StdErr R? StdErr
2 0.863 0.777 - - 0.954 0.451 - -
3 0.881 0.685 0.877 0.691 0.952 0.437 0.953 0.425
4 0.906 0.609 0.904 0.608 0.959 0.404 0.963 0.378
5 0.904 0.617 0.900 0.618 0.960 0.399 0.966 0.360
6 0.907 0.602 0.904 0.603 0.959 0.402 0.965 0.364
7 0.908 0.598 0.906 0.595 0.961 0.388 0.969 0.341
8 0.903 0.621 0.900 0.622 0.961 0.391 0.970 0.340
9 0.903 0.613 0.901 0.613 0.964 0.376 0.972 0.329
10 0.895 0.634 0.891 0.640 0.960 0.391 0.969 0.339
11 0.891 0.644 0.888 0.648 0.961 0.384 0.970 0.336
12 0.883 0.668 0.879 0.676 0.959 0.398 0.970 0.337
information for estimating the error DX_ .. Compared to CONCLUSIONS

model (6), the coefficient of determination R? becomes
closer to one while the RMS error StdErr decreases. At
the same time, the exclusion of points with erroneously
defined wvalley dimensionality improves the model
performance, as in the previous case.

An alternative approach to the approximation of
dependencies between data collected in experiments is
based on training ANN models. It is known that ANNs
with hidden layers and a sufficient number of neurons
can be used to approximate any continuous function of
several variables [15]. Here, the ANN model with one
hidden layer containing 5 neurons is used. The same
data used for regression analysis of models (6) and
(7) is used as a training sample. All MATLAB train(..)
function settings are default. The approximation results
are presented in Table 3.

The comparison with the results from Tables 1 and 2
shows that ANN models provide a more accurate
approximation of the required dependence on the same
initial data than linear regression models. Notably, the
results are not significantly improved by increasing the
number of neurons up to 10.

An objective stochastic dependence between
the valley ratio estimation of the OF landscape in the
neighborhood of the minimum search end point and the
error in determining the coordinates of the true position
of the OF minimum has been demonstrated. When
determining the coordinates of the minimum point, this
dependence can be identified and recorded in the form
of a linear regression equation or in the form of a trained
ANN model, and then used to estimate the expected
error.

ANN models were found to provide higher accuracy
in predicting the magnitude of the error compared to
linear regression models. Moreover, the accuracy of
both types of models increases taking into account
not only the estimate of the valley ratio, but also the
Euclidean norm of the OF gradient at the search end
point.

In the future, it is planned to expand the methodology
to apply to functions with a valley dimensionality greater
than one, as well as to other types of landscape areas
presenting difficulties for optimization algorithms.
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