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Abstract

Objectives. To develop mathematical model representations of the energy effect in non-cylindrical domains having
a thermally insulated moving boundary; to introduce a new boundary condition for thermal insulation of a moving
boundary both for locally equilibrium heat transfer processes in the framework of classical Fourier phenomenology,
as well as for more complex locally non-equilibrium processes in the framework of Maxwell-Cattaneo-Lykov-Vernott
phenomenology, taking into account the finite rate of heat propagation into analytical thermophysics and applied
thermomechanics; to consider an applied problem of analytical thermophysics according to the theory of thermal
shock for a domain with a moving thermally insulated boundary free from external and internal influences; to obtain
an exact analytical solution of the formulated mathematical models for hyperbolic type equations; to investigate the
solutions obtained using a computational experiment at various values of the parameters included in it; to describe
the wave nature of the kinetics of the processes under consideration.

Methods. Methods and theorems of operational calculus, Riemann—Mellin contour integrals are used in calculating
the originals of complex images with two branch points. A new mathematical apparatus for the equivalence of
functional constructions for the originals of the obtained operational solutions, which considers the computational
difficulties in finding analytical solutions to boundary value problems for equations of hyperbolic type in the domain
with a moving boundary, is developed.

Results. Developed mathematical models of locally nonequilibrium heat transfer and the theory of thermal shock
for equations of hyperbolic type in a domain with a moving thermally insulated boundary are presented. It is shown
that, despite the absence of external and internal sources of heat, the presence of a thermally insulated moving
boundary leads to the appearance of a temperature gradient in the domain and, consequently, to the appearance
of a temperature field and corresponding thermoelastic stresses in the domain, which have a wave character.
A stochastic analysis of this energy effect forms the basis for a proposed transition of the kinetic energy of a moving
thermally insulated boundary into the thermal energy of the domain. The presented model representations of the
indicated effect confirmed the stated assumption.

Conclusions. Mathematical models for locally nonequilibrium heat transfer processes and the theory of thermal
stresses are developed and investigated on the basis of constitutive relations of the theory of thermal shock for
equations of hyperbolic type in a domain with a thermally isolated moving boundary. A numerical experiment
is presented to demonstrate the possibility of transiting from one form of analytical solution of a thermophysical
problem to another equivalent form of a new type. The described energy effect manifests itself both for parabolic
type equations based on the classical Fourier phenomenology, as well as for hyperbolic type equations based on the
generalized Maxwell-Cattaneo-Lykov—-Vernott phenomenology.

Keywords: moving thermally insulated boundary, temperature field, temperature stresses, equations of hyperbolic

type

©E.

106

M. Kartashov, 2023


https://doi.org/10.32362/2500-316X-2023-11-5-106-117
mailto:professor.kartashov@gmail.com

New energy effect in non-cylindrical domains Eduard M. Kartashov
with a thermally insulated moving boundary

e Submitted: 30.11.2022 » Revised: 21.04.2023 ¢ Accepted: 21.07.2023

For citation: Kartashov E.M. New energy effect in non-cylindrical domains with a thermally insulated moving boundary.
Russ. Technol. J. 2023;11(5):106-117. https://doi.org/10.32362/2500-316X-2023-11-5-106-117

Financial disclosure: The author has no a financial or property interest in any material or method mentioned.

The author declares no conflicts of interest.

HAYYHAA CTATbA

Hosblil 3Heprerudeckuid 3gp@exr B 001acTAX
HEeIMJIMHAPUIECKOI0 TUIIA ¢ TEPMOU30JIUPOBAHHON
ABUKYLIEHCH rpaHuei

3.M. Kaprtawos @

MUWP3A — Poccuiicknii TExXHOIoOrm4eckuii yHmsepcutet, Mocksa, 119454 Poccus
@ AsTOp AN nepenvcku, e-mail: professor. kartashov@gmail.com

Pe3iome

Llenu. Pa3paboTka MaTeMaTnieckn MoAeNbHbIX MPeacTaBNeHni aHepreTuiyeckoro apdekra B 061acTax HELMINH-
LPNYECKOro Tuna ¢ TeEPMOU30IMPOBAHHON ABUXYLLENCA rpaHuLen. BeeaeHne B aHanMTUYECKyO Tennopuanky u
MPUKIALHYIO TEPMOMEXAHNKY HOBOIO MPaHMYHOI0 YCN0BUSA TEMIOU30NALMN ABUXKYLLENCS MPaHuLbI Kak A5 1oKasb-
HO PaBHOBECHbIX NMPOLECCOB TenonepeHoca B paMkax kiaccuyeckoi deHomeHonornm ®dypbe, Tak 1 ons 6onee
CJTIOXHbIX JIOKa/IbHO-HEPaBHOBECHbIX MPOLLECCOB B pamMkax ¢peHomeHonornn Makceenna — KatraHeo — JlbikoBa —
BepHOTTa, y4nThIBAIOLLMX KOHEYHYIO CKOPOCTb pPacnpoCTpaHeHus TennoTbl. PacCMoOTpeHne npuknagHon 3anaydu
aHanMTU4ecKom TennoduUsnku 1 Teoprn TEMIOBOMO yaapa Afst 061acTu C ABUXKYLLECS TEPMOM30IMPOBAHHON rpa-
HULEn, CBOOOAHOM OT BHELLHWX U BHYTPEHHUX BO3AENCTBUIA. MonydYeHne TO4HOro aHannmTM4eckoro peweHmnsa cop-
MYJIMPOBAHHbIX MaTeMaTUYECKNX MoAenen ans ypaBHeHA runepbonmyeckoro Tuna. MiccnenoBaHne nosyyYeHHbIX
PELLEHN C MOMOLLLIO BbIHUCUTENIbBHOIO 3KCNEPUMEHTA NPU PA3/INYHbIX 3HAYEHUSAX, BXOOALLMX B HErO NapamMeTpoB.
OnurcaHve BOJIHOBOr0 XxapakTepa KMHETUKM paccMaTprBaeMbIX MPOLLECCOB.

MeTogbl. Vcnonb3oBaHbl MeETOAbl W TEOPEMbl OMEPALMOHHOIO WUCHUCIIEHUS, KOHTYPHbIE UHTEerpanbl
PumaHna — MennvHa npu BblYUCIEHUN OPUTMHASIOB CITOXHbIX M300paXeHui ¢ ABYMS TOYKaMu BeTBeHus. C yueTom
BbIYNCIUTENbHbLIX TRYAHOCTEN NPU HAXOXAEHUM aHANIMTUYECKMX PELLEHNIN KpaeBbIx 3a4ady As ypaBHEeHUM runep6o-
JINYECKOro TMna B 0611acTu C ABMXKYLLENCS rpaHnLLEN, pa3BUT HOBbIM MaTeMaTUYeCKUiA annapaT 9KBUBAIEHTHOCTH
GYHKUMOHANBbHbIX KOHCTPYKLNA A1 OPUTMHAN0B MOJIy4EHHbIX ONePaLMOHHbIX PELUEHUIA.

PesynbTatbl. [peacTaBneHo pasBuUTrE HOBbIX MaTeMaTUHECKMX MOLENEN NTOKaNIbHO-HEPABHOBECHOMO TENJ1I0NepeHoca
1 TEOPUM TEMIOBOro yaapa AN ypaBHEHUI rMnepbonyeckoro Tmna B 061acT C ABUXKYLLECS TEPMON30NIMPOBAHHOM
rpaHvuen. NokadaHo, 4To, HECMOTPSA Ha OTCYTCTBUE BHELUHUX WU BHYTPEHHUX UCTOYHUKOB TEMNSOThl, HAJIMYNE TEPMO-
M30/IMPOBAHHON ABMXKYLLENCS MPaHULLbI MTPUBOOUT K MOSIBAIEHUIO B 001aCTW rpaamMeHTa TeMneparypbl U, CNeaoBaTesNbHO,
K NMOSIB/IEHNIO B 0612CTM TEMMNEPATYPHOIO NOJIS M COOTBETCTBYIOLLMX EMY TEPMOYMPYIUX HAMPSKEHNIA, UMEIOLLIMX BOJTHO-
BOW xapaktep. CToxacTUYeCKMIA aHaNIM3 YKa3aHHOMO SHEPreTn4eckoro addekTa no3BoNNI Bbicka3aTb NPEANoIoXeHEe
0 nepexoe KNHETUHECKON SHEPTM ABVXYLLENCS TEPMOU30IMPOBAHHOW rPaHnLbl B TEMJIOBYO aHepruto obnactu. Mpu-
BeJEeHHble MOAe IbHbIE NPEACTAaBNEHMS YKa3aHHOr0 addekTa NoATBEPANIIN BbICKa3aHHOE NPeAnosioXeHne.
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BbiBOoAbl. Pa3BuThl N NCCneaoBaHbl MaTtemMaTUyeCckmne MOLENM 19 JIOKaIbHO-HEPaBHOBECHLIX MPOLLECCOB TernJone-
peHoca 1 TeEOPUM TEPMUHECKNX HAMPSXKEHNN HA OCHOBE OMNMPeaensoLLIMX COOTHOLLEHUI TEOPUM TEMIOBOIO yaapa as1s
ypaBHeHUI rMnepboanM4eckoro Tmna B 061acT ¢ TEPMON30NNPOBAHHOM ABUXYLLENCS rpaHuLLel. [poBeneH YnNCneH-
HbI1 9KCNEPUMEHT U NokasaHa BO3MOXHOCTb Nepexoga OT OAHON GOPMbl aHANIMTUYECKOrO peLleHus Tennopunsu-
4eCcKOoM 3a4a4n K APYror 3KBUBANEHTHOM popme HOBOro Tuna. OnucaHHbI SHepreTniyeckmii addekT NposBaseTcs
KaK [J19 ypaBHEHMIN Napabosinyeckoro T1na Ha OCHOBE kiiaccuyeckon peHomeHonornm dypee, Tak 1 Ais ypaBHEHWIA
rmnepbonnyeckoro Tnna Ha ocHoBe 0606LLEeHHON deHomeHonorm Makcsenna — KatraHeo — JlbikoBa — BepHoTTa.

KnioueBble cnoea: ABMXYLLASACS TEMNJOM30AMPOBAHHAs rpaHmua, TeMmnepaTypHoe none, TeMnepatypHble Hanps-

XXeHud, ypaBHEHNA rmnep6onw+e0|<oro T"Mna

* Moctynuna: 30.11.2022 » Aopa6oTaHa: 21.04.2023 ¢ MpuHgaTa k ony6nukoBaHuio: 21.07.2023

Ang untupoBanua: Kaprtawos 3.M. HoBbIlh aHepreTuyeckunii apdekt B 061acTaX HELMAMHOPUYECKOrO TUNa ¢ Tep-
MOM30JIMPOBAHHOWN AuyLlelncs rpaHuueinn. Russ. Technol. J. 2023;11(5):106—117. https://doi.org/10.32362/2500-

316X-2023-11-5-106-117

Mpo3payHocTb pHAHCOBOW AeATEeNbHOCTU: ABTOP HE MMeeT GUHAHCOBOW 3anHTEPECOBAHHOCTU B NPEACTAB/IEH-

HbIX MaTepunanax nin metogax.

ABTOp 3aaBnsaeT 0o OTCYTCTBUA KOHCbJ'II/IKTa NHTEepPeCOoB.

INTRODUCTION

The effect of the concentration gradient emergence
in the domain with moving impermeable boundary was
encountered by the author for the first time when studying
the phenomenon of adsorption reduction of strength and
durability of brittle polymers in surface-active media [1].
A review of the literature confirms that, while the above-
described phenomenon affects many fields of science
and technology, it has yet to be practically described in
scientific publications. Considering thermal processes,
it will be shown that a temperature gradient exists in
a domain having a moving thermally insulated boundary
despite the absence of internal or external sources of
heat; this is due to the conversion of the kinetic energy
of the boundary motion into the thermal energy of the
domain. A stochastic analysis of this energy effect for
the temperature average based on an analysis of the
corresponding dispersion shows the similarity of the
dispersion behavior to that arising in the domain of
the average value of temperature stresses, creating the
risks of cracks and the possible beginning of material
destruction [2].

PROBLEM STATEMENT

We shall briefly consider thermophysical problems
in domains with moving boundaries (non-cylindrical
domains).

A very wide range of issues arise when considering
boundary value problems of nonstationary heat conduction
in non-cylindrical domains of the type [0, ¥(¢)], > 0 or
[¥(?), ), t > 0, where y(¢) is continuous function. Similar
problems arise in the theoretical study of energy transfer
processes related to changes in the aggregate state of
matter, as well as in strength theory, dam theory, soil

mechanics, oil-reservoir thermic and electrodynamic
problems, filtration problems, the theory of zone
cleaning of materials, kinetic theory of crystal growth,
thermomechanics in the study of thermal shock, etc. [3].

In mathematical terms, boundary transfer problems
in the domain with moving boundaries are fundamentally
different from classical ones. Due to the dependence of
the domain boundary on time, the classical methods
of equations of mathematical physics are inapplicable
to this type of problems: it is impossible to match the
solution of the heat conduction equation with the motion
of the domain boundary while remaining within the
framework of such methods. This explains why only the
simplest cases with a uniformly moving boundary, or
partially with a root dependence, have been considered
in analytical thermophysics to date.

Let €, be a non-cylindrical domain, whose cross-
section by characteristic plane ¢ = const > 7,> 0 is convex
domain D, of change M(x, y, z) with boundary S,
depending on time > 0, 0 is the external normal to S,
representing a vector continuous at points S,, so that

Q;={M eD; =D, +5,,t20}.

Let T(M, f) be the temperature function satisfying
the conditions of the problem, a be thermal conductivity,
and f'be the source function. @, is initial temperature, 3,
B, are coefficients, while C?, C!, C? are function classes.

%—f:aAT(M,t)ﬁ(M,t),MeDt, £>0, (1)

T(M,1)|,_g=Py(M), M € D=0, )

p

T(M
18 (an ’t)+B2T(M,f):(P(M=t)sMESt’ t20.(3)
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Here,

(M1)€ CO(Q); Dy(M) e CHQ);

4
o(M,1) e CO(S, xt 2 0); B + B3 > 0. )

The desired solution: T(M,t) € C2 Q)nC 0(Q),
grady,T(M,t) e CO(Q).

The boundary condition (3) includes the cases of
temperature heating, thermal heating, and heating by the
medium (or cooling in all three cases). If D is a canonical
(cylindrical) domain with a fixed boundary S (elastic
half-space, infinite plate, cylinder, ball, etc.), the thermal
insulation condition of boundary § of domain D is
written in the following form:

T(M ,t
M|M€S=O’ (>0 (5)

and is a classical boundary condition in analytical
thermophysics when formulating appropriate problems
for parabolic type equations. However, the presence of
a moving boundary fundamentally changes the form
of the boundary condition for its thermal insulation;
moreover, it is this circumstance that is not generally
considered in the literature describing various kinds
of applications related to the thermal insulation of the
moving boundary.

For deriving the above condition, we shall
consider domain Q, = (0 < z < y(?), t > 0). Here, y(?)
is a continuous-differentiable function; v(z) = dy(¢)/dt
is the boundary movement rate; 7(z, ¢) is temperature
field in Q; F(z, ¢) is nonstationary heat source
(F(z, t)/cp =fiz, 1)) continuously distributed in Q,, where
c is heat capacity and p is density. We have for €,:

a;;—agz—T+f(z 0, (z,)eQ,. (6)

We shall write the heat balance equation at time
(t + Af) considering boundary z = y(¢) insulated as
follows:

y(t)+hy
9100 5, cpAt j f(z,t)dz =
zZ
0
(1) y(0)+Ay
=cp j [T(z,t+At) = T(z,t)Jdz + cp T(z,t + At)dz,
0 (1)

where A is heat conduction.
For the second of the integrals on the right, we apply
the average theorem, as follows:

y(O)+Ay
—a2TOD y a [ fpdz=
oz 0

(1)
= [ [Tzt +A0) =T (z,0)]dz + T(z,t + At)
0

z=y+0Ay Ay,

where 0 < 0 < 1. Dividing both parts of the equation
by At and going to the limit at A+ — 0, we obtain the
following:

(1) y(t)

_aaT(O,t) I f( z,0)dz = J.—dZ+V(t)T(Z t)z y(t)*

0z

We shall substitute under the integral sign the
right-hand side of heat conduction Eq. (6) for 07/¢%,
integrate it, and add similar terms. The final result is the
following condition:

0T (z,t) v(t)
oz |7 ) T

22Tz, =0, >0, (7)

z=y(?)

which represents the thermal insulation condition for
the moving boundary. If the boundary movement rate
v(t) = 0, then we arrive at the condition (67/0n)|g = 0
implying thermal insulation of the stationary boundary
surface.

Since the late 1960s, systematic publications on
hyperbolic transfer models that take into account the
finite rate of heat propagation have appeared! % [4-16].
Nowadays, it is increasingly common practice to
distinguish a large class of models based on the following
equation:

62T(M,t)

aAT(M,t) - -7

aT(gf D _ [(M.)eQ,, (8)

where T, is the thermal flux relaxation time related to the

heat propagation rate by relation vy =/a/t,.

The boundary problems for Eq. (8) describe
high-intensity heat exchange in pulse and laser
devices, laser metal processing, plasma spraying
processes, processes occurring in energy channels
of nuclear reactors, as well as in a fluidized bed and
disperse systems, granular materials, and layered
semiconductor  structures. The problems also
arise in descriptions of electronic heat conduction

! Eremin A.V. Modeling methodology of heat and mass
transfer, elastic vibrations and electromagnetic waves with
allowance for spatial and temporal nonlocality. Abstract. Cand.
Sci. Thesis (Eng.). Samara; 2021. 30 p. (in Russ.).

2 Zhukov V.V. Investigation of internal mechanisms of heat, mass,
and momentum transfer with allowance for relaxation phenomena.
Abstract. Cand. Sci. Thesis (Eng.). Samara; 2021. 18 p. (in Russ.).
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and high-temperature plasma, in mathematical modeling
of thermal decomposition front processes, in catalyst
crystals, and the growth of homoepitaxial germanium
films during exothermic chemical reactions, etc. In [3],
the issues of correct formulation of boundary value
problems for Eq. (8) are studied: it is shown that the
writing of boundary conditions of the second and third
kind significantly differs from (3) for equations of
parabolic type. However, the question about the heat
isolation of the moving boundary for Eq. (8) remains
open. For this, we shall consider the phenomenological
Maxwell-Cattaneo—Lykov—Vernott relation [4, 6-7]:

q(M,t)=—h gradT(M,1) -7, %,

here, q is the vector of heat flux density, which forms

the basis for the analytical theory of local nonequilibrium

processes of heat transfer in a non-cylindrical domain.
We shall write this equation in the following form:

(1+rr %jﬁ(M,t) =—A gradT(M,t), M € D,, t>0, (9)

or

q(M,t+1,)=—\ gradT(M,t), M € D,, t>0, (10)

using the Maclaurin series Eq. (9) of function
q(M,t+1,) in the vicinity of point T, = 0.
Equation (10) may be rewritten in the following
form:
q(M,t)=—h gradT(M,t—t.), M eD,__ ,t>1. (11)
Using energy equation cpOT (M., 1)/0t = —div[q(M ,1)]
and relation (11), Eq. (8) may be written in the following
form:

w=aAT(M,t—tr),MeDk
t

1> (12)

Consider now the domain of interest z > y(¢), t > 0,
wherein (12) is the following:

oT(z,1) :aazT(Z’t_Tr)
ot oz2

Under constant initial conditions, as well as in the
absence of internal heat sources and external heating
conditions at the thermal insulation of the moving
boundary, the following condition is true:

,z>y(t=1.), t>1,. (13)

[e¢]
cp I T(z,t)dz =const, t > 1.
y(t_Tr)

(14)

Differentiating both parts of (14) by ¢ and using
Eq. (13), the following relation is obtained:

oT(z,t - dy(t -
{ (Brom) 14X Tr)T(z,t)} -
oz a ot 2=y(-1,) (15)
=0, t>1,
which may be rewritten as:
{M+@T(z,t+‘cr):l =0, t>0, (16)
&z  a z=y(0)

where v(¢) = dy/dt.

Equation (16) is the moving boundary heat isolation
condition for locally nonequilibrium heat transfer
processes described by hyperbolic type equations. In
particular cases (local-equilibrium processes, T, = 0) or
cylindrical type domain (v(¢) = 0), the thermal insulation
conditions discussed above are obtained.

THE TEMPERATURE GRADIENT EFFECT
IN THE DOMAIN WITH A MOVING THERMALLY
INSULATED BOUNDARY

In the corresponding model representations of
nonstationary heat conduction, boundary conditions (7), (16)
create the temperature gradient effect in the domain and
consequent appearance of corresponding thermoelastic
stresses, which occur despite the absence of external
and internal thermal impacts. While formally, there is an
idea concerning the impossibility of manifestation of the
described effect, analytical solutions of model problems
demonstrate the opposite. In [2], it is suggested that the
kinetic energy ofthe moving insulated boundary is converted
into the thermal energy of the domain, thus causing heat
and thermal effects. In this connection, in formulating the
thermal problem for the hyperbolic type equation, we shall
consider elastic half-space z >/ + vz, t > 0 with a uniformly
moving insulated boundary in the absence of external and
internal thermal loads:

or o’ _ oT

—=a——1T.——, z>[+vt, t>0, 17
ot oz T or? an
oT (z,t

T(z,t)|t_0=TO, A} =0, z>1, (18)
- o =

[M+XT(z,t+rr)} =0, t>0, (19)
0z a z=l+vt

|T(z,0)| <0, z21+vt, 1 20. (20)
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The boundary condition (19) may be written in the
following form:

{GT(Z,I) T 6T(z,t)}

Oz a a ot
=0, t>0.

el

z=l+vt

We shall introduce dimensionless variables

Z'=(z-D/I; r=at/12; vy =Vja; T, =arr/12;
(', =[T(z.0-T, |/T;

and then the moving coordinate system & =z'—v,T, 1> 0,

assuming 77(z',t) =W (&,1).
Relations (17)—(21) have the following form:

2w ow

w v)a +Vy—+
00 E_, 0 ok

ot ==
2 2 (22)
w w
+ 2v,T -1 =0,£>0,7>0,
00 Gear 0 2 5

oW (&,1)
0 =0

W (&) =0,

23
_, WED) 2

= =0,£2>0,

=0

W& _
% lezo
oW (&,7) . 1}

T

1- ’EOVO)

(24)
,T>0,
&=0

== [W(i, ) +7

(& 1) <0, £20, 120. (25)

In the Laplace image space:

W& p)= [W(E D) exp(—pr)dt
0
transformed

the operational solution of the

problem (22)—(25)

aw

d2w
(l—rovg)d—2+v0(l+ 2T0p)d—é—

~ p(+1,p)W =0, &> 0,

(1- rovg)

dw — 1
—e=0="" |:(1+TOP)W+—:| ,
dg Pl

W& p)| <o, 20

may be written in the following form:

W(E, p) =1 p)P2(E p), (26)
where
P16 p) = 0 x
[ 1 2)+ i (P +2a)(p +2B) |
o { Vo /2)&;}
1- TOVO

Vo (Ep) = x
P

xexp{ [ \/7 «/(p+20t)(p+2 )+ %o OE"

A4

1+ 11—t 12 1— 1=t V2
o= 00; B= 00'
410 410

For finding the originals of images (27)—(28), we
shall first consider new transformations of operational
calculus that are of interest for hyperbolic transfer
models. In [3], the original image is

—exp[ &P+ 200 720 |
¢ I, (G\ITZ —iz)

| exp(-pt) + oE [ exp(-pr)———
& v

x Nt =&) =W (& 0m(t =)

dt|x (29)

Here, 6 = o — B, p = a + B, [,(2) is the modified
Bessel function and n(z) is the Heaviside function. On
the other hand, calculating the original image on the left
in (29) using the Riemann—Mellin contour integral with
two branching points by the method developed in [3],
we find:

—exp[ & =200 2B |

{exp( 22Jaf)- j [ECOD )

y+2B

x exp[~(y +2p)t ]dy}n(t —&) =W, (&0 -9).
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We shall show that W|(E,2) =W, (&,1).
We have:

M0 =5

t
—I exp(—p1)/, (oy1% —E2)dt |=
g

€2))

t

:i _J.exp(—p’t).]o(cﬂgz —’EZ )d‘[ .

0¢ :
We shall differentiate both parts of (31) by #
[m&n], = [ exp(-p1) (e ~1) |-
_ a%[—exp(—zﬁt) exp(—ot)Jo (o2 — 12 )}.

We shall use further a rather rare integral [3]:

rexp(=px)

0 Vax —x?

=mnexp(—ap/2)J, (% 2_p? )

coscvax —x2dx =

Hence:
26
[mEn], =% [ sin&yy(20 - ) exp[~(y + 20)¢]dy. (32)
0

Integrating both parts of (32) by # and using the finite
lim f(#) = lim pf(p)
t—o0 p—0

C=exp(-2&\aP) in (30) to find the integration
constant, the following is finally obtained:

value  theorem giving

W, (&,1) = exp(—2&Jop) -

__J- s1n§\/mexp [-(y+2B)t]dy =W, (&,1).
T y+2p

Thus, the original is found:

1exp{— &\/a 1/(p+20c)(p+2[3)}<—

p 1-14v3

feup| 00722 B f 1 Q/?/y@c M 33
Pl Ve y+2[3 1-79%5

X exp[—(y + ZB)T]dy}xn[r _ la\/% ]

> |
~To%

Now, using (33), we find the original image
Y2(E,p) (28):

Y,(E )=

| G0 /2E] 17 1
—{exp{ l—tovg} Tcgy—i—ZB
o N j
dyxm|t .
ooﬂ } [ _"0\/%

The original image ¥ (& p) (27) has the following
form:

S r@o-n) (34

1- TOVO

X exp{—(y + ZB)(T

¥ /2)@] )

2
)

Y, (1= exp[—

) vof f JCo 00— ey,

TE B(V /) +15Ra—y)(y - ZB)

(33)

The desired original image W(&, p) (26) may be
written now in the following form:

[ w@Er-1)P,Edr |

2 (36)

I=vp+/T0
_é— Vo
n(r 1- VO\/%]'

Figure 1 shows curves of the temperature function (36)
versus T in the cross section £ = 1 for different v, at 1=0.25.
The curves in Fig. 1 clearly show the peculiarities of the
thermal response of the domain for locally nonequilibrium
processes (the analytical solution (36) contains the
Heaviside function explaining the delay in the onset of
heat propagation in the fixed cross section).

WE 1=

0.35¢
0.30
0.25 1

0.20 -

W(E, 1)

0.15

0.10 -

0.05 +

0 L L L L L L L L )
0 05 10 15 20 25 3.0 35 4.0 45 5.0
T

Fig. 1. Dependence of the temperature function W(E, 1) (36)
on Tin cross section § = 1 for different v,: v, = 0.16 (a);
vy =0.5(b); v, =0.75 (c) at 1, =0.25
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THERMAL RESPONSE OF THE DOMAIN
TO THE TEMPERATURE FIELD W(E, 1)

The next step is investigating the thermal response of

domain Q¢ =(z=>1+vt, t>0)with a moving thermally
insulated boundary in the framework of the model
problem (17)—(20). We shall consider, as above, an elastic
half-space, which is of practical interest for many areas of
science and technology described in [3]. We shall write
down the defining relations of dynamic thermoelasticity

for domain €@ ={M(x,y,2)€ Dy =D, +5,,1>0} with
temperature function 7(M, 7). Let T, be the initial
temperature at which the domain is in the undeformed and
unstressed state; Gij(M, 1), sl.j(M, 0, UM, 1) (i=x,y,z)are
the components of stress tensors, strain, and displacement
vectors, respectively, satisfying the basic equations of
(unbounded) thermoelasticity (in index notations) [ 19, 20]:

(M,0)=pU,(M,1), (37)

%ij.j
e;(M,0)=(1/2)[ U, (M,)+U, (M,0) ], (38)

Gl.j(M,t) = 2usl.j(M,t) +
+ [ Me; (M 1) = Bk + 2o (T(M 1)~ T)) |8 (39)

l_.].’

where p is density; p = G, G is shear modulus; A =
= 2Gv/(1 — 2v) are isothermal Lame coefficients; v is
Poisson ratio with 2G(1 + v) = E, E is Young modulus;
o is linear thermal expansion coefficient; 8[/. is the
Kronecker symbol; and ¢;(M,1) =e(M,t) = U, (M,¢)
is volume strain related to the sum of normal stresses

6(M,t)=c,,(M,t),n=x,y,z by the following
relation:

_ 1-2v_

e(M, 1) = S(M, 1)+ 30 [ T(M,1)—T, ]. (40)

For the case of one-dimensional motion M = M(z, {),
z>1[+vt, t >0, we have the following from (37)—(40):
U.= Uy =0,U,=U/z0,¢,= € = 0,
e, (z,1)=0U[z, )0z = [1/(1 = v)] %
< {[(1-20/QO)o,(z. )+ (1 + VT, 1) = Ty},

0o, (z,1)  0%U (z,0)
ez 0 a2

Differentiating this relation by z and substituting the
value 0U (z, t)/ 0z, the equation of the following form is
obtained:

62622 _L.a%zz B
a2 v: o o2
oot (41)
0°|T(z,t)-T
ZSJFV;OLTp [ (82) 0],Z>l+vt,t>0
-V t

with the following boundary conditions:

0c__(z,t
GZZ(Z:t)|[:0 =O: % =0,221, (42)
t=0
O (Z’t)|z=l+vt =0,7>0, (43)

<oo, z2[+vt, t 20.

.. (z.1)

In(41), Vp = \/2G(1 -v)/ [p(l - 2v)] = \/(7» +2u)/p
is the expansion wave propagation velocity in the elastic
medium close to the speed of sound. The remaining
nonzero components of the stress tensor, according
to (37)—(39), have the following form:

Eop[T(z,0)-T, ]
1-v )

v
Gxx(Z,t) Zny(Z,t) ::GZZ Z,t)—

In addition,

—2v 1+v)
e (z,)=——0c_(z,0)+ o | T(z,0) =T, |.
zz( ) 2G(1-v) zz( ) 1-v) T|: (z,0) 0:|
The function 7(z, ¢) in (41)—(43) satisfies

conditions (17)—(20). For solving the problem (41)—(43),
we move to the coordinate system (z', T) by the above
relations, assuming that

I/a, S G+ 2 = 21F
og=v.l/a,S+=a = ,
,t
o,z 0) ==&l
STTO

Omitting intermediate calculations of the transition,
we shall further introduce the moving coordinate system:

& = z' — w1, assuming O E1)=0_.(z1),
T*(z',t)=W(E,1). Relations (41)~(43) may be written
now in the following form:

2 2 2
0 e Loy 0 e _8 Ope _
o2 0 oeor  or?
0w W, W
= A Vo7
or? oot ¢,

(o -3)
(44)

£E>0,7t>0,

Russian Technological Journal. 2023;11(5):106-117

113



New energy effect in non-cylindrical domains
with a thermally insulated moving boundary

Eduard M. Kartashov

(30& &,1)

=0,£>0,
ot :

=0 .(45)
02 (&) ig=0, 7> 0,0 (1) <0, £20, £20

Gee (6] g =

In the Laplace image space G (€,p)=

= I O (&, v)exp(—pr)dt, relations (44)-(45) are

0
written in the following form:

d’*c ds
(O‘% _V(%) sa +2vp d? _Pzagg =
(46)
P(p"'Vo)W V()(Vo +2p)d_W E>0,
1- tovg 1- Tovg dg

Here, the following relation is used:

2w p(1+top)— v0(1+2‘cop)dW
de? 11—t l-tvd  dE’

derived from the operational form of Eq. (22). For
reducing the awkwardness in solving problem (46)—(47),
we shall take into account the fact that inertial effects
in (41) operate at times of microsecond duration. Then

expression \/ top?+p+v} /4 included in general
solution (26) may be written in the following form:

Jrop? +p+v3 14~ ptg (1+1/Q21yp)

and solution (26) takes the following form:

vo/v%0
p[p+1-vpyr )/(2r0)]

Q2top +1)% }

Xexp[_2\/a(l—vo\/a) .

The desired voltage in the image space may be

written now as follows:
(43)
a pJ} ’
%o~V

W (&, p)=

6@{; Ep)=

= F(p){exp[—wp)a] - exp(—

F( :[ Ay A1
P) + +
P+ +12) Pp+y D)W +710)

A13 :| I: A21
p(p+m)(p+v12) (p+1)(P+7113)

A31 + A32
P(P‘*‘Yll)(l’ +713) P (P+Y11)(P+Y13)

4= Vo (ag = v+ 215 —v4/T) _

11
20047y (0979 — D1 =T¢3)

Ay = A4 [+ A+ 1 (2x) s

"0(0‘0 )

s = 4ot [Ty (1= 1gv3 ) (g [Tg — 1)

~ Vo (g + o)A +275 = vy4/T))

A, =
21 5
2014/ Tg (0 4/To +D(1 - rovg)

Ay = Ay [V + (4 103) (279 |,

vh (oc0 +v9)

4= 4ot [Ty (1= 1gv3 ) (g [Tg +1)

1- VO\/7 o —VO
21, ’Y‘Z_zf(aof D’

Qg +V0

3= 2.t (0grfTo +1)°

14T B —

I P L
2t 1=vp)fr

Now from (48), we find for the desired voltage:

o at a0ﬁ=vp/vT>1

Ggg(&ﬂ)=
0 re—5 ,
Qo — Y
o @ < S @9
Oee (51 %_vo < o
af
D€, 1) +0,2 (1)
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o at O‘oﬁzvp/"T<1

Cge &=

0, e S
1_"0\/5
(50)
= Ggg(l)(é"c)’ a\/a <1< EJ ,
1=vp41. %o~ Yo
oV +o.,.DE ), 1> 5 .
= = Qo — Vo
Here:
oD (&1 =
B RN PO -
1=vpy7 PNENCELINED
op (&)= —F| - |
= %o =%
A13r
F(v)=| By exp(=7117) + Byp exp(=y1,7) + +Bj5 |-
11712

ArnT
32 +332 ,
Y11Y

_[le exp(—yy;T) + 331 exp(—yy3T) +
11713

2

_ v~ A
2
i1 (2 =11

11

2
AV —Avin — A3

B =
12 2
Yi2 (Y12 = 711)

A, ()4
2.2
111712 11Y12

By =

2

2
M YAz + 45
By, = :

2
Y (i3 =711)

2
B. = Y134y —Vi3dy) — 4y
31~ 2
Vi3 (Y13 = 711)

Ay (1)

B =
32
T11%13 le 1Y123

Figure 2 shows the dependence graph of the dynamic
temperature stress (49) on the dimensionless time in

cross section & = 1 at 1, = 025, o, = 3

(OLO\/‘T :vp/vT =1.5>1; for metals Vp/VT >1, for
polymer glasses v, /VT <1) for values v, = 0.16 and
0.65. The curves show that for locally nonequilibrium
processes, accounting for the finite rate of heat
propagation results in a significant change in the stress
pattern compared to the corresponding curves in the
framework of classical Fourier phenomenology [21]. We
shall take an arbitrary point (cross section & = const). In
the beginning, the stresses in it are zero. At the moment
of time T= é/(ao V) (t=(z~ Z)/vp ), the longitudinal
elastic stress wave which front moves at speed v
approaches this point. The compression stress changes
abruptly and then decreases (increases in absolute

value). At the moment of time T= E;\/% / (I-v, \/% ),
the heat wave which front moves at speed v approaches
this point (cross section); the stress changes abruptly and
then approaches the value close to the quasi-static value.

0.1y

0
B W

-0.6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ | | |
0 05 10 15 20 25 3.0 35 40 45 50
T

Fig. 2. Dependence of stress 0.(E, T) (49) on Tin cross
sectiong=1at1,=0.25,v,=0.16 (1) and v, = 0.65 (2);
ay=3

Thus, two waves propagate in a massive solid
body (an elastic half-space with a moving thermally
insulated boundary), which comprise a thermal
wave and an elastic wave; here, the elastic wave
front precedes that of the thermal wave. The present
author’s earlier studies on the effect of heat transfer
at the moving boundary of the domain indicate that
the dynamic temperature stresses decrease as the heat
transfer from the surface of the half-space decreases.
If, in the classical case [3], the presence of finite heat
transfer from the surface of the half-space boundary
results in the disappearance of temperature stress
discontinuities, then, in the case of the generalized
dynamic thermoelasticity problem [20], the stress
character remains the same as at the infinitely large
value of the heat transfer coefficient (the first kind
boundary condition). It is hoped that this earlier part
of the research, being very voluminous in its content,
will be published at some point in the future.
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CONCLUSIONS

The above model representations provide a basis
for the following statement. A new effect of analytical
thermophysics and applied thermomechanics is
described. In a domain with a moving thermally insulated
boundary, the temperature gradient occurs resulting in the
appearance of the temperature field and corresponding
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