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Abstract
Objectives. Fast data analysis based on hidden patterns is one of the main issues for adaptive artificial intelligence 
systems development. This paper aims to propose and verify a method of such analysis based on the representation 
of data in the form of a quantum state, or, alternatively, in the form of a geometric object in a space allowing online 
machine learning. 
Methods. This paper uses Feynman formalism to represent quantum states and operations on them, the 
representation of quantum computing in the form of quantum circuits, geometric transformations, topological 
classification, as well as methods of classical and quantum machine learning. The Python programming language is 
used as a development tool. Optimization tools for machine learning are taken from the SciPy module. The datasets 
for analysis are taken from open sources. Data preprocessing was performed by the method of mapping features 
into numerical vectors, then the method of bringing the data to the desired dimension was applied. The data was then 
displayed in a quantum state. A proprietary quantum computing emulator is used (it is in the public domain). 
Results. The results of computational experiments revealed the ability of very simple quantum circuits to classify data 
without optimization. Comparative indicators of classification quality are obtained without the use of optimization, as 
well as with its use. Experiments were carried out with different datasets and for different values of the dimension 
of feature spaces. The efficiency of the models and methods of machine learning proposed in the work, as well as 
methods of combining them into network structures, is practically confirmed.
Conclusions. The proposed method of machine learning and the model of quantum neural networks can be used to 
create adaptive artificial intelligence systems as part of an online learning module. Free online optimization learning 
process allows it to be applied in data streaming, that is, adapting to changes in the environment. The developed 
software does not require quantum computers and can be used in the development of artificial intelligence systems 
in Python as imported modules.
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Резюме 
Цели. Быстрая классификация данных на основе имеющихся в них закономерностей является одним из 
главных вопросов для построения систем адаптивного искусственного интеллекта. Цель работы – предло-
жить и верифицировать метод такой классификации на основе представления данных в виде квантового со-
стояния или (альтернативно) в виде геометрического объекта в пространстве, свойства которого позволяют 
производить машинное обучение «на лету» (онлайн-обучение). 
Методы. В работе используется фейнмановский формализм для представления квантовых состояний и 
операций над ними, представление квантовых вычислений в виде квантовых схем, геометрические преобра-
зования, топологическая классификация, а также методы классического и квантового машинного обучения. 
В качестве инструмента разработки использовался язык программирования Python, средства оптимизации 
для машинного обучения взяты из модуля SciPy. Размеченные данные для анализа взяты из открытых источ-
ников. Препроцессинг данных произведен методом отображения признаков в числовые векторы, затем при-
менен метод приведения данных к нужной размерности и далее – отображение данных в квантовое состоя-
ние. Используется собственный эмулятор квантовых вычислений (находится в открытом доступе). 
Результаты. Результаты вычислительных экспериментов выявили способность очень простых квантовых 
схем к классификации данных без оптимизации. Получены сравнительные показатели качества классифика-
ции без использования оптимизации, а также с ее использованием. Эксперименты проведены с различными 
датасетами и для различных значений размерности пространств признаков. Работоспособность предложен-
ных в работе моделей и методов машинного обучения, а также методов их объединения в сетевые структуры, 
подтверждена практически. 
Выводы. Предложенный метод машинного обучения и построения квантовых нейронных сетей может быть 
применен для создания систем адаптивного искусственного интеллекта в составе модуля онлайн-обучения. 
Отсутствие оптимизации в процессе онлайн-обучения позволяет применять его в потоке данных, т.е., адапти-
роваться к изменениям среды. Разработанное алгоритмическое обеспечение не требует наличия квантовых 
компьютеров и может быть применено при разработке программного обеспечения систем искусственного 
интеллекта на языке Python в качестве импортируемых модулей.

Ключевые слова: онлайн-обучение, адаптивный искусственный интеллект, квантовое машинное обучение, 
квантовая запутанность
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INTRODUCTION

Quantum algorithms are attracting more and more 
attention, since quantum computers are soon expected to 
be fully usable. On the other hand, quantum search and 
factorization algorithms are one of the main reasons for 
developing quantum computers. Several such computers 
are currently available around the world. However, 
their power is relatively low (the largest is the Chinese 
Jiuzhang with 76 qubits1), and they are still used for 
demonstration and research purposes.

The other pole of progress in information technology 
is artificial intelligence. Like most human knowledge, 
artificial intelligence is based on a natural phenomenon 
known as cognition, which still has no universally 
recognized quantitative theory. Quantum versions of 
such theories, inter alia, do not yet have proven clear 
advantages, although the results of this study can be 
seen as an indication of certain advantages of quantum 
methods in machine learning (ML).

The advantages of quantum computing and 
quantum computers in solving problems in the field of 
artificial intelligence are covered in review  [1], which 
substantiates the relevance of studies in this area and 
indicates the main directions in one of which this paper 
is written. There is also a review of 2023 [2] containing 
references to all modern advances in this area.

The main possible advantage of quantum version 
of artificial intelligence is the exponential growth of 
computational capabilities. While the classical artificial 
neuron can process input data of N dimensions, quantum 
neuron can process 2N-dimensional data. The application 
of the quantum version can significantly speed up execution 
of both learning and classification algorithms [3]. At the 
same time, one of the technical challenges in building 
a  large-scale quantum computer is the need to ensure 
that there are “qubits that can be initialized with arbitrary 
values” [4]. This problem is relevant and is a significant 
obstacle to achieving quantum superiority.

In  [5–9], prototypes of quantum neural networks 
based on constructing a quantum circuit with adjustable 
parameters were proposed. The present paper shows 
how this approach can be implemented in connection 
with the proposed neural network architecture and how 
such parameter settings can be dispensed with.

Quantum versions of the most popular ML algorithms 
have already been developed. The above-mentioned 
quantum neural networks work on a par with traditional 
ones. In [10], quantum support vector machines (SVMs) 
using the HHL algorithm  [11] for inverting a  matrix 
to generate a  hyperplane were proposed. The image 
classification model presented in 2018  [12] is based 
on quantum k-nearest neighbors. The quantum linear 

1  https://en.wikipedia.org/wiki/Jiuzhang_(quantum_computer). 
Accessed January 01, 2023.

regression using quantum data is proposed in  [13]. 
A  quantum analogue of the decision tree developed 
in  [14] uses quantum accuracy and quantum entropy 
measurement, i.e., it develops the classical ID3 algorithm.

Several quantum ML methods have been developed 
for clustering in [15]. In particular, a quantum version of 
the k-means algorithm in different variants is presented 
in [16] and [17]. Another quantum clustering algorithm 
using Grover’s algorithm to determine the cluster median 
is proposed in [18].

The quantum analogue of the quantum principal 
component analysis method [19] identifying eigenvectors 
related to the eigenvalues of an unknown state exponentially 
faster than any other solution has also been developed.

An area close to the topic of the paper is reinforcement 
learning, i.e., online learning taking into account the 
response of the environment. There are several quantum 
versions of reinforcement learning, such as [20] which 
uses a superposition of quantum states, and due to this 
parallelism is achieved and the learning speed increases.

Deep learning occupies a special place in ML. Deep 
learning methods require significant memory and time 
resources, thus making their development in the quantum 
area attractive. Among recent advances in this field is 
a  series of works on quantum generative adversarial 
networks  [21–23] with implementation in  [24] using 
a  superconducting quantum processor to generate and 
learn handwritten digital images by quantum generative 
Wasserstein adversarial networks  [25]. It has also 
been shown that scalability and stability of quantum 
generative adversarial model learning improves on 
quantum Boltzmann machines  [26, 27], quantum 
autocoders [28, 29], and quantum convolutional neural 
networks  [7–9]. Among Russian works in this area, 
study [6] may be specified.

Improving optimization algorithms is also in the 
focus of research on quantum algorithms. Quantum 
enhanced optimization [30] as well as quantum gradient 
descent  [31, 32] is used in quantum neural networks, 
e.g., in quantum Boltzmann machines [27].

Among recent works is experimental study  [33] 
showing that SVMs outperform their classical counterparts 
by 3–4% on average, while quantum neural networks made 
on a quantum computer outperform quantum SVMs by 5% 
on average, and classical neural networks by 7%.

Quantum entanglement in connection with a model 
of learning was proposed in 2005. This is a  model 
for the semantics of concept combinations created 
in a  non-decomposition way. It deals with emergent 
properties/associations/inferences in connection with 
concept combinations2. In the paper, this idea is used 

2   Bruza P.D., Cole R.J. Quantum Logic of Semantic 
Space: An Exploratory Investigation of Context Effects 
in Practical Reasoning, 2006. https://arxiv.org/abs/quant-
ph/0612178. Accessed January 01, 2023.

https://en.wikipedia.org/wiki/Jiuzhang_(quantum_computer)
https://arxiv.org/abs/quant-ph/0612178
https://arxiv.org/abs/quant-ph/0612178
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for a different purpose, i.e., to provide a way to separate 
labeled data. Although not directly related to learning, 
these ideas may allow a better way to be found to solve 
the following current problems of data analysis and 
artificial intelligence.

The first problem is online learning. It arises when the 
data environment changes and there is no time or resources 
for new learning in the system. The comprehensive theory of 
online learning is presented in the course by Massachusetts 
Institute of Technology, available online3. The main 
challenge in this problem is finding a compromise between 
quality and responsiveness. Quality-based learning is often 
time-consuming, while responsiveness-based learning 
may produce useless results. The better choice is to create 
a system that adjusts itself with allowance for the content 
of the data stream it receives. The paper proposes such 
a system based on entangled quantum states. Generalizing 
this idea, it is possible to approximate artificial intelligence 
systems to living intelligence in the sense of adapting to 
the environment.

The second problem is fast recognition, especially 
in the case of moving images. This problem is well 
described in various blogs and articles. For example, 
one of the current approaches to this issue is presented 
by Shao and Vitarsia in [34]. This research focuses on 
applying the BP neural network, i.e., an artificial neural 
network of forward propagation. The application of 
quantum algorithms for solving this problem has not 
been found in the literature. However, there is a software 
tool4 designed to compare streaming video data which 
already works as a web service5.

Any progress in solving these problems could lead to 
technological solutions in industries such as self-driving 
cars, unmanned aerial, and underwater vehicles, as well 
as video monitoring and other fields largely related to 
the detection of anomalies in a changing environment. It 
is not necessary to use a quantum computer to apply the 
results of this research, since the proposed algorithms 
can be implemented on emulators or reformulated in 
classical form. This would probably destroy quantum 
superiority, although the efficiency of low-dimensional 
data may be quite sufficient.

MATERIALS AND METHODS

This paper uses the quantum and classical data 
described below. The set {xj} of sets of n real numbers 

3   Rakhlin A. Online Methods in Machine Learning. 
Theory and Applications. TA: Arthur Flajolet. https://www.
mit.edu/~rakhlin/6.883/. Accessed January 01, 2023.

4   Biloushenko I.I., Zuev S.V. Determining the degree of 
similarity of video fragments, 2022; Certificate 2022685057 
of 20.12.2022 issued by the Federal Service for Intellectual 
Property (in Russ.).

5   https://ais.bstu.ru/services/1. Accessed July 05, 2023. 

0 1{ , ..., }−= j jj
nx xx  with label jl  defined for each set is 

the classical data. The set of quantum states

2 1

0
| |

−

=
≡ ∑

n
jj

k
k

q a k

is considered as quantum data. Components j
ka of the 
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computational basis | 0 , ..., | 2 1 .−n  These notations 
are commonly used in such books as  [35]. Before the 
relationship between these data is established, we shall 
make a few preliminary remarks.

The type of data used to deliver information from 
system to system in nature is not obvious. However, 
human operations require classical information. It can 
be easily seen that 2n-dimensional quantum system 
provides only n-dimensional classical data, although the 
quantum system operates in 2n-dimensional state space 
during calculations. The problem of generating the 
initial quantum state arises from the fact that the source 
of quantum data, generally speaking, is unknown. It is 
certainly impossible to generate this data from classical 
ones. Thus, the only thing that can definitely be assumed 
is that the system has already had data in quantum form 
before the start of computation However, this means that 
all dependencies are already contained in quantum data, 
and the quantum intelligent system should use them. 
This is the basis for further consideration.

We shall first describe the state space structure of the 
system of n qubits. Proceeding from the way in which 
quantum data is represented, this space is embedded in 

,N
 where N  = 2n while   is the space of complex 
numbers. In addition, quantum states are described by 
vectors with an absolute value equal to 1, while vectors 
differing only by phase coefficient eiφ describe the same 
state. This suggests that the equivalence relation may be 
considered, as follows:
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The space of such vectors w  is called  (complex) 
projective space 1,−NP which is a set of vectors with 
N  complex coordinates  (z1, …, zN−1) connected by 
equivalence relation  (1). Another condition which can 
be derived from (1) is the following:
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The phases of coordinates wk are defined to the 
accuracy of the common multiplier 0e ,− φi  where 0φ  is 
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an arbitrary phase of coordinate z0. Thus, space 1−NP  
can be identified with the space of system states of 
n  qubits while coordinates can be represented in the 
following form:

0( )
0

| | e .
| |

φ −φ= k
k

ik zw
z

We can assume without any restriction that 0 0.φ =  
According to the above procedure, the space 1,−NP  is 
homeomorphic to surface (2) of dimension 2N − 2 since 
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Thus, it is possible to encode any training dataset 
into a quantum state using the following formula:
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According to the postulates of quantum mechanics, if 
there are two systems with n1 and n2 qubits, respectively, 
then the states of the combined system have the following 
form:
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where a and b represent the state amplitudes of the first 
and the second system, respectively.

The state spaces for each system are 12 2−nS and 
22 2.−nS  The set of states for the combined system is 

their direct product, i.e., 1 22 2 2 2.− −×
n nS S  However, for 

topological reasons, this is definitely not 1 22 2.+ −n nS
The part of the system of  (n1  +  n2) qubits, which 

cannot be expressed as a  product of subsystem states, 
forms a  set of so-called entangled states. The main 
property of an entangled state is that in order to remove 
the system from the entangled state, it is necessary to 
perform a unitary transformation that significantly affects 
all its subsystems. Entangled states form a basis in the 
space of states, and further it is called the entangled basis.

If the state of a multi-cubit system is entangled, it is 
impossible to get out of it without affecting each cubit. 
At the same time, each state of the system can be written 
in the entangled basis. Thus each state component in this 
basis affects all qubits significantly. If the amplitudes 
of these components are measured, it can be seen how 
subsystems interact in this quantum system. If the state 
labels are given, then which basis vector corresponds 
to the label of interest needs to be defined. This can be 
determined from the statistics of measurement results 
for a given label. Moreover, if new states of the same 
system are measured in the same way, it can be predicted 
with a certain probability that they belong to the labeled 
class, corresponding to the measurement result that is 
most relevant to the labeled samples.

To a certain extent, this means that classification can 
be performed without optimization if the dependencies 
are already present in the data. The latter is an important 
addition, since classifying data without dependencies (e.g., 
when the data is a complete superposition of pure states) 
would fail. Hence, the dependencies resulting in a given 
class for classification need to be defined. This is essentially 
a  quantum property related to entanglement. Certainly, 
this could be interpreted without resorting to quantum 
representations, but then it would be necessary to consider 
the topological properties of the set of states of the system, 
as well as the subsets of its entangled states, in order to build 
probabilistic models on them. At present, the interpretation 
in terms of quantum calculations appears simpler.

RESULTS

Quick online classification

We shall consider the marked data set { , },i
j jd l  

where i
jd  is the value of the ith feature in the jth sample, 
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while jl  is the value of the label  (class) for the jth 
sample. We shall separate all data into training and test 
samples denoting them by

{ , }i
jt jtd l  and { , },i

jc jcd l

respectively. We assume that the values for all features 
are scaled, while the labels take values from 0 to L − 1:

[0,1), {0, ..., 1},∈ ∈ −i
j jd l L

where L = 2l.

The case of two qubits

We shall assume n  = 2, l  = 1, i.e., the number of 
features is 6 and the labels take on values 0 and 1. Then 
i = 0, ..., 5 and
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Data encoding into quantum states, according to (3) 
and (4), may be written as following:
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We shall consider the following quantum circuit 
(Fig.  1). This is a  well-known circuit for converting 
Bell states into vectors of computational basis. By 
using it, the probabilities of how the entangled basis 
vectors  (Bell states) correspond to the vector given at 
the input is obtained.

X

H

Fig. 1. Quantum circuit for converting Bell states into 
computational basis vectors.  

H—Hadamard gate, X—controlled X gate 

The circuit shown in Fig. 1 can classify data 
containing six features. This is easily verified using the 
heart disease dataset taken from www.kaggle.com6.

The original dataset contains 13 features and one 
label. The features are: age, sex, chest pain, pulse, 
cholesterol, and others. The label is the presence of heart 
disease. The dataset contains 303 data instances, of which 
165 are labeled 1 while the rest are 0. The examples of 
analyzing this dataset by linear classifiers given on the 
website kaggle.com give values of the accuracy metric 
for predicting disease from 64% to 88%.

The following experiment is performed on this 
dataset. All feature values are translated into integer ranges 
from 0 to the feature-dependent limit value. The data is 
then reduced to six features without loss of information 
in the data, and parameterization in the form of quantum 
states of the two-particle system  (5) is performed. The 
separation into training and test samples is done in a ratio 
of 65/35. The result obtained is compared with the result 
of the linear discriminant analysis (LDA) classifier7. The 
results are shown in Table 1.

The prepared dataset and program code are presented 
in the open-access archive8. The values shown in 
Table 1 are not high. However, they are obtained without 
optimization using the incoming data only, while the 
algorithm running time is spent mainly on emulation 
of quantum states and operations. Nevertheless, such 
classification procedure can work on almost any device 
in real time, since it does not require optimization and 

6  Akyildiz Ö. Heart disease data. https://www.kaggle.com/
datasets/zgeakyldz/heart-desease-data. Accessed August 25, 2023. 

7  https://scikit-learn.ru/1-2-linear-and-quadratic-discriminant-
analysis (in Russ.). Accessed January 09, 2023.

8   Program codes and datasets for the paper are archived at https://
disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed January 09, 2023.

Table 1. The experiment with the heart disease dataset. F1 is the harmonic mean of method precision and recall

Method Precision, % Recall, % F1, % Learning time, ms Operation time, ms

Classification by emulated quantum 
entangled basis 76 65 70 20.5 9

Classification by linear discriminant 
analysis 100 58 73 7.6 4.9

Classification by logistic regression 68 65 66 5.2 3.1

http://www.kaggle.com
https://www.kaggle.com/datasets/zgeakyldz/heart-desease-data
https://www.kaggle.com/datasets/zgeakyldz/heart-desease-data
https://scikit-learn.ru/1-2-linear-and-quadratic-discriminant-analysis
https://scikit-learn.ru/1-2-linear-and-quadratic-discriminant-analysis
https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
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can work in parallel streams. The above experiment is 
carried out on a computer with Intel Core I5 processor 
and 8GB RAM (Intel, USA) in a single thread.

It may be doubted whether the proposed method 
is ML (due to the lack of optimization). However, the 
definition of ML  [36] states that ML algorithms build 
a model based on sample data known as training data, in 
order to produce predictions or decisions without being 
explicitly programmed to do so. The method under 
consideration uses the data and the model contained in it 
and allows making predictions based on this model, i.e., 
it fully satisfies the ML definition.

The quality of classification can be improved using 
known techniques  (bagging9 and boosting10). However, it 
can also be improved by using ML in the traditional sense as 
a parametric transformation with optimization. The way to 
use it in the quantum case is shown, for example, in [37]. In 
the case under consideration, in the circuit shown in Fig. 1, 
two controlled gates  (U0, U1) are embedded into the first 
register (controlled by 0 and by 1), then a simple gate V in 
the second register, and the second register is measured. The 
measurement result is related to the label value and the output 
state set to a clean state. The optimization parameters are the 
components of the gates. The schematic is shown in Fig. 2.

X V

H U1 U0

Fig. 2. The simplest quantum classifier with optimization

The two-particle state 0 100 01= + +q a a  
2 310 11a a+ +  is applied to the input and is converted 

further as follows:
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9   Bootstrap aggregating is a classification technique that uses 
compositions of algorithms each of which is trained independently. 
The result of classification is determined by voting.

10   Boosting is a  procedure of successive composition of 
machine learning algorithms, where each successive algorithm 
seeks to compensate for the compositional deficiencies of all 
previous algorithms.

If the parameters of gates U0, U1, and V are such that
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then the resulting state may be written in the following 
form:

00 01 10 11A 00 A 01 A 10 A 11 ,+ + +
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When labeled 0, this state should produce the result 
“0” with the highest probability when measured in the 
second register, which means the following:

A01 → 0, A11 → 0.

When labeled 1, on the contrary, it should be the 
following:

A00 → 0, A10 → 0.

The learning procedure is designed to find the 
best set of gate parameters (α0, ϕ0, ψ0, α1, ϕ1, ψ1, β, μ, 
and v) which provides the best aspirations. This is an 
optimization problem.
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The classifier shown in Fig. 2 is the smallest possible 
classifier of this type. It is an analogue of an artificial 
neuron with two-dimensional input: it receives 2-cubic 
quantum signal, while outputting 1-cubic quantum signal 
and 1-bit classical signal (unlike classical neuron, where 
only one signal is output). The presence of quantum 
signal at the output allows the further use of quantum 
information, i.e., creating a  network. Training and 
operation of such a classifier is illustrated in the archive11. 
As the experiment with the dataset on heart disease shows, 
optimization increases the classification quality indicators 
but only insignificantly. This means that in the case under 
consideration, quantum machine learning  (QML) based 
on quantum entanglement can be used, without any 
optimization. However, this is not a  general statement; 
this may not be the case for higher-dimensional classifiers.

Quantum classifier training

The quantum circuit shown in Fig. 2 contains 
three gates  (U0, U1, and V) with parameters that can 
be adjusted. For example, gate V can be written in the 
following form:

( )

cos 0 0 sin e 0

1 sin e 1 0 cos e 1 1 ,

i

i i

V τ

θ τ+θ

= β − β ×

× + β + β

and the specified parameters are β, θ, and τ. However, 
changing parameter τ results in the multiplication of the 
resulting state by the phase multiplier only, i.e., it does 
not result in a significant effect. This parameter would 
play a role in systems of higher dimensionality while in 
the case of two qubits, only two parameters, β and θ, are 
varied for optimizing vent V.

The same is true for gates U0 and U1, which can be 
written as follows:

cos 0 0 sin 0 1 sin e 1

0 cos e 1 1 , 0, 1,

U i

i

ε

ε

ρ
ε ε ε ε

ρ
ε

= α − α + α ×

× + α ε =

where the varying parameters are α0, α1, ρ0, and ρ1. 
In total, there are six varying parameters for the two-
particle quantum circuit.

We shall construct the likelihood function as the 
sum of the moduli of the following scalar products:

( )2 2ˆˆ| | ,| |j ja b  and (1 − lj, lj),

where ˆ ja  and ˆ
jb  are the amplitudes of the quantum 

state leaving the second register on the jth package while 

11   https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed 
January 09, 2023.

lj is the label of the incoming quantum state. The 
following are the calculations for the initial state  (6). 
Before the controlled gates:
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controlled valves U1 and U0 operate:
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Finally, valve V is active: 
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This is the state before the measurement and can be 
written in the following form:

 00 01 10 11B 00 B 01 B 10 B 11 ,+ + +

where
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https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
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The second register measurement would give 0 with 
probability 2ˆ| |ja  and 1 with probability 2ˆ| | ,jb  as 
follows:

2 2 2
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2 2 2
01 11

ˆ| | | B | | B | ,
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= +

j
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b

It can be easily seen that the only remaining phase 
parameter is ρ ≡ ρ1− ρ0, and the likelihood function has 
the following form:

2 2
0 0

ˆˆ( , , , ) | | (1 ) | | .F α α β ρ = − +∑ ∑j j j j
j j

a l b l

It should be maximized so that state 1 is expected 
in the second register, if lj = 1. This is done using the 
COBYLA12 method in the program code available in the 
archive13.

The calculation of the likelihood function is given in 
order for it be used for calculations on a  classical 
computer. In the case of a  quantum computer, the 
likelihood function manually does not need to be 
calculated manually, since values 2ˆ| |ja  and 2ˆ| |jb  
would be available as measurement results.

Arbitrary number of qubits

We shall generalize the constructed classifier to the 
case of an arbitrary number of particles starting with the 
version without optimization. For this, it is necessary to 
construct a multi-particle entangled basis. In the case of 

12   Constrained optimization by linear approximation 
(COBYLA).

13   https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed 
January 09, 2023.

two particles, the entanglement appears in the form of 
a combination of the computational basis vector and its 
inverted vector. Such combinations for the case of three 
particles may be written as follows:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1000 111 , 001 110 ,
2 2

1 1010 101 , 011 100 ,
2 2

1 1000 111 , 001 110 ,
2 2
1 1010 101 , 011 100 .
2 2

+ +

+ +

− −

− −

It can be seen easily that none of these states is 
the result of the tensor product of three one-particle or 
any two-particle and one-particle states. Thus, all of 
them are entangled states and form the basis which is 
also easy to check. This is the entangled basis for the 
3-particle system. Similarly, the entangled basis for an 
arbitrary n-particle quantum system may be constructed, 
as follows:

( ) ( )1 10 1 , 0 1 ,
2 2

+ −x x x x

where x  is a  binary notation of a  number from 0 to 
2n − 1 − 1 while the superscript denotes inversion.

The quantum circuit of the multi-particle classifier 
without optimization is shown in Fig. 3.

X

X

H

Fig. 3. Classifier without optimization

The generalization of the circuit shown in Fig. 2 is 
now obvious. It would be enough to set the controlled 
gates (2n − 2 items, two for each control register) to the 
first register and one gate to the registers starting from 
the second. This is shown in Fig. 4.

X

X

H Ux

Vn–3

Vn–2

Vn–1

Fig. 4. Optimizable quantum classifier

https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
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The gray dots in Fig. 4 indicate the 0 or 1 control 
on one of the registers. The circuit shown in Fig. 4 is 
a quantum neuron with an arbitrary number of inputs. The 
circuit shown in Fig. 3 can be viewed in the same way, 
if the first register is not measured since it would then 
contain a state which is a superposition of two vectors 
of the entangled basis. The vectors are determined by 
the measurement result. Learning without optimization 
is done, as before, on statistics and on the assumption 
that there are regularities in the data.

Anomaly detection on streaming data

When data is streaming, the last J incoming packages 
, 0, 1= −i

jd j J  may be taken into account. This data is 
not marked up a priori. The task is to detect an anomaly 
in the stream, i.e., a situation where an incoming series 
of data packages is significantly different from those in 
the stream before. The difference may not only be in the 
packages themselves but also in the order they are 
received.

The classifiers proposed above can be used to detect 
anomalies. The selected J  packages are considered as 
basic for statistics; a series of measurements from 0 and 
1 are obtained from them. For example, in the 2-particle 
case there are four possible measurement results  (if 
the quantum state output is not considered). The 
frequencies of these measurement results form a vector 
of the system current state. If this vector remains 
approximately constant or takes values only in certain 
clusters whenever it is computed on J  packages, then 
any new input from J packages on which the mentioned 
vector does not fall into any of the clusters would be an 
anomaly.

Two questions naturally arise. The first relates to the 
situation when there is a  large number of features in 
streaming data, for example, in the case of a  video 
stream. According to the consideration above, if there 
are F  features, then ( )log 12 +

F qubits and 12 +
F  

possible states are required. This can be a  quitelarge 
number. Therefore, a threshold on the frequency of the 
feature occurrences should be set, and this is 
a configurable parameter. In the experiment below with 
the student’ dataset, the threshold frequency is set to 
10%. If a  feature appears in a  given state in less than 
10% of cases, then it is considered not to appear in that 
state at all. As this threshold increases, the number of 
data instances not classified by the network increases. 
When the threshold is decreased, the metrics deteriorates.

Another question concerns the J  value. There are 
some recommendations for it: J should be less than the 
number of packages appearing in the maximum decision 
time and, at the same time, J should be relatively large 
in order for the statistics to be rich enough, i.e., for 

training to give effective prediction. If the anomaly is 
not detected, then the model is undertrained and J needs 
to be increased. Also if there are a lot of false positives, 
then the retraining takes place while J  needs to be 
decreased.

An example code of the anomaly detector based 
on the classifier built on a tangled basis is given in the 
archive14.

Artificial neural network  
from neuron quantum analogs

The quantum neuron (q-neuron) shown in Fig. 4 or 3  
can be used to build a quantum neural network  (QNN). 
In general terms, such a  network, receiving I  quantum 
states (qubits) at the input, returns Q < I quantum states 
together with C = I − Q classical bits of information. The 
QNN can be trained on the basis of the classical information 
received. Training procedure in the case of q-neurons with 
optimization coincides with that of the classical case. The 
parameters of quantum gates act as weights.

Copying of quantum states is not allowed. Therefore, 
QNNs do not contain branching. However, q-neuron can 
contain more than one quantum output that can be used 
for creating networks of different architecture.

Let there be Q1 q-neurons in the first layer. Clearly, 

that 1 2
≤

IQ  since any q-neuron should have at least two 
qubits at the input. Accordingly, there would be 
C1  ≤  I  −  Q1 classical bits of information at the layer 
output. The next layer may have Q2 q-neurons, with 

1
2 .

2
−

≤
I C

Q  This is shown schematically in Fig. 5, 
where all q-neurons have one quantum output each 
while I = 20, Q1 = 8, and Q2 = 3. If no second layer is 
added, the network shown in Fig. 5 would produce  
8 qubits and 12 bits at the output. If one more q-neuron 
is added after the second layer (as a  third layer), there 
would be 1 qubit and 19 bits at the output.

Fig. 5. QNN on 11 q-neurons (black dots):  
20 qubits (lines) at the input, 3 qubits at the output,  
and 17 bits (dashed lines) of classical information

14   https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed 
January 09, 2023.

https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
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The QNN shown in Fig. 5 is similar to the fractal 
neural network discussed in  [38] in architecture. 
Although classical neural networks with ordinary 
neurons are considered in  [38], the properties noted 
there such as high learnability and the ability to work 
with high dimensionality of input vectors remain the 
same for QNN.

Quantum neural network training

Training a  single q-neuron has already been 
discussed above. We shall generalize this procedure 
to training the network. For simplicity, only the case 
of two layers is focused on. We shall take for example 
the network shown in Fig. 5 in the center containing 
five qubits at the input, two q-neurons and three bits of 
classical information on the first layer, and one q-neuron 
and one bit of classical information on the second layer.

By performing a forward pass on the training sample, 
the statistics of matching labels and sets of classical bits 
is obtained. We shall match them with each other. Let the 
labels take only two possible values in this case. One 
q-neuron output allows 2 classical bits to be attained 
when both registers are measured, since there is no task 
of quantum state propagation further and so it can be 
measured. Therefore, initially, the most frequent 
outputs  (it could be either 00, 01, 10, or 11) can be 
allocated to label 0 approximately in proportion to the 
share of this label in the training sample, while the rest 
allocated to label 1. Let label ε correspond to e0, e1, e2, 
and e3 of all n0, n1, n2, and n3 outputs of species 00, 01, 
10, and 11, respectively. This label has a fraction fε in the 
training sample. We shall select ε  with the highest 

fraction, sort 0 31 2

0 1 2 3
, , ,

e ee e
n n n n

 in descending order and 

choose the sum of the first elements of the resulting list, 
with the closest to fε fraction of the sum of the 
corresponding ni in the total number of packages. The 
corresponding outputs are allocated to label ε.

Example. A  sample of 5,000 batches is separated 
by labels of 4000  (0) and 1000  (1). For label 0 at the 
network output, e0  =  1500, e1  =  500, e2  =  1400, and 
e3 = 600 is obtained while total numbers of outputs are 
n0 = 1600, n1 = 700, n2 = 2000, and n3 = 700. We have:

0 31 2

0 1 2 3

1500 500 1400 600, , , , , , .
1600 700 2000 700

=
e ee e
n n n n

The order of ni is as follows: n0, n3, n1, and n2. This 
label has a fraction of 0.8, and the closest matching sum 
is n0 + n3 + n1 = 3000 having a fraction of 0.6. Hence, 
outputs 00, 01, and 11 should be allocated to label 0, 
while output 10 to label 1. Although, of course, with so 
many batches in the sample, it would be better to increase 
the number of features and, consequently, the number of 

qubits at the input (the quantum network cannot expand 
due to the prohibition of copying).

Unlike a  conventional neural network and a  QNN 
with optimization, QNN without optimization can be 
trained in the forward direction instead of backward, i.e., 
simultaneously with its operation. This can be performed 
according to the scenario described above, since the 
same logic may be used to calculate statistics for the first 
layer: separating outputs by labels and keeping on doing 
so further in the next layers. The classification quality 
would improve anyway from layer to layer.

DISCUSSION

Many works are devoted to QMLs and QNNs. In 
the Russian-language literature, work  [1] as already 
mentioned, in particular, points out the importance 
of “searching for a QNN model which is optimal in 
terms of utilizing all the advantages presented by 
quantum computing and neural networks, as well 
as ML algorithms”. One of the most recent reviews 
in these areas  [39], contains the following text in 
the Outlook section: “The first quantum advantages 
in QML will likely arise from hidden parameter 
extraction from quantum data. This can be for 
quantum sensing or quantum state classification/
regression. Fundamentally, we know from the theory 
of optimal measurement that non-local quantum 
measurements can extract hidden parameters using 
fewer samples. Using QML, one can form and search 
over a  parameterization of hypotheses for such 
measurements.” This paper presents one possible path 
for classifying quantum states.

The QML considered in the paper is of QC or QQ 
class, i.e., it uses quantum data on classical (emulating) 
or quantum devices. The proposed q-neuron is 
ideologically close to known concepts (described in [6] 
and [39], among others). However, at the same time it 
has a  new essential feature that is exploiting quantum 
entanglement. In particular, q-neuron can operate 
without learning in the usual sense; optimization and 
error back propagation are not needed.

This can be exemplified by the experiment with 
the analysis of the dataset of student states15. For this 
experiment, the dataset is used without preprocessing. 
The entire preprocessing is captured in the analysis script 
available in the archive16. The dataset is a  labeled one 
with 34 feature columns and 4424 data instances. The 
binary label used in the experiment is Dropout = 1,  
with other values  (Enrolled, Graduate) = 0. The task 

15   https://www.kaggle.com/datasets/thedevastator/higher-
education-predictors-of-student-retention. Accessed January 09, 
2023.

16   https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ. Accessed 
January 09, 2023.

https://www.kaggle.com/datasets/thedevastator/higher-education-predictors-of-student-retention
https://www.kaggle.com/datasets/thedevastator/higher-education-predictors-of-student-retention
https://disk.yandex.ru/d/JK4dsbdGLP_ZaQ
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is to predict dropout. The features are mapped to 
integer intervals, the feature space is transformed to 
dimension 62 without loss of information. This is done 
for the use of QNN of two q-neurons in the first layer and 
one q-neuron in the second layer. Training is carried out 
without optimization. The network configuration implies 
the first q-neuron with three inputs and the second one 
with two inputs, in the first layer. The second layer 
contains a  single q-neuron with two inputs. Some of 
the data instances could not be classified by the neural 
network, since they are approximately equally close to 
both 1 and 0 label values. The results can be compared 
with the classical LDA algorithm taken from the scikit-
learn package of the Python language. The results are 
shown in Table 2.

It can be seen from the experiment that QNN does 
not ascribe label 0 to the student if he/she drops out: 
false negatives are equal to 0. At the same time, the 
share of false positives is quite high: more than half of 
the dropout labels  (1) are false. The QNN considered 
40% of the data unsuitable for classification. Certainly, 
these results are quite different from those of the LDA 
classifier, and it is unclear in which direction (better or 
worse). Nevertheless, it can be seen that LDA training 
time exceeds the running time by 6 times, while QNN 
has only 1.5 times.

A rigorous examination of the QNN performance 
of different architectures is planned in the following 
studies.

CONCLUSIONS

A new direction of QML development applying 
quantum entanglement significantly is proposed. It 
allows for the building of intelligent systems working on 
streaming data and learning online, taking into account 
changes in the data environment but not reduced to 
reinforcement learning. The proposed learning method 
could be called “reinforcement learning in reverse”. 
In reinforcement learning, the agent calculates the 
classification quality while the environment remains an 
external factor. However, in the proposed approach, the 
environment is the carrier of classification patterns and 
they are recovered directly from it.

Such systems can be used in control systems of 
unmanned vehicles of any kind, as well as in security 
systems and intelligent business-assistants. In this case, 
the use of quantum computers is not mandatory.
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Table 2. Experiment with students’ dataset

Method Precision, % Recall, % F1, % Unclassified 
states, %

Learning 
time, ms

Operation 
time, ms

Classification by emulated 
quantum entangled basis 39 100 57 40 2968 1901

Classification by linear 
discriminant analysis 100 29 45 0 138 23
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