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Abstract

Objectives. Fast data analysis based on hidden patterns is one of the main issues for adaptive artificial intelligence
systems development. This paper aims to propose and verify a method of such analysis based on the representation
of data in the form of a quantum state, or, alternatively, in the form of a geometric object in a space allowing online
machine learning.

Methods. This paper uses Feynman formalism to represent quantum states and operations on them, the
representation of quantum computing in the form of quantum circuits, geometric transformations, topological
classification, as well as methods of classical and quantum machine learning. The Python programming language is
used as a development tool. Optimization tools for machine learning are taken from the SciPy module. The datasets
for analysis are taken from open sources. Data preprocessing was performed by the method of mapping features
into numerical vectors, then the method of bringing the data to the desired dimension was applied. The data was then
displayed in a quantum state. A proprietary quantum computing emulator is used (it is in the public domain).
Results. The results of computational experiments revealed the ability of very simple quantum circuits to classify data
without optimization. Comparative indicators of classification quality are obtained without the use of optimization, as
well as with its use. Experiments were carried out with different datasets and for different values of the dimension
of feature spaces. The efficiency of the models and methods of machine learning proposed in the work, as well as
methods of combining them into network structures, is practically confirmed.

Conclusions. The proposed method of machine learning and the model of quantum neural networks can be used to
create adaptive artificial intelligence systems as part of an online learning module. Free online optimization learning
process allows it to be applied in data streaming, that is, adapting to changes in the environment. The developed
software does not require quantum computers and can be used in the development of artificial intelligence systems
in Python as imported modules.
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Pe3iome

LUenun. boicTpasa knaccuburkaumsa OaHHbIX HA OCHOBE MMEIOLLMXCHA B HUX 3aKOHOMEPHOCTEN SABNAETCH OLHUM U3
rnaBHbIX BONPOCOB 15 MOCTPOEHUS CUCTEM aanTUBHOIO MCKYCCTBEHHOrO MHTennekTa. Llens paboTsl — npeasno-
XUTb 1 BEPUONLMPOBATL METO, TaKoW KnaccudukaLmm Ha OCHOBE NpeacTaBNeHns JaHHbIX B BUAE KBAHTOBOIO CO-
CTOSIHUS NN (aNbTEPHATUBHO) B BUE FTEOMETPMYECKOro 06beKTa B MPOCTPAHCTBE, CBONCTBA KOTOPOIro NO3BONSAIOT
NPOV3BOANTL MaLLUMHHOE 00YYEeHME «Ha NeTy» (OHNANH-00y4eHNE).

MeToabl. B paboTe ncnonb3yercs GpenHMaHOBCKUI dpopmanmam Afis NpeacTaBieHnst KBaHTOBbLIX COCTOSIHUI U
onepaumin Ha, HUMU, NPeACTaBNEHNE KBAHTOBbIX BbIYMCIIEHWI B BUAE KBAHTOBbLIX CXEM, FEOMETpMYeckue npeobpa-
30BaHUs, TONoJsIorMyeckas Knaccudukaums, a Takke MeToapl KNacCMYeckoro U KBaHTOBOIrO MaLUMHHOIO 00y4eHMs.
B kayecTBe MHCTPYMeHTa pa3paboTky MCNoNb30Bancs A3blk NporpaMmMmupoBaHus Python, cpeactea ontumMmsaumm
ONst MaLlLMHHOIO 06y4YeHus B3aTbl U3 Moayns SciPy. PasameyeHHble faHHbIE /1 aHanM3a B3siTbl U3 OTKPbITbIX UCTOY-
HUKOB. MNpPenpoLecCcuHr AaHHbIX NPON3BELAEH METOLOM OTOOPaKeHUS MPU3HAKOB B YACSIOBbIE BEKTOPbI, 3aTEM MpPU-
MEHEH MeTO[, NPMBEAEHNS OAaHHBIX K HY>XXHON pa3MepHOCTY 1 Aanee — 0ToOpaxeHne AaHHbIX B KBAHTOBOE COCTOS-
Hue. Micnonb3yeTcst COOCTBEHHBI 3MYNSATOP KBAHTOBLIX BbIYMCIEHUI (HAXOAMTCS B OTKPLITOM JOCTYNE).
PesynbTaTtbl. Pe3ynbTaThl BbIYMCIUTENbHbIX 9KCNEPUMEHTOB BbISBUIN CMOCOOHOCTb OYEHb MPOCTbIX KBAHTOBBIX
CXeM K Knaccudukaumm AaHHbix 6€3 ontummnaaumu. MNonyyeHsl cpaBHUTENbHbIE MOKa3aTeNn kayecTsa knaccuduka-
umm 6e3 Ncrnonb30BaHNs ONTUMM3ALLUN, @ TaKXKE C ee NCMOJIb30BaHNEM. DKCMEPUMEHTbI NPOBEAEHbI C Pa3INYHbIMU
paracetamu 1 NS pas3nnyHbiX 3HA4YEHNI pa3MePHOCTM NPOCTPAHCTB NPU3HAKOB. PaBoToCcnocoBHOCTL NPeaJIOXKEH-
HbIX B paboTe Mofenei n METOA0B MaLLMHHOIO 0Oy4YeHust, @ Takke MeTO0B X 00beAMHEHUS B CETEBbLIE CTPYKTYPbI,
nogTeepxaeHa NpakTn4ecku.

BoeiBoAbl. MNpennoxXeHHbIn MeTo, MalLMHHOIO 00YYEHMS 1 MOCTPOEHUSI KBAHTOBbIX HEMPOHHBLIX CETEN MOXET ObITh
NPUMEHEH AN CO30aHNsi CUCTEM afanTUBHOMO MCKYCCTBEHHOIO MHTENIEKTA B COCTaBE MOAYJS OHNANH-00y4eHNs.
OTcyTCTBME ONTMMU3AUMM B NPOLLECCE OHNMAaNH-00Y4YEeHNS MO3BONSET MPUMEHSITL €0 B NOTOKE AAHHbIX, T.€., afanTu-
poBaTbCH K UBMEHEHMSM cpebl. Pa3zpaboTaHHoe anroputMmyeckoe obecneyeHne He TpebyeT HaNMYMsa KBaHTOBbIX
KOMMbIOTEPOB U MOXET ObITb MPUMEHEHO NP pa3paboTke NporpaMMHOro o6ecrneyeHms CUCTEM UCKYCCTBEHHOIO
VHTeNNeKTa Ha a3bike Python B ka4ecTBe MMNOPTUPYEMbIX MOLYNEN.

Kniouesble cnosa: OHJ'Ial71H-O6y‘-IeHMe, a4anTUBHbIN NCKYCCTBEHHbI MHTENIEKT, KBAHTOBOE MalLUNHHOE o6y~4eHV|e,

KBAHTOBaA 3anyTaHHOCTb

e Moctynuna: 13.02.2023 ¢ flopa6oTaHa: 14.06.2023 ¢ MpuHaTa kK ony6nukoBaHuio: 13.08.2023

Onsa untupoBaHua: 3yes C.B. leomeTpuyeckme CBOMCTBA KBAHTOBOM 3aMyTaHHOCTU U MaLUMHHOE 00yyeHne. Russ.
Technol. J. 2023;11(5):19-38. https://doi.org/10.32362/2500-316X-2023-11-5-19-33

MpospavyHocTb pUHAHCOBOM AeATeNbHOCTU: ABTOP HE MMeeT GUHAHCOBOW 3aMHTEPECOBAHHOCTM B NMPeACTaB/IEH-
HbIX MaTepmanax unm MeToaax.

Kpome oTmeveHHOon adpdunmaumm, aBTop asnseTca coTpyaHmkom BI'TY nm. B.IN. LWyxosa (Benropoa, Poccus), HO Ha-
cTosilas paboTa BbINOJIHEHA HE3ABMCMMO OT 3TOM OpraHM3auumn, XoTa y aBTopa MMeeTCs 06593aHHOCTb yKa3aTb CBOKO
NPUHAANEXHOCTb K HEN.
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INTRODUCTION

Quantum algorithms are attracting more and more
attention, since quantum computers are soon expected to
be fully usable. On the other hand, quantum search and
factorization algorithms are one of the main reasons for
developing quantum computers. Several such computers
are currently available around the world. However,
their power is relatively low (the largest is the Chinese
Jiuzhang with 76 qubits!), and they are still used for
demonstration and research purposes.

The other pole of progress in information technology
is artificial intelligence. Like most human knowledge,
artificial intelligence is based on a natural phenomenon
known as cognition, which still has no universally
recognized quantitative theory. Quantum versions of
such theories, inter alia, do not yet have proven clear
advantages, although the results of this study can be
seen as an indication of certain advantages of quantum
methods in machine learning (ML).

The advantages of quantum computing and
quantum computers in solving problems in the field of
artificial intelligence are covered in review [1], which
substantiates the relevance of studies in this area and
indicates the main directions in one of which this paper
is written. There is also a review of 2023 [2] containing
references to all modern advances in this area.

The main possible advantage of quantum version
of artificial intelligence is the exponential growth of
computational capabilities. While the classical artificial
neuron can process input data of N dimensions, quantum
neuron can process 2"V-dimensional data. The application
ofthe quantum version cansignificantly speed up execution
of both learning and classification algorithms [3]. At the
same time, one of the technical challenges in building
a large-scale quantum computer is the need to ensure
that there are “qubits that can be initialized with arbitrary
values” [4]. This problem is relevant and is a significant
obstacle to achieving quantum superiority.

In [5-9], prototypes of quantum neural networks
based on constructing a quantum circuit with adjustable
parameters were proposed. The present paper shows
how this approach can be implemented in connection
with the proposed neural network architecture and how
such parameter settings can be dispensed with.

Quantum versions of the most popular ML algorithms
have already been developed. The above-mentioned
quantum neural networks work on a par with traditional
ones. In [10], quantum support vector machines (SVMs)
using the HHL algorithm [11] for inverting a matrix
to generate a hyperplane were proposed. The image
classification model presented in 2018 [12] is based
on quantum k-nearest neighbors. The quantum linear

! https://en.wikipedia.org/wiki/Jiuzhang_(quantum_computer).
Accessed January 01, 2023.

regression using quantum data is proposed in [13].
A quantum analogue of the decision tree developed
in [14] uses quantum accuracy and quantum entropy
measurement, i.e., it develops the classical ID3 algorithm.

Several quantum ML methods have been developed
for clustering in [15]. In particular, a quantum version of
the k-means algorithm in different variants is presented
in [16] and [17]. Another quantum clustering algorithm
using Grover’s algorithm to determine the cluster median
is proposed in [18].

The quantum analogue of the quantum principal
component analysis method [19] identifying eigenvectors
related to the eigenvalues of an unknown state exponentially
faster than any other solution has also been developed.

Anarea close to the topic of the paper is reinforcement
learning, i.e., online learning taking into account the
response of the environment. There are several quantum
versions of reinforcement learning, such as [20] which
uses a superposition of quantum states, and due to this
parallelism is achieved and the learning speed increases.

Deep learning occupies a special place in ML. Deep
learning methods require significant memory and time
resources, thus making their development in the quantum
area attractive. Among recent advances in this field is
a series of works on quantum generative adversarial
networks [21-23] with implementation in [24] using
a superconducting quantum processor to generate and
learn handwritten digital images by quantum generative
Wasserstein adversarial networks [25]. It has also
been shown that scalability and stability of quantum
generative adversarial model learning improves on
quantum Boltzmann machines [26, 27], quantum
autocoders [28, 29], and quantum convolutional neural
networks [7-9]. Among Russian works in this area,
study [6] may be specified.

Improving optimization algorithms is also in the
focus of research on quantum algorithms. Quantum
enhanced optimization [30] as well as quantum gradient
descent [31, 32] is used in quantum neural networks,
e.g., in quantum Boltzmann machines [27].

Among recent works is experimental study [33]
showing that SVMs outperform their classical counterparts
by 3-4% on average, while quantum neural networks made
on a quantum computer outperform quantum SVMs by 5%
on average, and classical neural networks by 7%.

Quantum entanglement in connection with a model
of learning was proposed in 2005. This is a model
for the semantics of concept combinations created
in a non-decomposition way. It deals with emergent
properties/associations/inferences in connection with
concept combinations2. In the paper, this idea is used

2 Bruza P.D., Cole R.J. Quantum Logic of Semantic
Space: An Exploratory Investigation of Context Effects
in Practical Reasoning, 2006. https://arxiv.org/abs/quant-
ph/0612178. Accessed January 01, 2023.
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for a different purpose, i.e., to provide a way to separate
labeled data. Although not directly related to learning,
these ideas may allow a better way to be found to solve
the following current problems of data analysis and
artificial intelligence.

The first problem is online learning. It arises when the
data environment changes and there is no time or resources
fornew learning in the system. The comprehensive theory of
online learning is presented in the course by Massachusetts
Institute of Technology, available online>. The main
challenge in this problem is finding a compromise between
quality and responsiveness. Quality-based learning is often
time-consuming, while responsiveness-based learning
may produce useless results. The better choice is to create
a system that adjusts itself with allowance for the content
of the data stream it receives. The paper proposes such
a system based on entangled quantum states. Generalizing
this idea, it is possible to approximate artificial intelligence
systems to living intelligence in the sense of adapting to
the environment.

The second problem is fast recognition, especially
in the case of moving images. This problem is well
described in various blogs and articles. For example,
one of the current approaches to this issue is presented
by Shao and Vitarsia in [34]. This research focuses on
applying the BP neural network, i.e., an artificial neural
network of forward propagation. The application of
quantum algorithms for solving this problem has not
been found in the literature. However, there is a software
tool* designed to compare streaming video data which
already works as a web service>.

Any progress in solving these problems could lead to
technological solutions in industries such as self-driving
cars, unmanned aerial, and underwater vehicles, as well
as video monitoring and other fields largely related to
the detection of anomalies in a changing environment. It
is not necessary to use a quantum computer to apply the
results of this research, since the proposed algorithms
can be implemented on emulators or reformulated in
classical form. This would probably destroy quantum
superiority, although the efficiency of low-dimensional
data may be quite sufficient.

MATERIALS AND METHODS

This paper uses the quantum and classical data
described below. The set {¥'} of sets of n real numbers

3 Rakhlin A. Online Methods in Machine Learning.
Theory and Applications. TA: Arthur Flajolet. https:/www.
mit.edu/~rakhlin/6.883/. Accessed January 01, 2023.

4 Biloushenko LI, Zuev S.V. Determining the degree of

similarity of video fragments, 2022; Certificate 2022685057
of 20.12.2022 issued by the Federal Service for Intellectual
Property (in Russ.).

5 https://ais.bstu.ru/services/1. Accessed July 05, 2023.

x/ = {x({ > e x,f,l} with label I/ defined for each set is
the classical data. The set of quantum states
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l9/)= X a] k)

k=0

is considered as guantum data. Components a,{ of the
quantum state vector are considered as given in a certain

computational basis |0>, ey | 27 —1>. These notations
are commonly used in such books as [35]. Before the
relationship between these data is established, we shall
make a few preliminary remarks.

The type of data used to deliver information from
system to system in nature is not obvious. However,
human operations require classical information. It can
be easily seen that 2”-dimensional quantum system
provides only n-dimensional classical data, although the
quantum system operates in 2”-dimensional state space
during calculations. The problem of generating the
initial quantum state arises from the fact that the source
of quantum data, generally speaking, is unknown. It is
certainly impossible to generate this data from classical
ones. Thus, the only thing that can definitely be assumed
is that the system has already had data in quantum form
before the start of computation However, this means that
all dependencies are already contained in quantum data,
and the quantum intelligent system should use them.
This is the basis for further consideration.

We shall first describe the state space structure of the
system of n qubits. Proceeding from the way in which
quantum data is represented, this space is embedded in

CV,where N = 2" while C is the space of complex
numbers. In addition, quantum states are described by
vectors with an absolute value equal to 1, while vectors
differing only by phase coefficient e describe the same
state. This suggests that the equivalence relation may be
considered, as follows:

—

z
—=w, ..,
ZO

=whN-1, 1)

The space of such vectors w is called (complex)

projective space CPN™! which is a set of vectors with
N complex coordinates (z!, ..., zZ¥') connected by
equivalence relation (1). Another condition which can
be derived from (1) is the following:

‘20‘2 + ...+\zN—1\2 =1. )

The phases of coordinates wX are defined to the

accuracy of the common multiplier e, where g is
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an arbitrary phase of coordinate z°. Thus, space CPV~1
can be identified with the space of system states of
n qubits while coordinates can be represented in the
following form:

k
wk = | ZO |ei(¢k*¢o)'
|27

We can assume without any restriction that ¢ =0.

According to the above procedure, the space CPN- s
homeomorphic to surface (2) of dimension 2N — 2 since

0 _
zy, =0 and, therefore,

2 2 2 2
0 N-1{" —(,0 1
‘Z ‘ + ...+‘Z ‘ —(Zre) +(zre) +

+ (zilm)z +...+(zr]g’1 )2 +(Z.N’1 )2 =1.

This is sphere S¥ ~ 2, and each of its points z, can be
parameterized using the following generalized spherical

coordinates:

0 _ 0 1 212
z; —cosESj cosSj...coséij R

0
1 _ing0 1 2m-2 1Y
z; 51n6jcosé3j...cos§j e'/,
22 =sin 8l cos 82...cos 52" ~2¢'7 ,
J J J J 3)

3

b

. _2 . Zn_
ijn -2 =gin 83.’1 -3 cos 85" 'l

22"l =gin 82."‘2eiy%n -
J J
where
§0 =240 5l =Fgl  §2-2 T o2
VA TV A B R A 2J ’

and dj- is the value of the ith feature in the jth data

sample in the scaled data (d ; €[0,1)).
Thus, it is possible to encode any training dataset
into a quantum state using the following formula:

2]
l4,)= X h@lk). @)

According to the postulates of quantum mechanics, if
there are two systems with n, and n, qubits, respectively,
then the states of the combined system have the following
form:

2"2-12"M -1

la)= 2. 2. ambb|m)lk),

k=0 m=0

where a and b represent the state amplitudes of the first
and the second system, respectively.

The state spaces for each system are §2"-2and
§2"2-2 The set of states for the combined system is

their direct product, i.e., S -2 g2 -2, However, for
topological reasons, this is definitely not S 22

The part of the system of (n; + n,) qubits, which
cannot be expressed as a product of subsystem states,
forms a set of so-called entangled states. The main
property of an entangled state is that in order to remove
the system from the entangled state, it is necessary to
perform a unitary transformation that significantly affects
all its subsystems. Entangled states form a basis in the
space of states, and further it is called the entangled basis.

If the state of a multi-cubit system is entangled, it is
impossible to get out of it without affecting each cubit.
At the same time, each state of the system can be written
in the entangled basis. Thus each state component in this
basis affects all qubits significantly. If the amplitudes
of these components are measured, it can be seen how
subsystems interact in this quantum system. If the state
labels are given, then which basis vector corresponds
to the label of interest needs to be defined. This can be
determined from the statistics of measurement results
for a given label. Moreover, if new states of the same
system are measured in the same way, it can be predicted
with a certain probability that they belong to the labeled
class, corresponding to the measurement result that is
most relevant to the labeled samples.

To a certain extent, this means that classification can
be performed without optimization if the dependencies
are already present in the data. The latter is an important
addition, since classifying data without dependencies (e.g.,
when the data is a complete superposition of pure states)
would fail. Hence, the dependencies resulting in a given
class for classification need to be defined. This is essentially
a quantum property related to entanglement. Certainly,
this could be interpreted without resorting to quantum
representations, but then it would be necessary to consider
the topological properties of the set of states of the system,
as well as the subsets of its entangled states, in order to build
probabilistic models on them. At present, the interpretation
in terms of quantum calculations appears simpler.

RESULTS
Quick online classification

We shall consider the marked data set {d},l j},
where d; is the value of the ith feature in the jth sample,
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Table 1. The experiment with the heart disease dataset. F1 is the harmonic mean of method precision and recall

Method Precision, % Recall, % F1, % Learning time, ms | Operation time, ms
Classification .by emulated quantum 76 65 70 205 9
entangled basis
Class1ﬁcat1on by linear discriminant 100 53 73 76 49
analysis
Classification by logistic regression 68 65 66 5.2 3.1

while / ; is the value of the label (class) for the jth

sample. We shall separate all data into training and test
samples denoting them by

{d;tzljt} and {d;.‘cnljc}:

respectively. We assume that the values for all features
are scaled, while the labels take values from 0 to L — 1:

i _
dj €[0,1), lj e{0,..., L-1},
where L =2/,
The case of two qubits
We shall assume n = 2, [ = 1, i.e., the number of

features is 6 and the labels take on values 0 and 1. Then
i=0,.. 5and

59

T sl _Ta s2_T o
Sd). 8y =2d), 8 =243,

J
yg’. =2nd;, ylj =2nd;.‘, y% =2nd]5..

Data encoding into quantum states, according to (3)
and (4), may be written as following:

0

Z0 1

0
= 0 L 2 7l =gin§? L 261
cosSJCOSSJcosESj,zJ SIHSJCOS5JCOSSJC ,

J
z2 =sin 8. cos 62eiy} 23 =sin SZeW% ®)
J - J Jooe J- Jooe

3

\qj.>: > 2k|k). (6)

k=0

We shall consider the following quantum circuit
(Fig. 1). This is a well-known circuit for converting
Bell states into vectors of computational basis. By
using it, the probabilities of how the entangled basis
vectors (Bell states) correspond to the vector given at
the input is obtained.

Tﬂl
(x} ]

Fig. 1. Quantum circuit for converting Bell states into
computational basis vectors.
H—Hadamard gate, X—controlled X gate

The circuit shown in Fig. 1 can classify data
containing six features. This is easily verified using the
heart disease dataset taken from www.kaggle.com®.

The original dataset contains 13 features and one
label. The features are: age, sex, chest pain, pulse,
cholesterol, and others. The label is the presence of heart
disease. The dataset contains 303 data instances, of which
165 are labeled 1 while the rest are 0. The examples of
analyzing this dataset by linear classifiers given on the
website kaggle.com give values of the accuracy metric
for predicting disease from 64% to 88%.

The following experiment is performed on this
dataset. All feature values are translated into integer ranges
from 0 to the feature-dependent limit value. The data is
then reduced to six features without loss of information
in the data, and parameterization in the form of quantum
states of the two-particle system (5) is performed. The
separation into training and test samples is done in a ratio
of 65/35. The result obtained is compared with the result
of the linear discriminant analysis (LDA) classifier’. The
results are shown in Table 1.

The prepared dataset and program code are presented
in the open-access archive®. The values shown in
Table 1 are not high. However, they are obtained without
optimization using the incoming data only, while the
algorithm running time is spent mainly on emulation
of quantum states and operations. Nevertheless, such
classification procedure can work on almost any device
in real time, since it does not require optimization and

6 Akyildiz O. Heart disease data. https:/www.kaggle.com/
datasets/zgeakyldz/heart-desease-data. Accessed August 25, 2023.

7 https://scikit-learn.ru/1-2-linear-and-quadratic-discriminant-
analysis (in Russ.). Accessed January 09, 2023.

8 Program codes and datasets for the paper are archived at https://
disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed January 09, 2023.
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can work in parallel streams. The above experiment is
carried out on a computer with Intel Core 15 processor
and 8GB RAM (Intel, USA) in a single thread.

It may be doubted whether the proposed method
is ML (due to the lack of optimization). However, the
definition of ML [36] states that ML algorithms build
a model based on sample data known as training data, in
order to produce predictions or decisions without being
explicitly programmed to do so. The method under
consideration uses the data and the model contained in it
and allows making predictions based on this model, i.e.,
it fully satisfies the ML definition.

The quality of classification can be improved using
known techniques (bagging” and boosting!?). However, it
can also be improved by using ML in the traditional sense as
a parametric transformation with optimization. The way to
use it in the quantum case is shown, for example, in [37]. In
the case under consideration, in the circuit shown in Fig. 1,
two controlled gates (U, U,) are embedded into the first
register (controlled by 0 and by 1), then a simple gate V' in
the second register, and the second register is measured. The
measurement result is related to the label value and the output
state set to a clean state. The optimization parameters are the
components of the gates. The schematic is shown in Fig,. 2.

Fig. 2. The simplest quantum classifier with optimization

The two-particle state |q> =a, |OO> +a |01> +
+a, |10> +ay |1 1> is applied to the input and is converted
further as follows:

(10 +a3

V2

|q>c—)>(a0|00>+a1|01>+a2|11>+a3|10>[—{> |00) +

T R AT 2a3 l10)+ 4

B 7

Up|0)]0) +

—a,
11
J2 | >CU1,_)CUO
a1+a2
V2
a, —a
Uo|1>|0>+%U1|1>|1>7
a, +a
U,|0Y7]0)+ L—=2U, |0\ |1
T 0|0}V |0)+ 5 0V [1)+
+ 2By |y + A2y, 1y ).

V2 V2

9 Bootstrap aggregating is a classification technique that uses
compositions of algorithms each of which is trained independently.
The result of classification is determined by voting.

10 Boosting is a procedure of successive composition of
machine learning algorithms, where each successive algorithm
seeks to compensate for the compositional deficiencies of all
previous algorithms.

an +a
L, St
cu, cuy 2
4y — 43
J2

a, +a
Ltay

Uy |o)[n)+

+

If the parameters of gates U, U}, and V are such that

U, |0> =cosa, |O> +sin ocoei‘VO |1>,

U, |1> =—sin ocoeid’o |O> +cos aoei(¢0+“’0) |1>,
1o
U, |1> =—sin ocleiq’l |0> +cos oclei(‘l’l*“’l) |1>,
V|0) =cosB|0) +sinBe’ [1),

V|1) = —sinBe|0) + cos eV [1),

cos |O> +sin oclei“’l |1>,

then the resulting state may be written in the following
form:

Ago]00)+Ag,[01) + A [10)+ A [11),

where

1 . i
Aoo = —((a0 + a3)cos oy — (a0 - a3)sm aoe’¢0 )cosB -

NG

- %((a1 +a,)coso, —(a; —a,)sin alei¢l )sin Bet,
v

e . :
Ay, :_((aO +az)coso — (g —a3)s1na0)s1n[3+

2
v

e . ; ;
+ —((a1 +a,)cosoy —(a —a,)sin ale’¢1 )cosBe’“,

2

1 . ; . i
A= E((ao +ay)sinae'o + (a, —ay)sin aoe’% )cosB -

elntwy)
2

ei("+\|/0)
V2
el (utviyy) ) .
+ —((a] +a,)sino, +(a; —a,)cos ale’¢l )cos B.

NG

When labeled 0, this state should produce the result
“0” with the highest probability when measured in the
second register, which means the following:

((a1 +a,)sina,; +(a; —a,)cos ocleid’l )sin B,

A= ((ao +ay)sinoy +(ag — az)cos uoei‘bo )sinB +

Ay —0,A,, —0.

When labeled 1, on the contrary, it should be the
following:

Agy— 0,A,)— 0.

The learning procedure is designed to find the
best set of gate parameters (o), ¢y, Vo, > Gp5 Wy, By 1,
and v) which provides the best aspirations. This is an
optimization problem.
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The classifier shown in Fig. 2 is the smallest possible
classifier of this type. It is an analogue of an artificial
neuron with two-dimensional input: it receives 2-cubic
quantum signal, while outputting 1-cubic quantum signal
and 1-bit classical signal (unlike classical neuron, where
only one signal is output). The presence of quantum
signal at the output allows the further use of quantum
information, i.e., creating a network. Training and
operation of such a classifier is illustrated in the archive'l.
As the experiment with the dataset on heart disease shows,
optimization increases the classification quality indicators
but only insignificantly. This means that in the case under
consideration, quantum machine learning (QML) based
on quantum entanglement can be used, without any
optimization. However, this is not a general statement;
this may not be the case for higher-dimensional classifiers.

Quantum classifier training

The quantum circuit shown in Fig. 2 contains
three gates (U,, U,, and V) with parameters that can
be adjusted. For example, gate ' can be written in the
following form:

V =cosP|0)(0| —sinBe’*|0) x
x (1| +sin Be® 1) (0] + cos pe’+O) [1)(1,

and the specified parameters are 3, 6, and 1. However,
changing parameter 7 results in the multiplication of the
resulting state by the phase multiplier only, i.e., it does
not result in a significant effect. This parameter would
play a role in systems of higher dimensionality while in
the case of two qubits, only two parameters,  and 0, are
varied for optimizing vent V.

The same is true for gates U, and U, which can be
written as follows:

U, = cosoc8|0><0|—sinoc8 |0><1|+sina8eips |1> X
x <0| +cosaeiPe |1><1

B 8:0715

where the varying parameters are o, o, p,, and p;.
In total, there are six varying parameters for the two-
particle quantum circuit.

We shall construct the likelihood function as the
sum of the moduli of the following scalar products:

(14, P.16; ) and (1 =11,

where a ; and b ; are the amplitudes of the quantum

state leaving the second register on the jth package while

I https:/disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed
January 09, 2023.

lj is the label of the incoming quantum state. The
following are the calculations for the initial state (6).
Before the controlled gates:

|a;) > 29]00)+ 2401} + 23[11) + 23 [10) >

—)L(ZQ +Z§)|00>+L(21~ +ZJ2~)|01>+

MR MR,
%(23 Z§)|IO>+%(2;—2J2.)|11>

controlled valves U, and U, operate:

+

%((29 +z§)cosa0 —(z? —z;)sina0)|00>+
Z?)sinal)|01>+

ip 0_,3 ip
)51naoe 0+(zj zj)cosaoe 0)|10>

(A 2 1
+ (Zj—i—ZJ)COSOLl (j

3

J
1, ,2 P (1_ 2) ip|

+ (z]+zj)s1noc1e +(2} — 27 |cosaye |11).

Finally, valve V' is active:

T((z +z3)cosoc0—(z?—z§)sinoco)x
(cosB|00 +s1nBe’e|01

)+
+ \/15((29 +z§)sma0e’po +(z -z )cosocoe’pO)
(cos[3|10 +s1nBe’e|11>)+

+ L((zl. +z2 )cosoc1 (

\/5 J 7

z s1noc1)
( s1nB|00>+cosBe’9|Ol>)

+ \/15((4 +zjz)s1noc1e’pl +(z —z4 )cosale’pl)
X (—sinB|10>+cos[3eie|1l>).

This is the state before the measurement and can be
written in the following form:

Byo|00) + By, |01) + By, [10) + By [11),

where

Boo :%«z? +z§.)cosa0 —(z? —z?)sinoco)cosﬁ—
_ L((z} +z?)cosoc1 —(z}. —z?)sin(xl)sinﬁ,

N
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19
29423

ﬁ((} J

By, = )cosoco sinf3 — (z —zﬁ)sinao)sinBJr

0
e’ .
+ —((zl. +Z]2)COSGI cosP— (zj —zjz)smal)cosB,

\/5 J
B = (0,3 0_.3
10_$((zj+zj)sma0 (z —z])cosoco)cosB—

e . .
N —((zl. + zz.)sm o + (z} - z? )cosoc1 )smB,

\/E J J

(0
By, :el(\/%p()) ((

i(0+p)) .
((zl. + zz.)sm oy + (zi - Z? )cos oy )cosB.

\/E J T

The second register measurement would give 0 with

3 )i 0_
z.+zj)sm(10 +(Zj

3 .
J zj)cosoco)51n[3+

probability |a; > and 1 with probability |b} 2,
follows:

|&j |2=|B00 2+ By 2,

|bj |2=|B()1 |2 +|By; |2-

It can be easily seen that the only remaining phase
parameter is p = p,— p,, and the likelihood function has
the following form:

D(ag, 0g.Bp) =D 1, P (1=1)+ b 1.
J J

It should be maximized so that state |1> is expected
in the second register, if /. = 1. This is done using the
COBYLA 2 method in the program code available in the
archive'3

The calculation of the likelihood function is given in
order for it be used for calculations on a classical
computer. In the case of a quantum computer, the
likelihood function manually does not need to be

calculated manually, since values |d ; ? and |b ; ?
would be available as measurement results.

Arbitrary number of qubits

We shall generalize the constructed classifier to the
case of an arbitrary number of particles starting with the
version without optimization. For this, it is necessary to
construct a multi-particle entangled basis. In the case of

12 Constrained optimization by linear approximation
(COBYLA).

13 https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed
January 09, 2023.

two particles, the entanglement appears in the form of
a combination of the computational basis vector and its
inverted vector. Such combinations for the case of three
particles may be written as follows:

(|000)+|111)) (|001>+|110))

Sl -
-

(|010)+|101))
=(000) - 1)),
75 (1010)-J101)).

(|011)+|100)),
=(j001) - 110)).
E(|011)—|100)).

-
-

- &~
- &=

It can be seen easily that none of these states is
the result of the tensor product of three one-particle or
any two-particle and one-particle states. Thus, all of
them are entangled states and form the basis which is
also easy to check. This is the entangled basis for the
3-particle system. Similarly, the entangled basis for an
arbitrary n-particle quantum system may be constructed,
as follows:

509 +19)). 5 ((0x)-[1%),

where x is a binary notation of a number from 0 to
27~ 1 — 1 while the superscript denotes inversion.

The quantum circuit of the multi-particle classifier
without optimization is shown in Fig. 3.

Fig. 3. Classifier without optimization

The generalization of the circuit shown in Fig. 2 is
now obvious. It would be enough to set the controlled
gates (2n — 2 items, two for each control register) to the
first register and one gate to the registers starting from
the second. This is shown in Fig. 4.

& n-3
_____ n-2
8 Vit

Fig. 4. Optimizable quantum classifier
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The gray dots in Fig. 4 indicate the 0 or 1 control
on one of the registers. The circuit shown in Fig. 4 is
a quantum neuron with an arbitrary number of inputs. The
circuit shown in Fig. 3 can be viewed in the same way,
if the first register is not measured since it would then
contain a state which is a superposition of two vectors
of the entangled basis. The vectors are determined by
the measurement result. Learning without optimization
is done, as before, on statistics and on the assumption
that there are regularities in the data.

Anomaly detection on streaming data

When data is streaming, the last./ incoming packages

d j., Jj=0,J =1 may be taken into account. This data is
not marked up a priori. The task is to detect an anomaly
in the stream, i.e., a situation where an incoming series
of data packages is significantly different from those in
the stream before. The difference may not only be in the
packages themselves but also in the order they are
received.

The classifiers proposed above can be used to detect
anomalies. The selected J packages are considered as
basic for statistics; a series of measurements from 0 and
1 are obtained from them. For example, in the 2-particle
case there are four possible measurement results (if
the quantum state output is not considered). The
frequencies of these measurement results form a vector
of the system current state. If this vector remains
approximately constant or takes values only in certain
clusters whenever it is computed on J packages, then
any new input from J packages on which the mentioned
vector does not fall into any of the clusters would be an
anomaly.

Two questions naturally arise. The first relates to the
situation when there is a large number of features in
streaming data, for example, in the case of a video
stream. According to the consideration above, if there

are F features, then 10g(%+1) qubits and %+1

possible states are required. This can be a quitelarge
number. Therefore, a threshold on the frequency of the
feature occurrences should be set, and this is
a configurable parameter. In the experiment below with
the student’ dataset, the threshold frequency is set to
10%. If a feature appears in a given state in less than
10% of cases, then it is considered not to appear in that
state at all. As this threshold increases, the number of
data instances not classified by the network increases.
When the threshold is decreased, the metrics deteriorates.

Another question concerns the J value. There are
some recommendations for it: J should be less than the
number of packages appearing in the maximum decision
time and, at the same time, J should be relatively large
in order for the statistics to be rich enough, i.e., for

training to give effective prediction. If the anomaly is
not detected, then the model is undertrained and J needs
to be increased. Also if there are a lot of false positives,
then the retraining takes place while J needs to be
decreased.

An example code of the anomaly detector based
on the classifier built on a tangled basis is given in the
archive!4.

Artificial neural network
from neuron quantum analogs

The quantum neuron (g-neuron) shown in Fig. 4 or 3
can be used to build a quantum neural network (QNN).
In general terms, such a network, receiving / quantum
states (qubits) at the input, returns Q < / quantum states
together with C = [ — Q classical bits of information. The
QNN can be trained on the basis of the classical information
received. Training procedure in the case of g-neurons with
optimization coincides with that of the classical case. The
parameters of quantum gates act as weights.

Copying of quantum states is not allowed. Therefore,
QNN do not contain branching. However, g-neuron can
contain more than one quantum output that can be used
for creating networks of different architecture.

Let there be O, g-neurons in the first layer. Clearly,

I .
that Q) < 5 since any g-neuron should have at least two

qubits at the input. Accordingly, there would be
C, <1 - Q, classical bits of information at the layer
output. The next layer may have Q, g-neurons, with

J—
0, <
where all g-neurons have one quantum output each
while 7= 20, O, = 8, and Q, = 3. If no second layer is
added, the network shown in Fig. 5 would produce
8 qubits and 12 bits at the output. If one more g-neuron
is added after the second layer (as a third layer), there
would be 1 qubit and 19 bits at the output.

L. This is shown schematically in Fig. 5,

Fig. 5. QNN on 11 g-neurons (black dots):
20 qubits (lines) at the input, 3 qubits at the output,
and 17 bits (dashed lines) of classical information

14 https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed
January 09, 2023.
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The QNN shown in Fig. 5 is similar to the fractal
neural network discussed in [38] in architecture.
Although classical neural networks with ordinary
neurons are considered in [38], the properties noted
there such as high learnability and the ability to work
with high dimensionality of input vectors remain the
same for QNN.

Quantum neural network training

Training a single g-neuron has already been
discussed above. We shall generalize this procedure
to training the network. For simplicity, only the case
of two layers is focused on. We shall take for example
the network shown in Fig. 5 in the center containing
five qubits at the input, two g-neurons and three bits of
classical information on the first layer, and one g-neuron
and one bit of classical information on the second layer.

By performing a forward pass on the training sample,
the statistics of matching labels and sets of classical bits
is obtained. We shall match them with each other. Let the
labels take only two possible values in this case. One
g-neuron output allows 2 classical bits to be attained
when both registers are measured, since there is no task
of quantum state propagation further and so it can be
measured. Therefore, initially, the most frequent
outputs (it could be either 00, 01, 10, or 11) can be
allocated to label 0 approximately in proportion to the
share of this label in the training sample, while the rest
allocated to label 1. Let label € correspond to ¢, e}, e,,
and e, of all n, n, n,, and n, outputs of species 00, 01,
10, and 11, respectively. This label has a fraction f, in the
training sample. We shall select ¢ with the highest
fraction, sort 6—0,6—1,6—2,6—3

Ny M 1y g
choose the sum of the first elements of the resulting list,
with the closest to f. fraction of the sum of the
corresponding 7, in the total number of packages. The
corresponding outputs are allocated to label €.

Example. A sample of 5,000 batches is separated
by labels of 4000 (0) and 1000 (1). For label O at the
network output, e, = 1500, ¢, = 500, e, = 1400, and
ey = 600 is obtained while total numbers of outputs are
n, = 1600, n; =700, n, = 2000, and n, = 700. We have:

in descending order and

< e_le_2€_3=1500 500 1400 600

ny m ny, my 1600°700 2000700

The order of n, is as follows: n, ns, n,, and n,. This
label has a fraction of 0.8, and the closest matching sum
is ny + ny + n; = 3000 having a fraction of 0.6. Hence,
outputs 00, 01, and 11 should be allocated to label 0,
while output 10 to label 1. Although, of course, with so
many batches in the sample, it would be better to increase
the number of features and, consequently, the number of

qubits at the input (the quantum network cannot expand
due to the prohibition of copying).

Unlike a conventional neural network and a QNN
with optimization, QNN without optimization can be
trained in the forward direction instead of backward, i.e.,
simultaneously with its operation. This can be performed
according to the scenario described above, since the
same logic may be used to calculate statistics for the first
layer: separating outputs by labels and keeping on doing
so further in the next layers. The classification quality
would improve anyway from layer to layer.

DISCUSSION

Many works are devoted to QMLs and QNNs. In
the Russian-language literature, work [1] as already
mentioned, in particular, points out the importance
of “searching for a QNN model which is optimal in
terms of utilizing all the advantages presented by
quantum computing and neural networks, as well
as ML algorithms”. One of the most recent reviews
in these areas [39], contains the following text in
the Outlook section: “The first quantum advantages
in QML will likely arise from hidden parameter
extraction from quantum data. This can be for
quantum sensing or quantum state classification/
regression. Fundamentally, we know from the theory
of optimal measurement that non-local quantum
measurements can extract hidden parameters using
fewer samples. Using QML, one can form and search
over a parameterization of hypotheses for such
measurements.” This paper presents one possible path
for classifying quantum states.

The QML considered in the paper is of QC or QQ
class, i.e., it uses quantum data on classical (emulating)
or quantum devices. The proposed g¢-neuron is
ideologically close to known concepts (described in [6]
and [39], among others). However, at the same time it
has a new essential feature that is exploiting quantum
entanglement. In particular, g-neuron can operate
without learning in the usual sense; optimization and
error back propagation are not needed.

This can be exemplified by the experiment with
the analysis of the dataset of student states'®. For this
experiment, the dataset is used without preprocessing.
The entire preprocessing is captured in the analysis script
available in the archive'®. The dataset is a labeled one
with 34 feature columns and 4424 data instances. The
binary label used in the experiment is Dropout = 1,
with other values (Enrolled, Graduate) = 0. The task

15 https://www.kaggle.com/datasets/thedevastator/higher-

education-predictors-of-student-retention. Accessed January 09,
2023.

16 https:/disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed
January 09, 2023.
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Table 2. Experiment with students’ dataset

Method Precision, % Recall, % F1, % Unclass1°ﬁed Learmng O.peratlon
states, % time, ms time, ms
Classification by emula_ted 39 100 57 40 2968 1901
quantum entangled basis
C.lasglﬁ.catlon by llqear 100 29 45 0 138 23
discriminant analysis

is to predict dropout. The features are mapped to
integer intervals, the feature space is transformed to
dimension 62 without loss of information. This is done
for the use of QNN of two g-neurons in the first layer and
one g-neuron in the second layer. Training is carried out
without optimization. The network configuration implies
the first g-neuron with three inputs and the second one
with two inputs, in the first layer. The second layer
contains a single g-neuron with two inputs. Some of
the data instances could not be classified by the neural
network, since they are approximately equally close to
both 1 and 0 label values. The results can be compared
with the classical LDA algorithm taken from the scikit-
learn package of the Python language. The results are
shown in Table 2.

It can be seen from the experiment that QNN does
not ascribe label O to the student if he/she drops out:
false negatives are equal to 0. At the same time, the
share of false positives is quite high: more than half of
the dropout labels (1) are false. The QNN considered
40% of the data unsuitable for classification. Certainly,
these results are quite different from those of the LDA
classifier, and it is unclear in which direction (better or
worse). Nevertheless, it can be seen that LDA training
time exceeds the running time by 6 times, while QNN
has only 1.5 times.

A rigorous examination of the QNN performance
of different architectures is planned in the following
studies.

CONCLUSIONS

A new direction of QML development applying
quantum entanglement significantly is proposed. It
allows for the building of intelligent systems working on
streaming data and learning online, taking into account
changes in the data environment but not reduced to
reinforcement learning. The proposed learning method
could be called “reinforcement learning in reverse”.
In reinforcement learning, the agent calculates the
classification quality while the environment remains an
external factor. However, in the proposed approach, the
environment is the carrier of classification patterns and
they are recovered directly from it.

Such systems can be used in control systems of
unmanned vehicles of any kind, as well as in security
systems and intelligent business-assistants. In this case,
the use of quantum computers is not mandatory.
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