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Abstract

Objectives. The wear monitoring of metal structural elements of power plants—in particular, pipelines of nuclear
power plants—is an essential means of ensuring safety during their operation. Monitoring the state of the pipeline
by direct inspection requires a considerable amount of labor, as well as, in some cases, the suspension of power
plant operation. In order to reduce costs during monitoring measures, it is proposed to use mathematical modeling.
This work aimes to develop a mathematical model of a diagnostic system for assessing the probability of detection
of defects by solving inverse problems.

Methods. A binomial model for assessing the reliability of monitoring, comprising the Berens—Hovey parametric
model of the probability of detection of defects and a parametric model based on studying test samples, was analyzed.
As an alternative to this binomial model, a computational method for assessing the reliability of non-destructive
testing systems by solving an inverse problem was proposed. To determine the parameters of the defect detection
probability curve, the model uses data obtained by various monitoring teams over a long period of power plant
operation. To serve as initial data, the defect distribution density over one or more of the following characteristics
can be used: depth, length, and/or cross-sectional area of the defect. Using the proposed mathematical model,
a series of test calculations was performed based on nine combinations of initial data. The combinations differed
in the confidence coefficient of the initial monitoring system, the parameters of the distribution of defects, and the
sensitivity of the monitoring system.

Results. The calculation data were used to construct curves of the probability density of detected defects
as a function of the defect size, recover the values of the defect distribution parameters under various test conditions,
and estimate the error of recovering the parameters. The degree of imperfection of the system was estimated using
the curve of the detection probability of a defect by a certain monitoring system.

Conclusions. Under constraints on the data sample size, the proposed methodology allows the metal monitoring
results to be applied with greater confidence than currently used methods at the same time as evaluating the
efficiency of monitoring carried out by individual test teams or laboratories. In future, this can be used to form the
basis of a recommendation of the involvement of a particular team to perform diagnostic work.
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HAYHYHAA CTATbA
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Ha OCHOBEC PCIICHUSA OﬁpaTHbIX 3aga4v

A.E. AnekcaHpgpos, C.I. Bopucos, J1.B. ByHuHa, C.C. Bbikosckuii @,
N.B. CtenaHoBa, A.ll. TutoB

MUWP3A — Poccuricknii TEXHOI0rm4eckmnii yHmsepceutet, Mocksa, 119454 Poccus
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Peslome

Llenu. KOHTpONb M3HOCA KOHCTPYKTUBHbIX 3/IEMEHTOB 9HEProyCTaHOBOK, B YACTHOCTM TPYyOONMpPOBOAOB aTOMHbIX
3NEeKTPOCTaHUWIA, SBNSETCS HEOTbLEMIEMbIM KOMIMOHEHTOM ob6ecnedyeHnss 6e30MacHOCTU NpU UX aKCryaTauuun.
KoHTposb nyTemM HenocpeacTBEHHOro 06CcNefoBaHNs COCTOSHUSA TpybonpoBoaa TpebyeT, BO-NepPBbIX, [OCTATOYHO
60NbLINX TPY[03aTPaT, BO-BTOPbIX, B HEKOTOPbIX C/lyYasix, BDEMEHHOW 0CTaHOBKW paboTbl. [ToaToMy Npu NnpoBene-
HUN KOHTPOJIbHbIX MEPONPUATUIM NpeaiaraeTcs MCNoNb30BaTb MaTteMaTn4eckoe mogenmposanue. Llens ctatbn —
paspaboTka MaTeMaTnyeckor MOAEN CUCTEMbI AUArHOCTUKN AN OLLEHKN BEPOSTHOCTM 0OHapyXeHnsa nedekToB
Ha OCHOBe peLLeHns obpaTHbIX 3a4ay.

MeToabl. AHanM3npyTcs GMHOMUANbHAA MOAOESb OLLEHKN HaOeXHOCTW KOHTPONs, napameTpuyeckas Moaesb
BepeHca 1 XoBU BEpPOATHOCTU OOHapyxeHus AedeKToB, napameTpuyeckas MOAeSlb Ha OCHOBE UCCNedoBaHus
TecT-06pa3sLoB. B kauecTBe anbTepHaTVBbI AaHHLIM MOAENSAM NPeasiaraeTcs PacyeTHbIN MeTO, OLEHKN HaOeXHO-
CTW CMCTEM HepaspyLLaloLLero KOHTPOJS Ha OCHOBE peLleHus 00paTHOM 3agayun. [Ang onpeaeneHns napaMmeTpos
KPMBOW BEPOSATHOCTU OBHapyXeHUs aedekToB MOAeb UCMONb3yeT AaHHble, NMOJIyYeHHbIE Pa3/INYHBIMU KOHTPO-
nmpylowmmmn 6puragamu 3a 4IMTeNbHbI NEPUOL 3KCMyaTauum 3HeproycTaHoBKM. B ka4ecTBe MCXOOHbIX AaHHbIX
MOXHO MCMNONb30BaTb MNIOTHOCTU pacnpeneneHns nedekToB No O4HON UAN HECKOJIbKUM U3 CNeayloLLmMX XapakTe-
puCTUK: rnybuHe, AnvHe, nnowaam ceveHns gedekra. C noMoLlplo NpegnaraeMon MaTemMaTn4eckor Moaenm Bbl-
NMosHeH HabOop TECTOBbLIX PACHETOB HA OCHOBE OEBATM KOMOUHAUMI NCXOOHbIX AaHHbIX. KOMOUHAUMKM oTanyatoTcs
Mexay coboi KoapdPULMEHTOM AOCTOBEPHOCTN UCXOAHOW CUCTEMbI KOHTPOJIS, NapaMeTpoOM pacrnpeneneHus ae-
beKkToB, YYBCTBUTENIBHOCTLIO CUCTEMbI KOHTPOSIS.

PesynbTathl. [10 nTOram npoBefeHHbIX pacyeToB NOCTPOEHbI KPUBbIE MIOTHOCTY BEPOSATHOCTN OOHaPYXXEHHbIX Ae-
dekToB B 3aBMCUMOCTU OT pa3mepa gedekrta, onpeneneHbl BOCCTaHOBIEHHbIE 3HAYEHMS NapaMeTPOB pacnpeae-
neHnsa nedekToB Npu pasnnyHbIX YCA0OBUSAX UCTMbITAHUIA, COoenaHa OLEeHKa NOrpeLlHOCTN BOCCTAHOBEHNS napame-
TPOB. [1151 OLEHKN CTENEHN HECOBEPLLEHCTBA CUCTEMbI MCMOJIb3YETCS KPMBasi BEPOATHOCTM 0OHapyxxeHus aedekTa
KOHKPETHOW CUCTEMOI KOHTPOJIS.

BbiBoabl. C y4eTOM OrpaHnyeHunii, CBA3aHHbIX C pa3MepoM BbIOOPKK, NpennaraeMas MeToamka, Bo-nepBbIx, No-
3BOJISET NPUMEHSATb Pe3yNbTaThl, MOSYYEHHbIE MO KOHTPOJIIO MeTanna, ¢ 6onbLUeli YyBePEHHOCTbIO, HeM METOAMKM,
MCNOJIb3yEMblE B HACTOSILLLEE BPEMS, BO-BTOPbIX, OLEHNBATbL 9PDEKTUBHOCTb KOHTPOJIS, MPOBOANMOIO OTAESNbHbI-
MK Bpuragammn ucnoitatenen nmbo naboparopusamMmm. B nepcnekTBe 3TO NO3BOJIUT PEKOMEHO0BATL UIN HE PEKO-
MeHO0BaTh MPUBIEYEHME TO NN MHOW Bpuragpl K BbINOJHEHMIO ANArHOCTUYECKMX PaboT.

KnioueBble cnoBa: HepaspyLlaloLnNii KOHTPOJb, HAAEXHOCTb QHEPreTUYECKMX YCTAaHOBOK, MaTeMaTU4eckoe Mo-
OennpoBaHue, CTaTUCTUYEeCKMIA aHann3, obpaTHble 3a4a4n
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npO3pa'~IHOCTb d)l/lHaHCOBOVI AeAaTesibHOCTU: ABTOpr HEe nMeloT d)I/IHaHCOBOI‘/JI 3anHTEepPeCoBaHHOCTW B nNpeacTaB/ieH-

HbIX MaTepmnanax nnm MetTogax.

ABTOPbI 3a9BNSIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.

INTRODUCTION

One of the most important issues in the operation
of large power plants is ensuring the safety of their
use. In order to solve this problem, it is necessary
to ensure the integrity of the structures of nuclear power
plants, including equipment and piping, over the entire
working life of the power plant!. Regardless of the
types of nuclear power plants and operating conditions,
damage to the structural elements of nuclear power
plants (including cracks) is detected almost every year.
The problem can be described in terms of insufficient
knowledge of damage models and mechanisms, which
corresponds to the impossibility of solving this problem
at the design stage.

One approach to solving this problem is to create
a system for maintaining a given level of reliability
by carrying out periodic diagnostics of the technical
state of the most critical objects of the operated power
plant, i.e., the organization and performance of works
for non-destructive testing of metal of equipment and
piping. Based on the current state of the tested objects,
the future situation can be predicted and a decision taken
to terminate or continue the further operation of the
objects.

1. STATISTICAL MODELS FOR ASSESSING
THE RELIABILITY OF NON-DESTRUCTIVE
TESTING SYSTEMS

In order to assess the current state of the objects
being tested, it is necessary to measure the reliability
of non-destructive testing. In order to obtain such
a metric, the probability-of-detection (PoD) curve
is used [1, 2] to describe the defect size distribution
of the defect detection probability. In practice, this
curve can depend on many factors, including the
capabilities of the method and monitoring equipment
at a selected sensitivity, the location and geometry
of the defect, and the properties of the material.

U Requirements for equipment and piping time management
in nuclear power plants. Basic provisions (NP-096-15). http://
www.cntr-nrs.gosnadzor.ru/about/ AKTS/HIT-096-15.pdf.
Accessed December 15, 2022 (in Russ.).

Human factors are also taken into account, among
which are staff fatigue, stressful situations, and
difficult inspection conditions.

For constructing the PoD curve, the monitoring
results are used as experimental data. These can
be obtained using systems similar to those described
in the literature [3—5] and materials of the American
Society for Nondestructive Testing?. The monitoring
system used in this case can be used to detect both
real defects formed during the operation of equipment
and piping of a power plant, and artificially created
defects with specified dimensions. Artificially created
defects? should have the same features as real defects.
The most suitable are samples of real objects with
real cracks formed during operation. The types
of fracture—ductile and brittle—are also taken into
account [6].

In general, the assessment test methodology
only provides qualitative conclusions about the
ability of the non-destructive testing system to detect
defects. Most works give results only for the averaged
PoD curves obtained by testing the same object
by different laboratories. An example is the results
of interlaboratory comparative non-destructive tests
that were conducted in 2018-2019 by nuclear industry
organizations*. Data obtained by nine laboratories was
not suitable for use in the construction of PoD curves
for individual laboratories due to the small number
of measurements for a single defect size. In this case,
an averaged PoD curve was drawn based on the results

2 Bouis J. NDT to evaluate crevice corrosion initiation
sites in alloy pipe and tubing. The NDT Technician. 2022;21(1).
https://blog.asnt.org/ndt-to-evaluate-crevice-corrosion-
initiation-sites-in-alloy-pipe-and-tubing/. Accessed December 15,
2022.

3 Kanzler D., Miiller C., Pitkinen J., Ewert U. Bayesian
approach for the evaluation of the reliability of non-destructive
testing methods: combination of data from artificial and real
defects. Proceedings: 18th World Conference on Nondestructive
Testing WCNDT. Special Issue. e-Journal of Nondestructive
Testing (eJNDT). 2012;17(7). http://www.ndt.net/?id=12748.
Accessed December 15, 2022.

4 Analytical report No. 532/789-2019 “On conducting
interlaboratory comparative non-destructive tests in organizations
of the nuclear industry under the program P.MSI.NKSS-533/009-
2018,” Part 2. Moscow: ROSATOM, VNIINM; 2019 (in Russ.).
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of all nine laboratories. This situation is typical for
constructing PoD curves.

The output characteristic of the monitoring
system used is a signal (peak voltage or amplitude),
which is compared with a threshold value and can
be interpreted as a function of the size of the defect.
Comparative analysis between the output signal of the
monitoring system and defects of known size a gives
estimate PoD(a) of the probability-of-detection curve.
The PoD(a) estimate can be found from the number
of monitoring events performed by the initial system for
a given size a; as

PoD(a;) ="t (1)
n

where PoD(a;) is the probability of detection of a defect
of size a;, n; is the number of defects of size q; detected
during the monitoring, and n is the total number
of defects of size , in the test sample.

Repeated use of formula (1) at different sizes
of defects a; gives the defect size distribution of the
frequency of detection of defects.

1.1. Binomial model for assessing the reliability
of the monitoring system

Let us assume that a given general population
contains a fraction of defects of a given size. Then,
taking N objects from this population and studying
them using the initial monitoring system, it can
be hoped that, with an increase in the number N, all
defects of a given size will be detected. In this case,
each experiment can be considered as an independent
trial, while the frequency of occurrence of an
event, ® = n/N, can be calculated by Bernoulli’s
formula [7, 8]

n. N!
P Cl):_l :—' nl- 1_ N*Vll-’ 2
{ N} nl_!(N_ni)!p (1-p) )

where p is the probability of detection of a single defect.
The lower confidence bound on the probability

of detection at a given confidence level and a given

sample size can be obtained by solving the equation

Pvs =

N1 N! N-n;
=supip: y ——pli(l-p) " 2l-af,
ni=0”i!<N_ni)!

where (1 — a) is the lower confidence bound on a given
probability, and MS refers to the monitoring system
used.

Having obtained a solution to equation (3), the
probability detecting a defect of a given size above
0.9 can be ensured with a given confidence interval
of 95% if all 29 defects of 29 given defects are found
in 29 trials. Such tests can additionally be used to assess
the monitoring system: by setting the number of checks
and assuming that all defects will be found by the
monitoring system being tested, the detection probability
can be determined at a given confidence interval. If the
lower confidence interval for a fraction of detected
cracks exceeds the specified detection probability value,
then the monitoring system is considered to provide the
required level of reliability.

However, as already noted [9, 10], the use of a
binomial model to assess the reliability of the monitoring
system can lead to serious problems. These arise when
constructing a PoD curve with changing defect sizes.
In this case, the confidence bounds on the PoD curve
have a very unstable behavior, which depends on the
chosen analysis method. Moreover, the PoD curve
throughout the range of defect sizes can be constructed
only if the number of defects is sufficiently large due
to the need to multiply the defect sample size for one
defect size by the number of points required to construct
the PoD curve.

1.2. Berens—Hovey parametric model
for the PoD curve

As an alternative to the binomial model,
a parametric model was proposed for constructing the
PoD curve. Berens and Hovey [11, 12] used a different
statistical framework to represent the PoD curve as a
mathematical function. The statistical model proposed
by Berens and Hovey [12] is based on a representation
of the output signal of the monitoring system as the
main component (characterizing the changes in the
average signal from one defect to another), together
with a random component (describing the changes
in the signal when testing the same defect). The
properties of the material, the location of the defect,
and its orientation, which are represented by the main
component, do not change from one test to another.
The random component is due to the human factor and
the instrumentation used. In turn, the instrumentation
depends on the method, methodology, and equipment
for monitoring at a selected sensitivity. A possible way
to improve the confidence of, e.g., ultrasonic testing was
described previously [12]. It is important to note that
the human factor is subjective and can change for many
reasons, whereas instrumentation factors have objective
characteristics, which can be assessed in terms of the
error of the method used.

In accordance with the above ideas, Berens and
Hovey [13] proposed a statistical model, in which the
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response signal of the monitoring system is divided into
separate components. These components can be written
as the following functional relationship

a=h(a)+d+s, )

where a is the output signal of the monitoring system;
h(a) is the main component, which characterizes the
average change in the signal as a function of the defect
size; & is an additional component, which is due to the
instrumentation used and is defined as the error of the
method used; and ¢ is an additional component, which
is due to the human factor.

According to Berens and Hovey, /4(a) is a random
variable with its mean value, while 6 and € are random
variables with zero means.

1.3. Parametric model of the PoD curve based
on the results of statistical processing of test
samples

The proposed model can only be used in equation (4)
for constructing the PoD(a) curve if the sizes of defects
and their distribution are known in advance, i.e., if the
defects are artificially created as test samples. These data
can be obtained from the results of non-destructive tests
in organizations of the nuclear industry [14].

This method of constructing the PoD curve can
be referred to as a direct method. However, organizing
and conducting such tests involve significant costs. Since
the data obtained from the results of such tests are limited,
only data on the average PoD are typically presented.
In this case, the averaging of the data complicates their
further use for solving practical problems and makes
it impossible to make an individual assessment of the
confidence by different laboratories.

As was noted [9], this is a big drawback because
individual assessments by different laboratories allow
one to identify more reliable laboratories and use their
experience in further work. Additional difficulties arising
in the construction of PoD curves were described in the
literature [15]. The noted shortcomings require the search
for alternative methods for estimating the PoD curve.

2. STATISTICAL MODEL FOR ASSESSING THE
RELIABILITY OF NON-DESTRUCTIVE TESTING
SYSTEMS BY SOLVING INVERSE PROBLEMS

As an alternative to direct methods, computational
methods based on solving inverse problems [16], as well
as computer simulation tools’, can be used.

5 Genc K. Simulating reality: Going beyond counting pores and
cracks in additive-manufactured parts. FOCUS The NDT Technician.
2020;19(2). 3 p. https://www.asnt.org/-/media/Files/Publications/TNT/
TNT_19-2.pdf?la=en. Accessed December 15, 2022.

The PoD curve is constructed using data onreal defects
found by testing metal structures. An essential component
is the selection of a sample of initial data [18, 19].

Let defects of different sizes a; be found in a structure
operating for time ¢. After constructing the defect size
distribution of the frequency of detection of defects for
the obtained sample (Fig. 1), the density distribution
of detected defects, p(a), can be obtained. A dimensional
scale should be chosen as the defect size a;, e.g., depth,
length, or cross-sectional area of the defect. Because of the
imperfection of the monitoring system used, some of the
defects remain undetected. As mentioned above, the degree
of imperfection of the monitoring system is characterized
by the probability-of-detection curve PoD, g(a), where the
subscript MS refers to a certain monitoring system.

The set of detected and undetected defects
is described by the initial random defect size distribution.
Let us call this distribution the real defect density
distribution and denote it p (a).

In accordance with the introduced definitions, the
expression for the density of detected defects has the
form

pf(a): . p,(@)PoDyq(a) ’ )
j P, (@)PoDyg(a)da
9o

where p/(a) is the density distribution of detected defects
by the initial monitoring system, p («) is the real defect
density distribution in the test object, PoDyq(a) is the
probability-of-detection curve for the initial monitoring
system MS, S is the maximum size of a defect that
can occur in the test object, a; is the sensitivity of the
initial monitoring system (minimum size of a defect
that can be detected by the initial system), and « is the
dimensional defect scale.

Considering expression (5), the problem of finding
the functions p (a) and PoDyg(a) from the known
distribution function p/(a) can be posed. Such a problem
is an inverse problem [19-21]. To solve this problem,
it is necessary to know the specific form of the functions
p(a) and PoD, ().

The distribution function of the real sizes of defects
should theoretically be exponential because the number
of defects increases with a decrease in the size scale.
Under this assumption, let us write the real defect
distribution density as

vy
pa(a):M, ©
j exp(—Aa)da

o

where A is the parameter of the real defect distribution.
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The form of the function PoD,,4(a) was chosen
so that it has few parameters, but takes into account the
features of statistical model (4) proposed by Berens and
Hovey. With these requirements in mind, the following
form was used:

PoDyg(a) =1 —exp(—r(a — a,)), (7)

where 7 is the confidence coefficient of the initial
monitoring system.

The confidence coefficient 7 in formula (7) includes
both the main component of the function PoD,¢(a)
of the defect size and the additional component due
to the human factor [22], which is found from the results
of statistical processing of the initial sample. The same
is valid for the parameter a,.

Substitution of formulas (6) and (7) into relation (5)
gives

pf(a): i exp(—a/k)[l—exp(—r(a—ao))]

I exp(—a/ k)[l - exp(—r(a - a ))] da.

o

It follows from relation (8) that, knowing the
distribution p(a), the following three parameters should
be obtained: the distribution parameter A, the confidence
coefficient r, and the sensitivity a, of the initial monitoring
system. The construction of the PoD curve of several
independent variables was described in the literature [23].

2.1. Calculation procedure

An important feature of the function p(a) should
be noted. Since this function is defined as the product
of the monotonically decreasing function p (a) and
the monotonically increasing function PoD,,q(a), the
function p (a) can be assumed to have a maximum. The
coordinate of the maximum value should be related to the
parameters of the functions p (a) and PoD\,¢(a). Simple
calculations give the abscissa of the point of maximum:

ln(l + ;j
Imax = % _f‘ 9)

Substitution of a , into relation (8) gives the

ordinate of the point of maximum:

PAnar) = Vinax: (10)

These coordinates (a,,., V) €an be determined
from the experimentally obtained density distribution
of detected defects (Fig. 1).

An additional feature of the selected functions should
also be noted. Substitution of ¢ into formula (6) gives
almost the same ordinate of the point of maximum

as that in formula (10), i.e.,

pa(amax) = ymax' (1 1)

The ordinates in formulas (10) and (11) exactly
coincide if the used limits of integration in the
expressions are 0 and o. The difference between the y,
values calculated by formulas (10) and (11) depends
on the a, value and the chosen value of the maximum
defect size S in the region under study. At S > 20 mm,
the relative error of the difference between these values
does not exceed 1074,

In essence, this means that the probability density
distribution function p (a) passes through the point
of maximum of the density distribution of detected
defects p /(a). Using this property, the nonlinear equation
for the unknown parameters a,, and A can be written:

exp(—ia
F(ay, k) =Y —S(—m“) =0. (12
J exp(—Aa)da

o

The unknown parameter @, can be found from the
experimentally obtained density distribution of detected
defects as the intersection of the curve of the distribution
of detected defects with the abscissa axis. Knowing the
obtained value a,, and using equation (12), the second
unknown parameter, A, can also be found by considering
nonlinear equation (12) in only one parameter A.

The parameter r was found by the method
of successive approximations. Given a set of parameter
values, let us calculate the parameter A value at each r. Let
us divide the initial region of size (a,y, S) into  intervals.
The choice of the number of intervals and their sizes
is determined by a preliminary analysis of the initial
sample. According to formula (6), the probability that
real defects of sizes from a to b are in the interval (a, b)
has the form

b
jexp(—a / W)da
pglab)=———. (13)
J. exp(—a/\N)da
o
If the total number N 5 of real defects throughout the

region is known, then the number of real defects in the
ith interval is

Nzilzpa(ai’aiﬂ)NaZ‘ (14)
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If the number N j, of detected defects in each

interval is known, then the total number of real defects
can be found from the expression

n
. 1
N=>» N! . (15
= Z1 / a; + a4 >
= l—exp| —r| —""—aq,

2

Thus, by giving the 7 value and using expression (15),

N 5 is found. Then, using formula (14), the number ¥, ;
of real defects in each (ith) interval is determined.
Further, the parameter A(r) is obtained from the known

N 6’1 values by linear regression.
The A(r) value that is closest to the parameter A value
found from equation (12) is the initial parameter r value.

2.2. Test calculations

The accuracy of the above calculation procedure
was checked by test calculations on models. In this
case, data modeling offers an important advantage: the
results of the calculations can be compared with the
known behavior of the general population, which cannot
be done by comparing only laboratory data. Some issues
of the quality of the recovery procedure were described
previously [24, 25].

Let the initial data be a given structure containing
a total of Ny real defects with an exponential defect
size distribution with known parameter A. The current
state of the structure is assessed by a non-destructive
testing system with known PoD(a) of given form (7)
with known characteristics » (confidence coefficient)
and q (sensitivity of the initial monitoring system).
The monitoring detected N defects of different
sizes, which can be sorted by size. The thus-obtained

Table 1. Initial data for modeling

No. of series | Parameter a;, | Parameter A, | Parameter r,
of calculations mm mm ! mm!
1 0.5 0.2 0.1
2 0.5 0.2 0.5
3 0.5 0.2 1.0
4 0.5 0.5 0.1
5 0.5 0.5 0.5
6 0.5 0.5 1.0
7 0.5 1.0 0.1
8 0.5 1.0 0.5
9 0.5 1.0 1.0

population of N 5 detected defects is the initial sample,
which was processed according to the proposed
procedure. The obtained values were compared with
the initial data. To study the effect of a combination
of values of the initial parameters on the recovered
characteristics, the initial data were grouped for nine
series of calculations (Table 1). For all the selected
series, the total number of real defects was assumed
to be N s = 1000. The pipe wall thickness was chosen
to be S =20 mm.

2.2.1. Determination of parameter a,

The parameter a, was determined by finding
the point of intersection of the curve of the density
of detected defects with the abscissa axis. The density
curve was approximated by a parabola constructed
through two points, including the point of maximum
of the initial density of detected defects. The following
initial parameters of the fourth series were chosen as an
example of calculation: A =0.5mm™ !, »=0.1 mm™!, and
a, = 0.5 mm.

The initial parameters were used to plot the real
defect density curve by formula (6). After specifying the
number of intervals of division of the initial region (at
n = 27), the number of real defects within the obtained
intervals is found from formula (14). Knowing the
number of real defects within the obtained intervals,
the number of detected defects in each interval can
be calculated using the dependence

iq1
N, = N} j (1-exp(-r(a—ay))da.  (16)

1

Rounding of the number N } to an integer gives the
initial sample of detected defects grouped by their size.
The obtained values of detected defects can be rounded
down (truncation of the fractional part if it is less
than 0.5) and up (increase to the next integer if the
fractional part is greater than or equal to 0.5), which
leads to two different frequency distributions (Fig. 1, red
and blue columns).

For the obtained distribution, let us choose two
points (first and third), including the point of maximum
of the density, and draw a parabola through them. The
point of intersection of the parabola with the abscissa
axis gives the parameter a, value (Fig. 2). The parameter
a, can be calculated with the frequency characteristics

rounded either down (a; =0.365) or up (ag =0.309).

The average value of the parameter a,, is aj =0.337.
The initial a;, value is 0.5 mm. The error in calculating
the parameter q;, is da,, = 0.326 or 32.6%.

The parameter a, values can similarly be calculated
at other initial values of the parameters A and . Table 2
presents the results of such calculations.
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Table 2. Results of the recovery of the parameter &3

Initial value of A Confidence coefficient Recovered value af Error 8a,, %
r=0.1 0.189 62.2
L=02 r=0.5 0.303 39.4
r=1.0 0.321 35.8
r=0.1 0.337 32.6
A=0.5 r=0.5 0.402 19.6
r=1.0 0.424 15.2
r=0.1 0.468 6.4
A=1.0 r=0.5 0.460 8.0
r=1.0 0.446 10.0
2 2
£ £
& 0.2r 1 $ 0.2- - _
° °
2 2
5 s
S 01r . 3 0.1 . _
o o
g £ 74
0 5 10 15 0 1 2

Defect size, mm

Fig. 1. Defect size distribution
of detected defects (all series)

2.2.2. Determination of the calculated (recovered)
value X of the parameter A

The parameter A was determined from equation (12).
The coordinates of the maximum point of the sample
are found using the initial sample of defects (Fig. 1).
Knowing these coordinates and using the parameter a
value from Table 2, one can solve nonlinear
equation (12) for A. As aresult, the sought-for parameter

Table 3. Results of the recovery of the parameter X

Defect size, mm

Fig. 2. Two variants of the determination of the
parameter a, with the frequency characteristics rounded
down and up

A is obtained. Table 3 presents the results of these
calculations.

2.2.3. Determination of the parameter r
Let us consider an example of calculating the sought-
for parameter » at the above initial parameter values
of the fifth series: A = 0.5 mm™!, » = 0.5 mm™!, and
a,=0.5 mm~ . The number of intervals of division of the

Initial value of A Confidence coefficient Recovered value A Error 5, %
r=0.1 0.199 0.5
r=0.2 r=0.5 0.232 16.0
r=1.0 0.235 12.5
r=0.1 0.529 5.8
A=0.5 r=0.5 0.594 18.8
r=1.0 0.574 14.8
r=0.1 0.969 6.4
A=1.0 r=0.5 1.084 8.4
r=1.0 1.075 7.5

Note. S)is the relative error of calculating the parameter A
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initial region was specified as n = 36. Figure 3 presents
the constructed frequency characteristic of detected
defects for this series. By setting different values
of the parameter » for the initial frequency distribution
of detected defects, the corresponding distributions
of real defects were obtained. Figure 4 shows one
of the obtained distributions of real defects. The real
distribution was processed by linear regression, while
the parameter A values were calculated at a given value
of r. Table 4 presents the results of such calculations
for the fifth series. Comparison of the obtained results
with the parameter value (0.954) recovered earlier for
this series gave a close value of 0.579; the parameter
r values was taken to be 0.27. Note that the initial value
of the parameter » was 0.5; i.e., the recovery error of this
parameter is 46%.

My
A1

©
N
T
1

o
o
T
1

Probability density

Il
0 5 10

Defect size, mm

Fig. 3. Defect size distributions of the frequency and
density of detected defects for the fifth series

I
o

Probability density
o o
N N

| L
0 5 10

Defect size, mm

Fig. 4. Defect size distributions of the frequency and
density of real defects for the fifth series

The black line in Fig. 4 was constructed
by formula (6) at the calculated parameters of the fifth
series (a, = 0.402 from Table 2, A = 0.594 from Table 3).
The red line was constructed by approximation using
formula (17) obtained from the linear regression of the
real distribution at » = 0.27:

PP (a) = exp(—0.226 — 0.593a). 17)

Similarly, the parameter » values were recovered
and the errors for the remaining calculation series
were calculated. Table 5 presents he results of the
calculations.

The features of the implementation of the developed
procedure were described in more detail in the
literature [26].

Table 4. Results of the recovery of the parameter A at various confidence coefficients

Degree of approximation
of recovered parameter A
. Recovered parameter r, Recovered parameter A, e e vl oy =SOSR,
No. of series 21 1 _
mm mm Ay —A
A =|-2
7“0
1 0.25 0.601 0.012
2 0.26 0.595 1.7-1073
3 0.27 0.593 1.684 - 1073
4 0.28 0.588 0.010
5 0.29 0.585 0.015
6 0.30 0.579 0.025
7 0.33 0.568 0.044
8 0.35 0.560 0.057
9 0.4 0.541 0.089
10 0.5 0.502 0.155
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Table 5. Results of the recovery of the confidence coefficient

Initial value of parameter A Confidence coefficient Parameter Error o7, %
r=0.1 0.095 5.0
A=0.2 r=0.5 0.4 20.0
r=1.0 0.9 10.0
r=0.1 0.05 50.0
A=0.5 r=0.5 0.3 40.0
r=1.0 0.7 30.0
r=0.1 0.08 20.0
A=1.0 r=0.5 0.55 10.0
r=1.0 0.80 20.0

3. ANALYSIS OF THE OBTAINED RESULTS

Comparison of the obtained modeling results and
the given initial values of the parameters suggests the
following conclusions.

When recovering the parameter a, the error was
maximum in the series of calculations with the initial
value A = 0.2 (the maximum error 6a, was 62.2% at
r = 0.1). With increasing parameter » from 0.5 to 1.0,
the error decreased from 39.4 to 35.8%. With increasing
parameter A from 0.5 to 1.0, the error da also decreased:
the minimum value at A = 0.5 was 15.2% at » = 1.0; the
minimum value at A = 1.0 was 6.4% at »=0.1. The error
range was 6.4-62.2%.

When recovering the parameter A, the error in all
the series of calculations, which did not exceed 18.8%,
ranged from 0.5 to 18.8%.

When recovering the parameter r, the maximum
error was 50% at the initial parameter values A = 0.5 and
r = 0.1, while the minimum error was 5% at the initial
parameter values A = 0.2 and » = 0.1. The error range
was 5-50%.

The obtained results of numerical modeling showed
the fundamental possibility of using the developed
procedure to determine both the probability-of-detection
curve and the probability distribution of actual defects
from the monitoring results.

4. CONCLUSIONS

In this work, the following features of the proposed
procedure were identified:

1) The recovery of the probability distribution of real
defects is based on statistical processing of only
the fraction of the experimental values of the initial
sample that determine its extreme value.

2) The obtained extreme value of the initial sample can
be used to directly determine the parameter A of the
real defect distribution by solving a nonlinear
equation.

3) The recovery of the confidence curve (determination
of the parameter r) uses the entire initial sample
to solve the inverse problem, which belongs to the
class of problems of interpretation of observational
or diagnostic data [16—18].

The developed procedure makes it possible
to use metal monitoring data both for analyzing
the current state of equipment and piping, as well
as for predicting their future behavior with greater
confidence than currently used methods. This
is primarily due to the possibility of using the
procedure to assess the reliability (determine the
probability-of-detection (PoD) curve) for individual
test teams directly from the results of experimental
tests. An individual assessment of the efficiency of the
monitoring carried out by the laboratory also allows
the identification of bad and good test teams, whereas
the averaging of the results when constructing the PoD
curve excludes this possibility.

However, it should be noted that the developed
methodology only supplements currently existing
methods of assessment tests, but does not replace
them.

An important application of the developed
procedure is to analyze large data arrays obtained
by metal monitoring in power plants. In this case,
groups of defects can be formed depending on various
factors, including types of structural elements,
operating conditions, materials used (stainless steel,
black steel, composite welded joints), monitoring
systems, as well as the quality of work performed
by different test teams.
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