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Abstract

Objectives. The solution to the relevant problem of identifying systems with multiple nonlinearities depends on such
factors as feedback, ways of connecting nonlinear links, and signal properties. The specifics of nonlinear systems
affect control systems design methods. As arule, the basis for the development of a mathematical model involves the
linearization of a system. Under conditions of uncertainty, the identification problem becomes even more relevant.
Therefore, the present work sets out to develop an approach to the identification of nonlinear dynamical systems
under conditions of uncertainty. In order to obtain a solution to the problem, an adaptive identification method is
developed by decomposing the system into subsystems.

Methods. Methods applied include the adaptive identification method, implicit identified representation,
S-synchronization of a nonlinear system, and the Lyapunov vector function method.

Results. A generalization of the excitation constancy condition based on fulfilling the S-synchronizability for
a nonlinear system is proposed along with a method for decomposing the system in the output space. Adaptive
algorithms are obtained on the basis of the second Lyapunov method. The boundedness of the adaptive system
trajectories in parametric and coordinate spaces is demonstrated. Approaches for self-oscillation generation and
nonlinear correction of a nonlinear system are considered along with obtained exponential stability conditions for the
adaptive system

Conclusions. Simulation results confirm the possibility of applying the proposed approach to solving the problems
of adaptive identification while taking the estimation of the structural identifiability (S-synchronization) of the system
nonlinear part into account. The influence of the structure and relations of the system on the quality of the obtained
parametric estimates is investigated. The proposed methods can be used in developing identification and control
systems for complex dynamic systems.
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¢ HeCKOJbLKUMHU HEJIUHEHHOCTIMHU
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MUWP3A — Poccuiicknii TexHos1Iorm4eckuii yamepcutet, Mockea, 119454 Poccus
@ AsTOp A1 nepenvcku, e-mail: karabutov@mirea.ru

Pesiome

Uenun. 3apgava naoeHTMdmnKaumm CUCTEM C HECKObKMMN HENIMHENHOCTAMN SBASIETCH akTyanbHOWN. PelleHne aTon
3327241 3aBUCUT OT HanM4mns 0OpaTHbIX CBA3e, CNOCOOBOB COEAMHEHNS HENMMHENHBIX 3BEHLEB, CBOMCTB CUHASOB.
Cneundunka HENMHENHbBIX CUCTEM HaKaablBAET OTNEYaToK Ha MeTobl CUHTE3a CUCTEM yrnpasneHusi. B ycnosusax
NMOJIHOM anpuopHOI ONPeaeneHHOCTN 00bIYHO NPUMEHSIIOT NIMHEAPM3aLMio cucTeM. Ecnmn cylecTByeT anpropHas
HeonpeaeneHHOCTb, TO 3a4a4a CUHTE3a CUCTEMbI MAEHTUdMKaUMM 0BecneyeHns yenoxHseTcs. Lienbio HacToswein
paboTkl ABNSETCS paspaboTka noaxona K AEHTUdUKaUNN HEMHENHBIX AMHAMUYECKUX CUCTEM C HECKOJIbKUMU HE-
nuHernHocTamMu. Ans pelueHns npobnemMbl MPUMEHSIETCS NOAX0, OCHOBaHHbIM HA IEKOMMNO3ULMM CUCTEMbI Ha PA,
noacuctemMm 1 paspaboTtke MeToaa afanTUBHOM MAEHTUdUKALMK, NCMONb3YIOLLEro TONbKO AOCTYMNHY MHdopMa-
LIMIO O CUCTEME U N3MepeHUsix. Heo6XoaMMO OLLEHUTb HaCTOTHbIE CBOMCTBA CUMHAJIOB, KOTOPbIE LOMKHbI rapaHTu-
poBaTb OLEHKY NapamMeTpoB CUCTEMbI 1 06ecneynBaTb CTPYKTYPHYIO NOEHTUDULMPYEMOCTb HENMHENHOCTEN B CU-
CTeMeE; OLLeHUTb PaboTOCNOCOOHOCTL CUHTE3UPOBAHHOW a4anTVBHOW CUCTEMBI.

MeTogabl. [IpMeHSA0TCA MeTOA afanTUBHON NAEHTUdMKALMN CUCTEMbI, HESIBHOE NAEHTUDUKALMOHHOE NPpeacTaB-
NeHne, S-CUHXPOHU3aUMNSA HEJTMHEMHOW CUCTEMbI, METOA, BEKTOPHbIX GYHKLUMI JIanyHoBa.

PesynbTaTtbl. BBEAEHO YCIOBME NOCTOSIHCTBA BO30YXAEHWS NMEPEMEHHBIX COCTOSIHUS C YYETOM S-CUHXPOHU3U-
PYEMOCTWN HENIMHENHOM YacTu cuctTemsl. JaHo 0606LeHne ycnoBums NOCTOSAHCTBA BO3OYXaeHus . MNpeasioxeH crno-
co6 0eKOMMO3NLNN CUCTEMbI B BbIXOAHOM NPOCTPaHCTBE. [oNyyeHbl afanTUBHbIE anropuTMbl H2 OCHOBE BTOPOro
meToga JlsnyHosa. JokasaHa OrpaHNYeHHOCTb TPAEKTOPUIA aaanTUBHOM CUCTEMbI B NapaMeTPUYECKOM N KOOPAN-
HaTHOM MPOCTPaHCTBaxX Ha OCHOBE BEKTOPHbIX PYHKUMI JIanyHoBa. Mony4YeHbl YCNOBUS, rapaHTUPYOLWME 3KCNo-
HeHUMabHY0 YCTOMYMBOCTb TPAEKTOPUIM CUCTEMbI. PACCMOTPEHbl CUCTEMbI FreHepaummM aBTokonebaHni n Henm-
HEMNHOI KOPPEKLUMN HENIMHENHOW CUCTEMBI.

BbiBOoAbl. Pe3ynbraThl MOAENMPOBaHWUS MNOATBEPAWM BO3MOXHOCTb MPUMEHEHUS MPEAnaraemMoro noaxo-
ha [Ans pelweHvs 3agad afanTUBHOW UAEHTUOUKALUN C YYETOM OLLEHKU CTPYKTYPHON MAEHTUPULMPYEMOCTHU
(S-CUHXPOHU3NPYEMOCTU) HENIMHEMHOW 4acTu CUCTEMBbI. VIcCnenoBaHo BAUSHME CTPYKTYPbl U CBASEN CUCTEMBI
Ha Ka4yecTBO MoJly4aeMblX MapaMeTpUYecknx oueHok. MNpennaraemele MeTOObI MOFYT MCMONb30BaTbLCS NPU paspa-
60TKE CUCTEM UAEHTUDVKALNN 1 YyNPaBAEHNS CIOXHBIMU AMHAMUYECKMMN CUCTEMAMN.

KnioueBble cnoea: agantBHas nageHtudurkaums, naeHTMOnumMpyemMocTb, YCTONYMBOCTb, MOCTOSIHCTBO BO30YXae-
HUS, BeKTOpHasa dyHKuus JIsnyHoBa, aBTokonebaHus

e Moctynuna: 06.02.2023 » Aopa6oTaHa: 03.05.2023 ¢ MpuHaTa k ony6nukoBaHuio: 21.07.2023

Ansa uutupoBaHua: Kapabytos H.H. O6 aganTBHOM NOEHTUDUKALUN CUCTEM C HECKOJIbKMMW HENIMHEMHOCTAMM. RUSS.
Technol. J. 2023;11(5):94-105. https://doi.org/10.32362/2500-316X-2023-11-5-94-105

Mpo3payHocTb GUHAHCOBOW AEATENIbHOCTU: ABTOP HE MMeeT GMHAHCOBOWM 3anHTEPECOBAHHOCTM B NPEACTaB/IEH-
HbIX MaTepuanax uim metogax.

ABTOp 3asaBnseT 00 OTCYTCTBUA KOHd)J'II/IKTa NHTEepeCOoB.
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INTRODUCTION

A number of studies [lI-11] are devoted
to the identification of systems having several
nonlinearities (SSN). In [1], the case when a system
comprises several nonlinearities in series is considered
and an identification method proposed. The detection of
nonlinearity is performed using sinusoidal tests. A similar
approach based on the functional description method is
applied in [2] for parametric identification of a system
having two nonlinear elements in different locations.
In [3], an approach to estimating the parameters of the
transfer function of the second-order nonlinear system
containing two nonlinearities is proposed. In this case,
the harmonic linearization of nonlinearities is performed
beforehand. In [4], in noting difficulties of SSN
identification, a proposed approach to the parameter
estimation is based on function approximation. Various
methods based on the nonlinearity approximation are
considered in [5-7]. In [7, 8], approaches to identifying
discrete systems with feedback are studied. Identifiability
conditions are obtained by applying the least squares
method [8].

In [9], the identification of the system having
nonlinear mechanical oscillations is considered. The
proposed model, which has a “gray box” appearance,
is based on the application of nonlinear basis functions
using a limited number of measured output variables.
Other approaches to identification are considered
in [10-14]. These are based on considering physical
laws when selecting the model structure [11], applying
frequency methods for the feedback system [12], along
with learning theory [13].

The review [15] is devoted to the analysis of
methods for identifying nonlinear processes in structural
dynamics. Here, modifications of the frequency approach
are mainly applied. Disadvantages of approaches based
on linearization, harmonic balance, and the restoring
force surface method are noted. In [16], regression
analysis and Hilbert transform are applied. In [17], chaos
theory methods are used for identifying bifurcation
processes.

Various approaches based on estimating parameters
of the transfer function of a feedback system are
presented in [18-21]. The identification of the feedback
system is often reduced to identifying an open system.
In [22, 23], difficulties in identifying the feedback
system are noted.

Thus, it follows from the presented review that
frequency methods are generally used for identifying
a nonlinear system. In some cases, approaches to
estimating the nonlinearity structure are proposed.
Typically, different procedures of nonlinearity
linearization from the given class are applied.
However, the identification of systems having

multiple nonlinearities has received less attention:
this is possibly due to the inherent complexity of
such systems. In these cases, different approaches and
identification methods based on the localization of
nonlinearities are used.

The problem of SSN identification is complex and
insufficiently studied. It requires solving a number of
problems whose consideration is given below.

PROBLEM STATEMENT

We shall consider system Sp
X(#) = AX(?) + DF, (X, ) + BU(?), (1)
LY(7) = CX(?) + F, (X, 1), )

where X eR™ is the state vector; A € R™™ g the
state matrix; DeR™49; F(X,1):R™ ->RY is the
nonlinear vector function; U € R¥ isthe input (control)
vector; BeR™k: YeR" is the output vector;
CeR™mM F,(X,1):R™ - R" is the
disturbance (measurement errors) vector; L is the
operator defining the way of forming vector Y; ¢ is
time. In some cases, £ may be the differential operator
indicating dynamic properties of the measurement
system.
We shall consider the following data set:

T, ={Y().U@).1 €[tyty ]}ty <oo. 3)

Assumption 1. Elements (pl’l.(xl.) e F,
(pz,i(xj) € F, (non-linear functions belonging to F) are
smooth single-valued functions.

In some cases, condition (p}-(xj)=(p%((p}€(xj)),
i # k may be satisfied. For estimating the parameters
of matrices A, D, B, and C, the following model is
applied:

X(t) = A(OX(1) + D(F, (X, 1) + BOU(?),

4
LY(1) = CX(1) + Fy (X, 1), @
where A(t), ﬁ(t), ]§(t) are matrices with adjustable
parameters.
Problem: for system (1) satisfying assumption 1,
construct model (4) on the basis of the analysis of I
and find such regularities of adjusting parameters of

matrices A(t), D(t ), and B(?), that

lim “Y(t) - Y(t)H <5,
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where |||| is the Euclidean norm, while By > 0 specifies
the model (4) accuracy.

EXCITATION CONSTANCY CONDITION

The excitation constancy (EC) condition plays an
important role in parametric estimation problems. If the
system is nonlinear, then the fulfillment of this condition
may not be sufficient. As shown in [24, 25], the system
should have the property of S-synchronizability in order
to take into account the nonlinear properties of the
system.

Let there exist: (1) bounded vector P € R™ and its
corresponding set of frequencies Q,(); (2) a set of
allowable input frequencies Qg(®) providing
S-synchronizability of the system. Then the EC condition
for matrix Bp(7) = P()P'(¢) has the following form:

PES .+ (oI, <B,(1)<dl,) &(Qp(@) (@)  (5)

for o> 0 and V> ¢, on some interval 7> 0, where a >0

is some number, while /; € R” is the identity matrix.
Usually, P(?) is the vector of measurements and state
variables.

THE STRUCTURAL-PARAMETRIC APPROACH
TO IDENTIFICATION

The following sets out the procedure for identifying
system Sp based on the structural-parametric
approach (SPA) [26]. Depending on the available
a priori information, several stages implementing SPA
can be applied. The system (1), (2) has a complex form;
moreover, the synthesis of adaptive algorithms requires
a priori information about its structure. The composition
of the subsystems included in system S is assumed to
be known. Hence, based on the dimensionality of the
system output vector, matrix A can be divided into
n blocks (subsystems S |, S Sg, {sg ;} € Sg ./ <n).
Analyzing the subsystem’s (blocks), we shall d’istinguish
those containing nonlinearities, i.e., S < Sp
Then we shall apply SPA to each SE, nontin, x € SF, no;lin
element. If subsystem {sp ;} € Sp, \ Sg oy doCs NOt
contain nonlinearities, then the adaptive identification
procedure is applied to it.

Remark 1. The structural-parametric approach is
based on the S-synchronizability of the system and the
fulfillment of condition (5).

Under uncertainty, SPA can be divided into two
procedures: (1) structural Sy, analysis and (2) parametric
estimation (adaptive identification). These stages are
described in detail in [26].

Remark 2. The structural identifiability (S-synchro-
nizability) of a system is greatly influenced by the means

F, nonlin

of connecting subsystems and mutual influence of
variables. In this case, estimating the identifiability of
the system nonlinear elements requires the construction
of a diagram of the mutual influence in the system [27].
By analyzing the interrelations, the effect of influencing
variables can be excluded to determine the structural
identifiability of the system (nonlinearity). Constructing
the mutual influence diagram is possible only if condition
G‘E(ia is satisfied.

Remark 3. Estimating the S-synchronizability of
the system is based on the analysis of a special class
of dynamic structures S ey indicating the nonlinearity
structure of the corresponding subsystem Sg nonlin, k-
The method of their construction is described in [24, 25].

Remark 4. The obtained estimates of the nonlinearity
structure in (1), (2) comprise the basis for implementing
the adaptive parametric identification of system Sp.

Remark 5. If a priori information about the nonlinear
properties is known, then the structural analysis stage of
system S may be skipped.

ADAPTIVE IDENTIFICATION
OF THE S SYSTEM

We shall consider subsystem Sg,; € Sp, dim Sgi ="y
L being the linear operator in (2). Let set I, ; I, be
known for SE, i+ Subsystem SE, i is described by the
following equations:

X. =A. X. +D,_ F X)+B, U, ,
SF.i SF.i~ SF,i Lsg ; LSF,i( ) SFi SF,i

_ (6)
ysF,i T Uspy

We shall represent (6) in the form of the n;th order
differential equation, as follows:

n. n.
NN gk gl kg
Wegy Oy, =22 (@l 20 b)) )

1sg :/sg : Sp ;
k=1 /-1 F,i °F,i F,i

where X € R" s the state vector of subsystem sy, ,,
st >

x; being the first X element; Dy, F and Bg_
F,i SE,i F,i

> l,sF,i
. . . . k.h
are matrices of appropriate dimensions; dl s . € D
SE,i

LSF,i’
J k,j J
eF , b7 eB. L, u d/dt
st,i LSp,i” “sp,; SF,i’ SR, /dt,
W M)
sF,i( )

is the polynomial of n; degree. Matrix
Ay, € R"™" s the Hurwitz matrix. We shall divide
N

left and right parts of (7) by polynomials of n, - 1 degree

elU. ; v =
SR,i’

n;—1

Hy ()= [T(v+m) ®)
’ k=1
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and obtain
. __ N
ysF,i nSF,inF,i
n;=1n; -1 (9)
Tk, h k,j
+Z Y| ak +b0p )
F,i F,i u
k=1 j=1 F,i SF,i

>0, d*" and

where v, p, are positive numbers, nsF Sp.

I;S];]; depend on parameters of subsystem s ; and p,

and variables p ;  (z = f, u) satisfy the following
V4

SF.i
equation:
. — U j
P WP *E (10)
SF,i SF,i

Remark 6. The structure of the right part of (9) is
determined by the type of matrix Ag
SF.,i (V).

The adaptive model for estimating parameters (9),
(10) is the following:

i and polynomial

b =—k P — +
ysF,i SF,i ysF,i ysF,i

n.—ln.—1

N N kh pk.j
K + d ;b p )
sF,inF,i z SF,ipu/ an
k=1 j=1 SF.i
A 2 :k . .
where k>0, K, d*" | and b5 are adjustable
F.i Fi  SF,i SF.i
parameters.

The equation for the identification error is the
following:

e. =—k,_ e +Ax +
SF,i SF,i SF,i SF,i” SF,i
n;—1 ni—l .
Fk,h rk,j
* Adgl P onj * Ab TP b (12)
k=1 j=1 s Y
where AdR" = d dk h AT = pld _pke s
SF,i sF K Sp,i SF,i SF,i SF,i
e. =yp. - Ak, =K. - .
Spi ySF,i ysF,i ’ SF,i Sp,i nsF,i
We shall consider the Lyapunov function

_ 2
Ve’i (esF’i ) = O.Ses

- Then the following is obtained for
Ve (esF’l_ ) :

71n -1

Sk,h rk,j
+ZZ Ad pfhj +Ab, P
k=1 j=1 B Tsp B

If variables p i P have property @ES,&’

USFi SF,i
then the following 1is obtained from condition
4 (esF’i ) <0:
Ak, = ,
SF,i g i SF,inFi
jhh
Adl,sFi - _yk,h,sF ,-esF pfh J> (13)
’ ' SFi
pksj —_
AbsF,i puj Yk’j,sF i p J s
SF,i spi

where vy Jspi 0 is the amplification factor.

It is not difficult to obtain algorithms for the
parameters of the model (11) from (13).

Thus, the adaptive identification system of the
subsystem Sk, i is described by Eqgs. (12) and (13). We
shall denote it as ASy

We shall con51der the Lyapunov function

2
=0. SYK S (AKSF,i ) +

(14)

1 T
+0. SSp(AD1 s Fk hsp ; ADLSF,i ) "

+OSSp(AB rt ABT)
kJSpi SE.i

where I‘k’h,sF,l =diag(yk’hysF’i ), Sp(°) is the spur of

=diag(yk JSE. ), ADLs ; and ABs

contain elements Adk h_ and Ab
F.,i

matrix, F ‘1

respectlvely Let

i
Theorem 1. Let: l) functions " (D, V, (1) are
positively definite and admit the infinitesimal higher

AK, Ak

sF,t

AK, :[ADLS ,AB }andV (t) Vo) +Vp ().

limit at |e|—>oo and

—> 0,
F.,i

2) matrix  Ag eR"™is the Hurwitz matrix;

have property @Ea - Then all

3) p i Pu j
SF,i SF,i
trajectories of system ASg

following domain:

; are bounded, lie in the
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G, = {(eSF,i ’AKSF,;’ ’ VSF,i 0= VSF,i (to )}

and the following estimation is valid:

AKSFJ ) :

t
2k, j Ves ATV, (1) =V, (0.
1,

Let estimation called A1 be true for VA, A0):
T 2
0.59 Sp(AKSF,i (t)AKSF,i (t)) + (AKSFJ ) <Py 0)<

_ 2
<0.5 S{Sp(AKSF ,(z)AKSTF ,(r)j + (AKSF . ) }

where FSFJ, = rk’h’sF,i +I‘k, JSEi + is the sign of the

FSFJ), Bl(rsF,i) are the
minimal and maximal eigenvalues of matrix I’ Spi’
N

9= min(B;l (I"SF’i )’Y;}SF,,' ), and § = max(ﬁfl (FSF,i ),Y;}SFJ )

Theorem 2. Let the following conditions be

satisfied: 1) positive definite Lyapunov functions
Ve ()= O'SeSF,i ),

direct sum of matrices, Bl(

2
_ -1
VAJ. (t)= O‘SYK,sF’i (AKSF,i ) +

-1 T
+0.5Sp (ADI,SFJ r kohsg, ADI,SF,,- ) +

+05$p(AB rl ABT)

F,i k.j, SF,i SF,i

admit  the  infinitesimal  higher  limit  at
eSF,i (l‘)‘ — 0, AKSF,i — 0, ‘AKSF,i — 0; 2) matrix
_pT
WSF,i (t) - Pfh,j uj (t)Pfh,j ,uj (t) and ysF’i are
SF,i " SF,i "SF,i” SF,i
piecewise continuous bounded and
S S . .
WSF,i (1) e PE .50 ysF ®) EPE; o, 4, 3) the following
equality is valid:
iy " k
hkJ -
SF,: Z Ad h.j +AbsFipu./ -
k=1 j=1 SF,i F,i
- T T
=1<Sp AKSF’i(t)Pch N Pfh’j . AKSF,i(t)

< . .
SF,i” SF,i ~SF,i SF,i

2
+(Ae +e2
( SE,i % SF,i ) SF.i }

in domain O,(0), where = > 0, O={0, 0"} <
c R xR"*" x J0.005 0" e R"™" is a zero matrix,
O, is some neighborhood of point O, 1 €[0,0]=J, ., is
time interval; 4) estimation Al is valid for function
Vx {1);5) the following system of inequalities is fulfilled:

for V.

el’

T .
= [Ve’i DV, (t)] satisfies equation S=AyS, if the
following inequality is valid:

VA,i; 6) the upper solution for Vel,’Al_ (=

v (t) <s (t) V(t=1t) &V (to) s (1))

p =e, i; A, ifor elements V, (1), V, (?). Then adaptive
system ASy ; is exponentlally stable Wlth the following
estimate:

v, o () <eMvIls (),
if

4 209
>— |—.
SE,i SRi - 3\ @

(15)

The proof of theorems is based on the approach
described in [26].
Theorem 2 shows: if the information matrix

s

_pT
WSF’i(t)—Pf;,,j y (t)Pfh,j W ()
SF,i " SF.i SF,i " SF,i

is continuously excitable, then the adaptive system
ASp, ; allows obtaining true estimates of the system Sk,
parameters. In this case, the system parameters should
satisfy conditions (15).

EXAMPLES

We shall consider the system with nonlinear
correction of the nonlinear system. It contains the
amplifier with electric motor and the relay control
described by function f,(«). The nonlinear feedback (b in
an index notation) on speed with parabolic characteristic
J>(x,) is used as a correction device, as follows:
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X =Xy,

X0 = X,

27 (16)

X3 =—ayxy —ayx3 +bfy (u),

y=x]a
c, ifu>d,

fiw)=10, if —d<u<d,
—c,ifu<-d,

where u = g — x; — f,(x,) is control; fo(xy)=
= kfbx§sign(x2); g is the system input; ¢ > 0, d > 0;
kg, > 0; x; is a state variable; and a,, b are system
parameters.

Equation (13) and polynomials in (7), (8) have the
following form:

v % b b
(U+n— 12 Jy:( 1 2 Jfl(u). (17)
v+ LEU, L+ LHH,

Equation (17) is obtained as follows. First,
system (16) is written in the space ((?), f,(u)). So,
Eq. (7) is obtained. Since the system has the third order,
to find the equation for y(¢), according to the results of
the ADAPTIVE IDENTIFICATION OF THE Sg
SYSTEM section, both parts of the obtained Eq. (7) are
divided by polynomial H(v) = (v + p;)(v + ). Then the
left and right parts of (7) are decomposed into prime
fractions, and Eq. (17) is derived.

We assume v = d/dt. The analogue of Egs. (8)
and (9) for system (16) is obtained from (17), as follows:

VEWANDy V2P, T

(13)
+b1pf1,u1 +b2pf1+lz’
py7“1 :_Hlpy7pl +y,
Pyp, = H2Pyy, *0> (19)

Pr = 7MP R +
P/i,uz :_Hzpfi’“z +f1,

where b, = 1.4, b, =-0.4,1=0.35,v, =—1, v, = 1.35,
u, = 2.05, p, = 2.25. The parameters of nonlinearity f,:
¢, =2,d=0.5. Input g(¢) = sin(0.2¢).

The adaptive model and algorithms are the following:

y :_kye_nervlpy,ul +

) . . (20)
+ Py, +b1pf1,H1 +b2pf1,uz,

A=—1ne 9 =1, e,

b=ty =ty QD)
by = oy Py
where e=Jp —y.
The equation for error e(?) is the following:
e=—ke—Any+ Avlpy,ul +
+ szpy’uz +Ab1pf1,u1 +Ab2pf1,ll2’ (22)

where k>0, Ac=6—-0,6=", V|, v, by, b,. Coefficients
y; in (21) vary in the range (0.002; 0.009).

T
Let AK 2] An, Avy,Av,,Ab,Ab, | . The adjustment
law for AK follows from (21):

AK =-TyeP, , (23)

where T = diag(vn,vvl Ty, Y >V, ),

T
Py :|:y’py’u1’py’uszf]aul’pfl,l«lz} :

The boundedness of the system (22), (23) trajectories
follows from Theorem 1. The adaptive system results are
shown in Figs. 1-4. The adjustment of the model (20)
parameters is shown in Figs. 1 and 2. The change in
estimation error e(?) is shown in Fig. 3. This change in
the error is related to the change in the system output.

It is noted in [28] that by function f;(x,), the system
is unidentifiable on the set of measurements. In this
case, the indirect information about the dependence of
u; = ®—x,; on x, may be used. This is true since there is
a relationship between u and u.

2. We shall consider the self-oscillation generation
system consisting of an object (variables y,, »,),
nonlinear (variable y;) and linear (variable y,)
converters, and the linear amplifier-converter with
nonlinear actuator (variable ys). Function f(x) (i = 1, 3)
is the saturation function with a dead zone

c, if x2d,;,
2x—d,;), if d;<x<d,;,
fi(x)= 0, if —d|;<x<d,;,

2x+dy;), if —d;<x,

-, if x< _dz,i’

where ¢ >0, d; ;> 0, and d, ;> 0 are some numbers,
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1.5

1.0 0

0 100 200 300 400

Fig. 1. Adjusting parameters of model (20)

2.0
1.5+ \&% 51 ]
by 1.01
52 0.51
0.0 _\\\: 52
-0.5 0 1(;0 — 27(;)70\7””;37('7)67 400

Fig. 2. Adjusting parameters l;i of model (20)
Y = AY + DF(Y)

0 1 0 0 0 ]
L 0 —-g 0 0k
N 1
¥y 0 0 _71 0 0
Y = ,A= ,
73 ky 1
V4 0 =2 0 —-— 0
TZ T2
Vs ] |
0 0 0 0o —-—— (24)
i I3 |
0 o
0 0
L0 /G0
D=| T, ,F(Y){f(li1 )},
0 0 33 Ty
o L
L I3 |

where 7, > 0 is a time constant, g > 0. Variable ys is used
as the input.

The phase portrait of the object is shown in Fig. 4.
It shows that self-oscillations arise in the system.
For identifying parameters of system (24), we shall
use the ideas of the adaptive observer for the object
described above. It is necessary to transform only the
first two equations in (24). For this, we represent them

0.4-
0.2
0.0

-0.21

e -0.41 \ —0.

-0.6 1.
-0.8 _¥5& |
100 /200 300
-1.04 ~_
-1.2 . : : .
~4 -2 0 2 4
y

Fig. 3. Change in the estimation error

8

Y, 0+

41

-8 . i . . . . i
-16 -12 -8 -4 0 4 8 12 16

Y1
Fig. 4. Phase portrait of object (24)

in the form (38) and divide the resulting equation
by v + u. Then variables y,, ys are transformed, as
follows:

Py = WPy w0 (25)
pys,u :_“pys,u+y5’

and the following identification representation is obtained:
N =apy tapp, + 5Py
3 ==asyy +ay, £ (1),

V4 =—a4y4+ a4,

Ps= —as5ys +ds3f3 (y3 + y4)'

(26)

The adaptive system for estimating parameters of
system (26) has the following form:

¥y = ke + gy + APy +ai5py, s
Yy =y Yy Py, +a5p),

JA.’s =—ksey +ay, (fl (yl)_y3)=

JA.’4 =—kyey+ayyy+agn),,

JA’S =—kses + as, (y5 +f3(y3 +J’4))’

@7

where ¢, =y, —y;,i=1,3,4,5.
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If Lyapunov functions V; (el.) =0.5¢? are introduced,
then adaptive algorithms for adjusting parameters of

system (27) are obtained from condition ¥; <0, as follows:
aj ==yey, A= “T24Py,
a5 = Y156 P)y;> a3; = —731€3 (fl (y1 ) -7 ),

) ) (28)
g1 = Y41€4Y4>  Aap = V42€4)2>

551 =515 (ys + /3 (y3 +y4)),

where V> 0.

Systems (26) and (27) are simulated with the
following parameters: a,, = 0.55,a,,=-0.6,a,5=—1.15,
ky=2,u=05,ay,=221,k;=038,k,=1.5,a,, =1.15,
a,,=0.56,k;=1.25, a5, =1.1. Parameters of functions f,
f3od; =05,dy,, =15, ¢=2,d,=025,d,; = 1.25.
Coefficients Y, vary in the range (0.001; 0.05).

The adaptive system has the following form:

e = —kje; + Aay 1y +Aalzpy1 +Aalspy5 s

ey =+Aapy + Aalzpy1 + Aalspys,

&y = —kye +Aa31(fl(yl)_y3)’ (29)
ey =—kyeqy —Aay vy +A7ay,p,,

és =—kses —Aas, (y5 + /3 (y3 +y4)),
Adyy=—ypey,  Ady =-1pePy,

Adys = “N156Py,» Adyy = =138 (fl (J’1 ) - yg), 30)

Ady =v41€4Y4  Dagy =—V42€4)5>

Adg) = vs,e5 (J’s + /3 (y3 +y4))’

where Aaij @)= &ij - 4.

The results of system (29), (30) are shown in
Figs. 5-7. The process of adjusting parameters of the
system (27) is shown in Figs. 5, and 6, while the change
in the output discrepancies of system (27) is shown
in Fig. 7. The results confirm the boundedness of the

adaptive system trajectories.

Despite the fulfillment of condition y5 € %3@ for
the input of system (24) and the S-synchronizability
of the system, it is not possible to ensure the condition of
asymptotic stability. This is due to the presence
of nonlinearities in the system.

We shall consider the Lyapunov functions

5
V,15()=0.5 > e, Vo =

i=1, i#2

T
:[ e,l’VA,I’Ve,S’VA,3’Ve,4’VA,4’Ve,S’VA,S:| >

Vais()=0.5 (yl—}Aafl () + 73 A% (1) + vl Aa (t)) +
VA1
+ O.5y§11Aa321 ®+0.5 (yZ}Aafl ®+ yZ%Aafz (t)) + an
[ ——)
a3 VA4
+0.5y5]Aa2, (1).
A5
0.6
0.3 a1
0.0
&; 0.3
&,
—-0.6 - [ I
—0.9-7 A E
-1.2 — - —
0 50 100 150 200 250
t
Fig. 5. Adjusting parameters of the models
for estimating y,
25
2.0
a31 f\
~ 1.54 Y]
a1
5 1.04
a42 J/
5 0.5
854 |
0.04
_0-5 T T T T
0 50 100 150 200 250

t

Fig. 6. Adjusting parameters of the models
for estimating y,, y,, and y;

200

Fig. 7. Change in the discrepancy of outputs
of models (27) (green line is ey, red line is e,
orange line is e5, and blue line is e;)

Russian Technological Journal. 2023;11(5):94-105

102



On adaptive identification of systems
having multiple nonlinearities

Nikolay N. Karabutov

Theorem 3. Let the following conditions be
satisfied:

1) positive definite Lyapunov functions V, ,(f)=
2
=057 (Aay ), ¥, (0 =0.5¢,(0), Vp 1 (1) = 0.5 (v} Aaq, (1) +

+Y1_21A0122 ®+ Yl_51Aalz5 (t )) admit the infinitesimal
higher limit at |e/(#)] — 0, \Aal.j\ — 0;

2) y; are piecewise continuous bounded
while o=max|a.  .,a, ,o s y.(t)e@fs _
[ NPy T By l %%
S S -
Py, €PE; 5 s Py €EPE; o andi=1,3,4,5;
Pyl Pyl Py5 Pys

3) for ¥ 1 (1) = 0.5AG[ ()T['AG (1) , the following
inequation is valid:

0.58,AG] (1)AG, () <V (1) £0.53,AG] (1)AG, (2),

where I’y Zdiag(YnaYuaYls)a 9 :[31—1(1"1),

T 5§ -
AG(6) =[ Aayy (1), Ay, (), Aqy5 (1) |, 8 =BT (T ).
B,(Ir)), By(I'}) are minimal and maximal eigenvalues of
matrix I'j;

2 _
4) afi’y3 —ﬁﬁ(fl(yl)—yﬁ Safi,y3 + V3,
L3 20, vy 20;

5) v, = max(y,, V)5
6) equality

2 2 2
el.Aaij(ol. =T, & +(Aalj) o;

is satisfied in domain O (O), where =mn;, > 0,
0={0% 0"} cR*xR"xJ, ., 0% 0" are zero vectors,
n is the number of adjustabl’e parameters, O, is some
neighborhood of point O, ¢ €[0,0] =J 0,005

7) for ¥, (s), matrix system of inequalities
Voa SA AV, +B, s is valid, where A, , is the
following block diagonal matrix:

A, p =diag (Ae,A,l AeazAensrAons ),

B, =[0 0 58, my 0 0 0 0],

submatrices A e A i have the form similar to Ay, from
Theorem 2;

. 8) the upper solution for V, (¢) satisfies equation
Sea =Ap S, A +B, 4, if there exist such functions
s{(0)=0, that ¥, , (1) <s{0) V(1=10) &V, 5 (ty) < 5(ty),
i =1, 3,4, 5 where Se’A eRO, s; are elements of

vector S e A Then adaptive system (29), (30) is
exponentially dissipative with the following estimation:

t
V, 5 (0 <ebeal0)g( ) 4 [ eReali=p g,

The proof of Theorem 3 is similar to the proof of
Theorem 2.

It follows from Theorem 3 that bound properties
of system (29), (30) depend on nonlinear properties,
feedback, and compliance with the excitation constancy
condition. In particular, this applies to block 3.

CONCLUSIONS

In the paper, the approach to adaptive identification
of systems with several nonlinearities is proposed. It
is based on the transformation of a system in order to
exclude unmeasurable state variables. The synthesis
of an adaptive identification system is presented. In
order to simplify the adaptation process, an approach
involving the decomposition of a system into a number of
subsystems is proposed. The boundedness of trajectories
in the adaptive system is proven. The problem of the
S-synchronizability of a system is considered taking
into account the modification of the excitation constancy
condition of the system information, which is set with
allowance for the specifics of structural identifiability
of the nonlinear part of the system. The method of
Lyapunov vector functions is applied for proving the
exponential stability of the identification system.

An approach to the nonlinear correction of a nonlinear
system is considered. Adaptive algorithms for estimating
system parameters are obtained. The boundedness of
system trajectories is shown. Considering a nonlinear
self-oscillation generation system with nonlinear
feedback, an adaptive system of parametric identification
is proposed. The influence of feedback and nonlinearities
on the boundedness of trajectories is investigated. The
simulation results confirm theoretical conclusions.
The proposed methods could be used in developing
identification and control systems for complex dynamic
systems.
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