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Abstract

Objectives. The aim of the work is to create algorithms for approximating a sequence of points on a plane
by arcs of clothoids and circles. Such a problem typically arises in the design of railroad and highway routes.
The plan (projection onto a horizontal plane) of the road route is a curve (spline) consisting of a repeating bundle
of elements “straight line + clothoid arc + circle arc + clothoid arc + ...”. Such a combination of elements provides
continuity not only for the curve and its tangent, but also for the curvature. Since the number of spline elements is not
known in advance, and their parameters are subject to restrictions, there is no mathematically consistent algorithm
for this problem. The two-stage scheme for solving the problem is developed at RTU MIREA only for a spline with lines
and circles (i.e., without clothoid elements). At the first stage, the scheme uses dynamic programming to determine
the number of spline elements. At the second stage, the scheme optimizes parameters of the spline using nonlinear
programming. This scheme has yet to be implemented for a spline with clothoids due to a significantly more
complicated nature of this problem. Therefore, the design of route plans in existing computer aided design (CAD)
systems is carried out in interactive mode using iterative selection of elements. In this regard, it makes sense
to develop mathematically consistent algorithms for element-by-element approximation.

Methods. The problem of element-by-element approximation by a circle and a clothoid is formalized as a
low-dimensional non-linear programming problem. The objective function is the sum of squared deviations from
the original points. Since a clothoid can only be represented in Cartesian coordinates by power series, there are
difficulties in calculating the derivatives of the objective function with respect to the desired parameters of the spline
elements. The proposed mathematically consistent algorithm for calculating these derivatives is based on the integral
representation of the Cartesian coordinates of the points of the clothoid as functions of its length.

Results. A mathematical model and algorithms have been developed for approximating a sequence of points on a
plane by clothoids and circles using the method of nonlinear programming. A second-order algorithm is implemented
with the calculation and inversion of the matrix of second derivatives (Hesse matrix).

Conclusions. For approximation by circles and clothoids using nonlinear programming, it is not necessary to have
an analytical expression of the objective function in terms of the required variables. The proposed algorithms make
it possible to calculate not only the first, but also the second derivatives in the absence of such expressions.
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HAYYHAA CTATb4A
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Peslome

Lenu. Lenb paboTbl COCTOUT B CO34aHMN aNrOPUTMOB annpoKCUMaLLMn NOCeA0BaTENIbHOCTN TOYEK HA MIOCKOCTU
ayramMu KioToua, 1 OKPY>XXHOCTeN. Takasa 3afaya BO3HUKAET B MPOEKTUPOBAHUM TPACC XENe3HbIX M aBTOMOOUbHbIX
popor. NnaH (Npoekuus Ha ropu3oHTasIbHYIO NMIOCKOCTb) TPACChI LOPOrv — 3TO KpMBag (CrnianH), cCocToswasa us ro-
BTOPSIIOLLENCSH CBA3KM 3JIEMEHTOB «MNpsaAMas + ayra Knotouabl + ayra OKPYy>XHOCTb + ayra knoroumabl + ...». Takas
KOMOMVHaLMS 3N1eMEHTOB 00eCneymBaeT HENPEPbLIBHOCTb HE TOJTbKO KPUBOM M KacaTeNbHOM K HEl, HO N KPUBU3HBI.
[TOCKONbKY YMCO 3NEMEHTOB CrlaHa 3apaHee HEM3BECTHO, a Ha MX NapamMeTpbl Hak1aablBalOTCA OrpaHnYeHns,
0115 9TOM 3a4a4m Noka He onybnrMKoBaHO MaTeMaTMHYeCKkM KOPPEKTHOro anropmutMa. PaspaboTaHHas B PTY MUPJOA
LByxaTanHaa Cxema peLleHns 3agadyn ¢ onpefesnieHneM Yucna 3/IeMeHTOB CrijlaiHa C NMOMOLLBIO ANHAMUYECKOro
nporpaMMmMpPOBaHNA Ha NEPBOM 3Tarne 1 onTuMu3aLmen ero napaMmeTpoB C MPUMEHEHNEM HEJIMHEMHOr O Nporpam-
MUVPOBaHUSA Ha BTOPOM, peann3oBaHa TOJIbKO AJs CrlaiHa ¢ NPSMbIMU U OKPYXHOCTAMU (6e3 knotoua). Ee pea-
nmM3auusa onsa cnnarHa c KNoTonaamMmum MHOMO ClIOXHEE U Moka He BbINMOJIHEHA B CUily psaa npuyvH. B oencreyowmx
CUCTeEMax aBTOMATU3NPOBAHHOIO npoekTuposaHus (CAIMP) NpoekTUpoBaHWE niaHa TPACChl BbINMOHAETCS B UHTE-
PaKTVMBHOM pexumMe C NocneaoBaTebHbIM NoAO0POM 3N1IEMEHTOB. B 3TOM CBA3M MMeET CMbICn pa3paboTka maTe-
MaTUYeCKN KOPPEKTHBIX alIrOPUTMOB NMO3JIEMEHTHOW annpoKcumawmn.

MeTopn. 3agaya NnosneMeHTHOM annpoKCUMaLMU OKPY>XXHOCTbIO UKW KNOToMAoM dopmann3oBaHa kak 3aaa4ya Henum-
HEMHOro NPOrpamMmMrpPoBaHns Manon pasMepHoCTU. Lienesas pyHKUNSA — CyMMa KBaApaToB OTKIIOHEHW OT UCXO4-
HbIX TO4eK. [OCKONbKY KNoTOMAa B AEKaPTOBbIX KOOpAMHATax NpeacTaBngeTCcsd CTeneHHbIMU PaaamMm, BO3HUKAIOT
TPYOHOCTU BbIYUCIIEHUS MPON3BOAHbIX LLeIeBON OYHKLMM MO NCKOMBIM NapamMeTpaM 351IeMeHTOoB crnanHa. Npenno-
KEH MaTeMaTn4eCKmN KOPPEKTHBLIN anrOPUTM BbIHUCIEHNSA STUX MPOU3BOLHbLIX HA OCHOBE MHTErpasbHOro Nnpeacras-
JNIeHNS 0eKapTOBbIX KOOPAMHAT TOYEK KITOTOUABI KaK PYHKLMA ee OJINHbI.

Pe3ynbTaTthl. PazpaboTaHbl MaTtemMaTnyeckas MoAesb 1 anropuTMbl anMnpoKCUMaLIMM NOCIeA0BaTENBHOCTU TOYEK
Ha MJIOCKOCTU KJIOTOUA0M N OKPYXXHOCTLIO C NPUMEHEHWEM METO4a HEJIMHENHOrO NporpamMmupoBaHus. Peann3oBaH
anropuTM BTOPOro nopsiika C BbIMMCNEHNEM 1 OOpaLLeHMeEM MaTpULbl BTOPbIX MPOU3BOAHbLIX (MaTpuua ecce).
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BbiBOAbI. [1515 annpoKCUMaLLMm OKPY>XKHOCTBIO U KIOTOUAO0M C MPUMEHEHNEM HEJIMHEIAHOIO MPOrPaMMNPOBaHUS He-
00693aTeNbHO METb aHANTUTUYECKOE BbIPAXEHME LIENeBO OYHKLMN YEPE3 UCKOMbIE MEPEMEHHbIE. MNpeanoXeHHble
aNropUTMbl MO3BOJISIOT BbIYMCSATL HE TONIbKO NEPBbLIE, HO Y BTOPbIE NMPOW3BOAHbLIE B OTCYTCTBME TaKNX BblPaXKeHUIA.

KnioueBble cnoga: niaH Tpacchl, CrianH, HefiMHenHoe NporpaMmMmpoBaHne, KNoTomaa, Lenesas GyHKLUWs, rpaam-

eHT, maTpuua lecce
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Mpo3pavyHocTb GMHAHCOBOW AEeATeNIbHOCTU: ABTOPLI HE UMEIOT PUHAHCOBOW 3aMHTEPECOBAHHOCTW B NPEeACTaBNEH-

HbIX MaTepunanax nin metogax.

ABTOPbI 3a5BNSIOT 06 OTCYTCTBUM KOHMMKTA MHTEPECOB.

INTRODUCTION

The problem of approximating a curve defined by
a sequence of points in the plane by circles and clothoids
is much more complicated than the widely-used linear
or parabolic regression approach. In the case of search
for an approximating circle in Cartesian coordinates, the
problem is reduced to a nonlinear system of equations.
In the case of a clothoid, it is impossible to obtain even
this, since such a curve cannot be represented in the
form y = f{x). A mathematically consistent algorithm for
approximation by a clothoid has not yet been found in
the literature.

Instead, current CAD solutions either use the method
of enumeration of variants assigned by the designer or
approximation by the involute method. The latter was
proposed in the pre-computer era [1] as a means of
calculating the shifts of a route plan to bring it to a given
design position. During reconstruction of a railroad route
plan, a design position is unknown. When changing plan
parameters such as lengths of transition curves (clothoid
arcs) or radii of circular curves, the design position is
set in one way or another by the designer. After that, the
computer calculates all design parameters of the route
plan and shifts of the existing route. The involute method
was also used for approximate solution of approximation
problem instead of its exact solution in Cartesian
coordinates!. This method has been successfully used to
design a route plan as a whole within the railway haul
back in the 1980s on such unsuitable for creating CAD
computers as Minsk 32 and EU 1033.

The avoidance of Cartesian coordinates seemed to
be forced. At the same time, it was known that the error
of the method due to the presence of large angles and
small radii can be very significant. This is especially true
for heavily dislocated curves and correspondingly large

U Methodical recommendations for the calculation of
composite curves of the railroad route plan. Moscow: All-Russian
Research Institute of Transport Construction; 1985. 26 p. (in Russ.).

shifts or when designing reconstruction with significant
changes in the route plan parameters.

The involute method was also used in the 1980s for
optimizing the horizontal alignment of new railroads
in stressed sections [2, 3]. Here, the route plan was
represented as a broken line to find the number of
elements and their approximate location, which was
then transformed to the required shape using this method
with subsequent optimization of the resulting spline
parameters [3]. Despite the disadvantages of the involute
method, its wide application is explained by the fact
that in contrast to Cartesian coordinates, it uses single-
valued functions having simple analytical expressions:
a parabola of the second order instead of a circle and
a cubic parabola in the place of a clothoid.

Various heuristic algorithms were proposed in the
works of authors [4—12]. Initially, these were based on
analyzing initial broken line characteristics obtained
after connecting adjacent survey points by line segments,
such as rotation angles in the vertices of the broken line
and curvature graphs. Subsequently, the use of genetic
algorithms became more common. In Russia, various
programs are used in current CAD systems to facilitate
element-by-element selection and evaluation of trace
variants. This approach has been most successfully
realized by the Topomatic> company in the Robur
system, which uses an existing semiautomatic trace plan
parameter selection method based on curvature graphs.
Although there have been claims to have solved the
problem of designing railroad track plan reconstruction,
the substantiating algorithms have yet to be published in
full. Among recently published heuristic algorithms, the
ones presented in the works of Chinese professor Hao Pu
and colleagues [13—15] should be noted.

It is hard to believe in the existence of an
optimal solution for several circular and transitive

2 Topomatic Robur product documentation “Path selection
via curvature graph.” http:/help.topomatic.ru/v6/doku.php?id=rail
rrail:tasks:selection_path:start. Accessed April 18, 2023 (in Russ.).
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curves (clothoids) if there is no optimal solution
algorithm for a single clothoid.

As with the general design of plan- and longitudinal
road profiles, the problem under consideration is
characterized by the lack of a known optimal solution
for complex cases. In the absence of designer interest in
the achievement of such a solution, anything plausible
that the computer gives out can be called “optimal”.
This represents the fundamental difference between this
problem and those associated with modeling geometric
shapes of roads [16].

Nevertheless, the development of mathematically
substantiated algorithms of approximation by a circle
and a clothoid remains both theoretically and practically
relevant, since the result can be useful not only in road
design. The up-to-date level of computer technology
allows solving this problem in a reasonable time on
publicly available computers and without the use of
palliative algorithms.

The aim of this study is to present mathematically
substantiated algorithms for approximation by a circle
and a clothoid in Cartesian coordinates by means of
nonlinear programming algorithms that use the involute
method only to obtain an initial approximation, followed
by an optimization of the parameters used to determine
the position of the circle or clothoid.

PROBLEM STATEMENT

For a given sequence of points in the plane find
a clothoid (circle) such that the sum of squares of
distances h; (i = 1, 2, ..., n) from the given points to
the clothoid (circle) is minimal. The distances are
calculated using the normal line from a given point to
the clothoid (circle).

The initial point of the desired curve is given.
The direction of the tangent to the desired curve at
the initial point and the minimum and maximum
radius of curvature of the desired curve can also be
specified.

Here, the objective function is

F(h)=%zn:hi2 — min. (1)
1

Here, h(h,, h,, ..., h,) is the vector of unknowns,
while 7 is their number.

INVOLUTE METHOD

Unlike other curves (parabolas, circles, sinusoids, etc.),
one cannot speak of an involute without specifying
another curve (evolute) that generates the involute.
Various definitions of involute can be found in the

literature. In mathematics, an involute is a curve
for which a given evolute is the locus of curvature
centers [17]. Consequently, the normal line at each point
of an involute is a tangent to the evolute. This has to
be a tangent rather than a secant because there can be
only one center of curvature at each point of a curve.
In this context, an involute is a curve described by the
end of a flexible, inextensible thread coiled from an
evolute (e.g., a circle).

Y &

Fig. 1. Construction of the involute of a circle.
L is the involute length

Figure 1 depicts the construction of the involute
of a circle. Here, A is the initial point on the evolute,
A, and A, are its new positions on the evolute. They
correspond to the lengths of arcs counted from the
initial point, s and s + ds. These lengths are tangentially
set in the direction opposite to the motion from the
initial point. The points P, and P, are obtained on the
involute, respectively. The arc lengths of the involute
are AP, and AP,. At full rotation (¢ = 2m) the length
of the involute £ = 2nR, where R is the radius of the
circle. Thus, it is not the initial point A that is fixed,
but its new positions on the evolute, in which tangents
are constructed and on which the arcs of the involute
are unfolded. The involute of a circle is an unfolding
spiral.

However, in [1, 18, 19] a different treatment of the
circle involute concept and the means of its construction
is stated (Fig. 2). Here, the point A of the beginning of
circular curve is fixed and for each point of the circle (a)
the arc length from the initial point to the current
one (Aa) is unfolded by a tangent from the point A.
Thus, a separate involute is obtained (aa’, bb’ ...) for
each point of the circle. Although the curve aa’ is not
a circle involute, its length is equal to the length of the
corresponding section of involute. Hence, the confusion
of the terms arose.
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Fig. 2. Construction of the circle involute
according to [1, 18, 19]

In [1, 18], circle involutes are curves constructed in
a described way. But in [19, p. 243, Fig. 7.20], we can
find: “Involute (italics of the authors) is the length of
the arc aa’, which will be described by the end of an
inextensible thread, stretched on the circle Aa and fixed
at the point A, when the thread is straightened.”

If we assume that the involute is not the curve
discussed above, but the arc length aa’, then this length
is K%(2R), where K is the arc length Aa, R is the radius
of the circle, while the circle involute is not a spiral
in Cartesian coordinates, but a parabola of the second
degree as a function of the evolute length.

If we follow the method of construction of the circle
involute adopted in [1, 18, 19], then for each point of
the circle (evolute) we will get a different involute, but
they will all end on a tangent to the circle at the initial
point, which is fixed. The true circle involute should be
constructed as shown in Fig. 1.

From Fig. 1 it follows that dL = ¢(s)ds since
dL = sdo = sdyR = ¢ds, and further:

S
L(S) = [ o(s)ds. 2)
0

Here S is the length of the evolute from the initial
point, while @(s) is the dependence of the angle of the
tangent to the evolute with the OX axis (or any given
direction, which is not fundamental) on s, referred to
as the angle diagram. The term “involute” was defined
for smooth curves, and Eq. (2) is true for all such
curves. However, in our problem (1), the initial curve is
a broken line, and we cannot apply the above definitions
of involute to it—i.e., consider the broken line as an
involute. However, Eq. (2) can be generalized if we
consider a curve whose length is calculated through
the angle diagram of an evolute by Eq. (2), i.e., the
length of an involute is the area of the angle diagram as
a function of length of the original curve (particularly,

a polyline). Thus, the involute itself is of no interest
for the problem in question. Here, it is significant that
the difference of lengths of involutes of two evolutes
having a common point is, under some additional
conditions, approximately equal to the distance between
the evolutes along the normal. In our problem, the first
evolute is a broken line connecting the approximated
points, while the second is a design curve (a circle or
a clothoid). Hence the involute method, which consists
in the following:
1. We calculate the angles of the original broken line
with OX axis and the values of the involute length
L, of the original broken line for survey points
i=1,2,...,n.
L, =0, further

i
L=29;5; 3)
j=2

Here o, is the angle with OX axis of the jth leg of the
broken line (from point j — 1 to point ), s ' is the length
of this leg.

For a circle, the rotation angle depends linearly on
the arc length, so the length of the design involute L 4 (S)
is a second-order parabola.

2. If the design curve is given, the difference
Lyoo(S) — L;,;(S) approximates the desired shift hj,
where j and S must match each other.

3. If we want to solve the approximation problem,
the unknown coefficients of the desired parabola
(a and b) are determined by the least square
method.

For a circle, the involute length L, (S) = aS* + bS,
where S, as before, is the arc length from a given initial
point. The meaning of the required parameters is as
follows: a = 1/(2R) and b is the angle with OX axis of
the tangent to the circle at the initial point.

We obtain the problem:

F(a,b)= i(asl.2 +bS; L, )2 —>min.  (4)
i=2

Here S, is the length of the broken line from the first
point to the ith survey point (i =2, ..., n), §; = 0.
oF
Conditions — =0 and — =0 give a system of

Oa ob
two linear equations, from which we obtain @ and b; then

R=1/2a). Since the angle b can be given, only a remains
unknown.

When approximating with a clothoid, the following
options are possible: the clothoid connects a line to
a circle; a circle to a line; two circles of various radii.

If the lengths of the contiguous clothoids are
significantly shorter than the lengths of the circular
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curves, it is important to select the position of the circle,
and only subsequently fit the clothoids. However, the
opposite situation is also possible, where the clothoid
is an independent element. For example, in highway
design, one finds the term “clothoidal tracing” [20]. In
this case, the route should not be thought of as consisting
of only clothoids and straight lines, but clothoids prevail
in the share by length.

By definition, the clothoid curvature 6 = o, + &S,
where 6, is the curvature at the initial point (at length
S'=0), kis the curvature change rate. The current angle
of the tangent with OX axis is ¢ = @, + 0,5 + kS%2,
where @ is the initial angle of the tangent with OX
axis. Finally, the length of the clothoid involute is equal
to

L=,S+ 0,52 + kS¥6.

Clothoid approximation by the involute method in
the general case is reduced to the problem:

F((PODGOHk) =
2
1 coS? kS? . (5)
:z ©oS; + +—~—L1; | - min.
i=2 2 6

Here §; and L; have the same meaning as in the
circle approximation problem (4). One or two variables
can be fixed. In any case the problem (5) is solved
simply. By differentiating (5) by the desired variables
and equating the derivatives to zero, we obtain a system
of linear equations (or one equation if two unknown
variables are fixed). After solving the system, one
should calculate the curvature at the end point of the
clothoid 6, = o, + &S,

If R, = l/5, appears outside the admissible
limits, we should take R, = R ~and calculate
k= (/R — o,)S, at a given 6. Then we obtain the
unknown ¢, by substituting the found & in (5) and
solving the problem with one unknown variable. If
o, is not given, we substitute o, = o, — kS, in (5) and
solve the problem (5) with the remaining unknown
variables and the found o,

Thus, it is very easy to use the involute method
for approximation by both a circle and clothoid.
Unfortunately, the accuracy of the method may be
insufficient. To test this statement, the Cartesian
coordinates of the ends of the chords of a given length
on a given circle were calculated as the coordinates of
the initial survey points. Using these coordinates, the
chord angles with the OX axis and involute lengths
were calculated by Eq. (3). Then the problem (4)
was solved. Obviously, its solution is the variables
corresponding to the initial circle. In this case the
deviations of all initial points from the approximating

circle should be equal to zero. However, this was
not the case. At circle radius R = 500 m or more,
chords /. = 20 m, and circle length § < 500 m (i.e.,
at rotation angles less than 1 rad), the deviations
of the obtained circle from the original were less
than 0.01 m. However, at R = 200 m, /. = 20 m,
S = 200 m, the radius determined by the involute
method was 199.9167 m instead of 200 m and the
maximum deviation D, was 0.0383 m instead of 0.
At § =400 m (rotation angle of 2 rad) for the same
circle, D, = 0.1180 m instead of 0. In all cases, the
length differences of design and initial involutes of
the approximated circle in all points of survey were
equal to zero. At [_= 10 m, the accuracy of the method
is significantly higher. Thus, at a division by 10 m we
get R =299.9861 and D, = 0.00297 if R = 300 m,
S = 200 m, while at a division by 20 m, we obtain
R=299.9444mand D, =0.01190 m.

Similar calculations were performed with respect
to the use of the involute method to approximate
the clothoid. For compressing them, arcs of equal
length were used, rather than chords, simplifying the
calculation of Cartesian coordinates of points at the ends
of arcs. These points were treated as survey points, chord
lengths were calculated, and, as for circles, angles and
involute lengths L, were calculated using Eq. (3). Then,
the problem (5) was solved with 6, = 0 and the unknown
variables @, and k.

As one would expect, the involute method works
well for small values of the parameter k and short
clothoids. Otherwise, the results are unsatisfactory.

Example 1. A clothoid of length 400 m is divided into
20 equal partsevery 20.0m; k=3.333333 - 10>. We obtain
@, = —0.00027412 instead of 0 and k = 3.337930 - 1073
instead of the original k= 3.333333 - 107,

Approximation of the involute length as a function
of length of a broken line by the cubic parabola (solution
of problem 5) is performed with deviations not more
than 0.041 m. However, the maximum deviation D
of the initial points from the obtained clothoid along the
normal line to it equal to 0.255 m.

Example 2. Same problem, but the length of
the clothoid is 200 m. Approximation with the cubic
parabola is performed with deviations not more than
0.001 m. We obtain ¢, = —1.839272551 - 1072 instead
of 0 and k = 3.334527 - 1073 instead of the original
k=3.333333-107°,D_, = 0.048 m.

It should be noted that these calculations show not
so much how the involute method finds an optimum, but
rather how it deviates from it. For a “heavily hit” initial
route, the deviations from the optimum of the solutions
obtained by the involute method may be significantly
higher, especially for small radii and large rotation
angles. However, in any case, these solutions can be used
as initial approximations for the optimal approximation
by a circle.
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OPTIMIZATION OF THE INITIAL APPROXIMATION
WHEN APPROXIMATING BY A CIRCLE

Let us assume that the coordinates of points to be
approximated by the circle and its initial point A are
given. Although we also usually fix the direction of the
tangent at this point (angle a with OX axis), we will
assume without loss of generality that this angle and the
circle radius R are unknown. Coordinates of the circle
center (Fig. 3) are

x,=x,—R-sinoandy =y, + R - cosa. (6)

C(x, ¥o)

Fig. 3. Calculation of the derivatives
of deviations hj from the circle

Deviation h]. (BE in Fig. 3) of an arbitrary survey
point E with coordinates x > Y from the circle is

hy =0 j=3)? 4 (7 =3)? ~R. ™

Using (6) and (7), we obtain the derivatives:

6hj 6hj )
R = cos(Bj —o)—1 and Zo = Rsm(Bj —a).

Here, B/. is the angle of the tangent to the circle at
point B.

Then we calculate the gradient of the objective
function (1):

F n . n
R Z:: _R g (cos(B; —a) 1),
oF < i L ®)
“ _f - _
. Z o Z s1n(B o).

=i =

The problem of approximation by a circle with
objective function (1) is reduced to a two-dimensional

minimization problem with restriction on R and initial
approximation obtained by the method of involutes as
a result of solving problem (4). Here, the presence of
a good initial approximation is especially important,
since there is no reason to believe that the problem is
one-extremal.

Various methods can be used to solve the
problem [21-23], in particular gradient or coordinate
descent, changing alternately R and a.

Note, that if the initial point A and angle o are
fixed, setting one more point of the circle (e.g., the end
point) defines the circle uniquely. The enumeration of
several such points and calculation of the value of the
objective function for each of them may be sufficient,
especially for large radii, when the involute method
gives acceptable results, which can be improved and
confirmed.

OPTIMIZATION OF THE INITIAL APPROXIMATION
WHEN APPROXIMATING BY A CLOTHOID

As in the approximation by a circle, the main
problem when approximating by clothoid is to calculate
the derived distances of the given survey points from the
clothoid by the parameters defining it. Let us show how
this problem is solved by the example of the transition
from a line to a circle using a clothoid.

YA

Fig. 4. To the calculation of the derivatives
of the deviations hj from the clothoid

In Fig. 4, AB is the initial position of the clothoid;
AB, is its new position when one of the clothoid
parameters is changed; ¢, and ¢ are the angles of the
tangent with the OX axis; CB = /. is the deviation of the
survey point C from the clothoid; BC, is its increment.

Let us denote the incremental coordinates of point
B at its transition to a new position B, due to a change in
any of the parameters of the clothoid by 6xj and dyg. In
the coordinate system with a center in point B and axes
directed along the tangent and normal to the clothoid,
respectively, the coordinate y” of the point B, i.e., BC, =
= Oypcosp — dxpsing. The value C,C, can be neglected
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compared to C,B, and the linear part of the increment can
be assumed to be

oh = OYRCOSQ — OXpSINg. 9)

Since the initial point A is fixed, the parameters
determining the position of the clothoid—and hence the
quality of the approximation—are in the general case:
@, is the angle of the tangent with the axis OX at the
initial point (at L = 0), o, is the initial curvature; & is the
clothoid parameter (the curvature change rate, i.e., the
curvature derivative over the length).

In the case of the transition from a line to a circle
o, = 0, only two variables ¢, and k remain. In fact,
the problem is reduced to the calculation of derived
coordinates of points of the clothoid by these variables.
Coordinates of intersection points of normals from each
survey point with the clothoid and the length of the
clothoid L i from the initial point to the intersection points
are calculated before the derivatives are calculated using
the iterative algorithm along with the tangent angles with
the OX axis [24].

Since the Cartesian coordinates of the clothoid
points as functions of its lengths are expressed by power
series, we will use their integral representation:

Xp =X +JL‘cos [0} +ﬁ t
B A 0 7 4

0

= +j.sin +£ t
Y =JraA (o) 5 .

0

(10)

By differentiating (10), we obtain

2

G ( kt Jd
—>=—|sin| gy +—— dt =~(yp=¥,);
a(P() .([ 0 2 B JA

2k

L 2\ Lsino—(va—
:Lftdsin (po+kL _Lsine-(pya)
2k 2 2k

Using (9), we obtain the required derivatives of the
survey point deviations from the clothoid:

Oh;
_]:(xB —Xp)COSQ+ (yg —yu)sing,
09,

(11)

Oy (xg—x,)sin@—(vg = v,)coso
ok 2k ’

Here A is the initial point of the clothoid,; hj is
the deviation of an arbitrary jth survey point from the
clothoid along the normal line to it; B is the point where
this normal line intersects the clothoid; ¢ is the angle of
the tangent at this point with OX axis; L is the length of
the clothoid from point A to point B.

Formulas (11) allow us to find the gradient of the
function (1)

n Oh; n oh,
a_F:Zhj._/; a_F:Zhj._/‘ (12)
ok a ok~ 0y, = oQ,

Further, it is possible to use gradient methods
of optimization, e.g., the method of conjugate
gradients [22-24]. However, Egs. (10)—~(12) allow
a calculation of the matrix of second derivatives of the
objective function G (Hessian matrix) to apply the more
effective second-order method [23, 24]:

2 2
o?F i oy i -G
ok |\ ok Joakr |
R2pF XA(0h, Oh, 0%h
= _J . J | = 1 =G, (13)
okop,, =t 09, Ok Okop,
2 2
azei oh, +h“% G,
o5 al\deg ) T d0g

Calculation of the Hessian matrix is reduced to the
calculation of the second derivatives of the deviations
h. of the approximated points from the clothoid by the
d]esired variables ¢, and k, since the first derivatives
have already been calculated.

In accordance with (9)

0%h; 0%x 02
J - B VB
——=—sinQ- +cosQ- =
ok? ? ok2 ? ok2
L
ke? ¢4
=sin®| cos +— |—dt—
@{ (cpo 5 J ;

L
. kt? |14
—cos (p'[ sin [(po + —J— dt.
0 2 )4
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Integrating by parts and using the previously
calculated integrals, we obtain

azhj 153 3 .

%T:E{L +;(COS<P(J/B = Ya)—sino(xg —XA))},
o%h. 92 o2

—;:—sin(p- XZB +cosQ- y213 =

oPg tslor 0Py

=sin@(xg —Xx, ) —COSO(Yg — Vp)s

0%h, L 22
J =sin(p'|.cos g +kL t—dt—
Okopy 0 2 )2

L
: kt? |2
—costpjsm(wo +—J—dt =
0 2 )2

(14)

1 .
:E{L_SIH(P(J’B —Yp)—cosp(xg —xA)}.

Using the derivatives obtained, we calculate the
Hessian matrix and its inverse G™'.
Let us denote: x(¢, k) is the vector of the unknown

oF OF
variables, g| ——,—— | is the gradient. For the initial
op, Ok

approximation obtained by the involute method (zero
iteration) these are x? and g°. Let us calculate the next
iteration point:

xI=x0-G1- g0 (15)

For a positively defined Hessian matrix, this is
the point of minimum of the objective function when
decomposed into a Taylor series and restricted to the
second derivatives. In the general case, one step to the
point of minimum on the ray x’ = AG™! - g%is insufficient.
In the quadratic problem, the minimum is reached at
A = 1. In general case at A = 1, we obtain the minimum
point not of the original function, but of the approximating
quadratic form with the Hessian matrix, which is not the
same thing. Therefore, A = 1 should be regarded only as
an approximate value: the exact value should be sought
by solving the problem of one-dimensional optimization
of the function F(x) on the ray x? —AG™! - g*, considering
it as a function of the single parameter A.

At the resulting point of minimum in the direction,
we again have to calculate the gradient and the matrix
inverse to the Hessian matrix, and so on.

In general, the algorithm of the
approximation consists of the following steps.

1. Construct the angular diagram of the original broken
line by survey points.
2. Calculate the involute length of the broken line

sequentially by the survey points by the formula (3).

3. Solve the problem of approximation of the obtained
broken line. In general case, approximation by
cubic parabola in the presence of three unknown

clothoid

parameters of clothoid or by square parabola in the

presence of two parameters, as considered above. In

this case, the system of no more than three linear
equations is solved.

4. For a clothoid corresponding to the obtained
solution, a special iterative algorithm determines
the intersection points with the normals from each
survey point, the angles of the tangents at these points
with the OX axis, the corresponding lengths from the
initial point of the clothoid to each of them, and the
deviations 4. of the survey points from the clothoid.

5. The first and second derivatives of the deviations
h.are calculated for the required parameters of the
clothoid (12), (13).

6. The gradient of the objective function (14) is
calculated and the conditions of the end of counting
are checked (for example, the smallness of the
gradient norm). If the count terminating conditions
are not satisfied, then:

7. Hessian matrix and its inverse are calculated.

8. The point of minimum of corresponding quadratic
form (15) is determined, the problem of one-
dimensional optimization, i.e., correction of step
in search direction, is solved, and transition to
new iteration point and further with new values of
unknowns to item 4 is performed.

To adjust and verify the clothoid approximation
algorithm, we first used the results of the test
problems using the involute method, for which the
optimum was known, but the involute solutions were
unsatisfactory.

In the involute method Example 1 discussed
above, the maximum deviation D . = 0.255 m
instead of 0, ¢, = —0.00027412 instead of O and
k = 3.337930 - 1073 instead of k = 3.333333 - 107>,
Objective function F? = 0.10298. At the point of
minimum of the quadratic form (15), F=1.08524 - 1077,
9, =3.099241 - 1077, k=3.333335 - 107°. After the first
iteration £ = 3.70261 - 10715, ¢, = —2.422261 - 10714,
k = 3.333333333 - 107°. No deviations exceeded
0.00006 m.

In Example 2, the same problem was solved,
but with a clothoid length of 200 m. By the involute
method, ¢, = —1.839272551 - 107> instead of 0 and
k=3.334527 - 107> instead of k = 3.333333 - 107> were

obtained. D, = 0.048 m. At the minimum point
of the quadratic form (15) F = 1.80438 - 10714,
9, = —9.592883457 - 10719, k& = 3.333334 - 1073,

D___ = 0.0002 m. The iteration was interrupted due to

max
achieving the required gradient accuracy.

CONCLUSIONS

New possibilities offered by contemporary
publicly available computers, along with the theory
and methods of computer development of design
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solutions, are far from being fully utilized in existing
linear structure CAD solutions, which are based on
ideas from more than 50 years ago. Transition to the
development and introduction of intelligent CAD, in
which design solutions are given by computer as a result
of optimization problem solving, is already possible
in many design problems. However, because of lack
of consumer interest in creating such systems and the
high labor and funds for their development in Russia,
such transition is unlikely in the near future. The most
advanced in this respect are the mentioned works of
Chinese scientists. However, existing CAD systems can
be improved by applying optimization programs in the
interactive process of making design decisions. Thus,
the approximation algorithms outlined in the article
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