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Abstract

Objectives. Methods for spline approximation of a sequence of points in a plane are increasingly used in various
disciplines. A spline is defined as a single-valued function consisting of a known number of repeating elements, of
which the mostwidely used are polynomials. When designing the routes of linear structures, itis necessary to consider
a problem with an unknown number of elements. An algorithm implemented for solving this problem when designing
a longitudinal profile was published earlier. Here, since the spline elements comprise circular arcs conjugated by
line segments, the spline is a single-valued function. However, when designing a route plan, the spline is generally a
multivalued function. Therefore, the previously developed algorithm is unsuitable for solving this problem, even if the
same spline elements are used. The aim of this work is to generalize the obtained results to the case of approximation
of multivalued functions while considering various features involved in designing the routes of linear structures. The
first stage of this work consisted in determining the number of elements of the approximating spline using dynamic
programming. In the present paper, the next stage of solving this problem is carried out.

Methods. The spline parameters were optimized using a new mathematical model in the form of a modified Lagrange
function and a special nonlinear programming algorithm. In this case, it is possible to analytically calculate the
derivatives of the objective function with respect to the spline parameters in the absence of its analytical expression.
Results. A mathematical model and algorithm were developed to optimize the parameters of a spline as a multi-
valued function consisting of circular arcs conjugated by line segments. The initial approximation is the spline
obtained at the first stage.

Conclusions. The previously proposed two-stage spline approximation scheme for an unknown number of spline
elements is also suitable for approximating multivalued functions given by a sequence of points in a plane, in
particular, for designing a plan of routes for linear structures.
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Peslome

Llenu. MeTozbl crnnaH-annpokcuMaLmMm nocnefoBaTenbHOCT TOYEK Ha NMIOCKOCTM NOJyYaloT Bce 6onee Lunpokoe
NpPUMEHEHNE B pa3nnyHbix obnactsx. CnnanH paccMmaTprBaeTcs Kak OAHO3Ha4YHasa QYHKLMS C USBECTHBLIM YUCIOM
NOBTOPSIOLLMXCS 9NEMEHTOB. Hanbonee WMPOKOE NPUMEHEHWE MONYYUIN NMONMHOMMANbHbBIE ChaiHbl. MNpume-
HUTENIbHO K MPOEKTMPOBAHMUIO TPACC JIMHENHBIX COOPYXEHUN NPUXOOUTCS pacCcMaTpuBaTh 3a4a4y C HEM3BECTHbLIM
4YMCNOM 9/IEMEHTOB. AITOPUTM PELLEHNS 334241 MPUMEHNUTENBHO K NMPOEKTUPOBAHWNIO MPOAOSILHOro Npodwuns pea-
NM30BaH 1 onybnvkoBaH paHee. B aToi 3apade anemeHTaMuy cnianHa SBAsioTCS Ayrv OKPY>KHOCTEN, conpsraemMble
oTpes3kamu NpsiMbIX, W CrianH NpeacTasaseT cobom oAHO3HaYHY0 GyHKUM0. OLHAKO NPy NPOEKTUPOBAHUN MiaHa
Tpacchl B 00LEeM cllydae CrnialiH SBASeTCS MHOMrO3Ha4YHoOM dyHkumen. MoaTtoMy paspaboTaHHbI paHee anroputMm
He NPUrofEH NS peLLEeHNs 3TON 3a4a4K, AaXe B C/ly4Yae UCMNOJIb30BaHUSA TEX XE 3NIEMEHTOB cnnaiHa. Llens HacTos-
e ctaTbl — 0606LLEHME MOMYYEHHbBIX PE3YNILTATOB HA CllyyYai annpPOKCUMaLLMM MHOTO3HAYHbIX (PYHKLMI C yHETOM
0COBEHHOCTEN NPOEKTUPOBAHUS TPACC NIMHENHbIX COOPYXeHuii. Ha nepBom atane paboTbl Ob110 ONpeaeneHo Y1c-
J10 3/1IEMEHTOB annpoKCUMUMPYIOLLLETrO CriaiHa C MOMOLLLbIO AUHAMUYECKOro NPorpaMMmpoBaHns. B ctaTbe paccma-
TPMBAETCH CNeayloLmni aTan peLleHns 3agaqun.

MeToabl. Ins onTMMmn3auunmy napameTpoB crfaHa NCnonb3yeTcst HoBasi MaTtemaTmnyeckas Moaenb B BUAE MOAM-
durumpoBaHHoM GyHKUMKM JTarpaHxa 1 cneumnanbHblii anroputM HEAMHENHOrO NporpamMmmmpoBanus. Npu aTom yoa-
€TCS BblYMCNSATb aHAIMTUYECKN MPOM3BOAHbIE LIeneBo GyHKLMKW Mo napamMeTpam crnniaiHa npu oTCyTCTBUM €€ aHa-
JIMTUYECKOTO BbIPAXEHWS YePEe3 3TV NapaMeTpbl.

PeaynbTatbl. PaspaboTaHbl mMaremaTudeckas MOAENb W anroputM ONTUMM3auun MNapamMeTpoB  CcrulaiiHa
(kaKk MHOrO3Ha4yHOM MYHKLMN), COCTOSILLErO U3 AYr OKPY>KHOCTEN, conpsiraemMblx OTpe3kamMu nNpsiMblX. HayanbHbIM
NPUOANXKXEHNEM SIBNSETCS CMIalH, MOMYYEHHbI HA NEPBOM 3Tane.

BbiBoAbl. [IByxaTanHas cxema crnianH-annpokcumMar M npu HEM3BECTHOM YKCie 3NIEMEHTOB CrnialriHa, Npeaso-
XEHHas paHee, NPUrogHa 1 Ans annpokKCMMaLMm MHOTO3HaYHbIX GYHKLUMIA, 3a1aHHbBIX MOCEA0BaTENIbHOCTbLIO TOYEK
Ha NJI0CKOCTW, B YACTHOCTY As NPOEKTUPOBAHNS NJ1aHa TPACC JIMHENHBIX COOPY>XEHNIA.

KnioueBble cnoBa: Tpacca, niaaH v npoaosfibHbINM NPoduib, CnanH, HEJIMHENHOE NPOrpaMMuUpoBaHmne, Lienesas
bYHKUMS, OrpaHnyeHns

e Moctynuna: 02.03.2022 ¢ fJopa6oTtaHa: 01.06.2022 ¢ MpuHaTa k ony6aukoBaHuio: 26.01.2023

Ana uutupoBanusa: Kapnos [.A., CtpydeHkoB B./. OnTumusaumsi napameTpoB chjarHa npu anmnpokcumaumm
MHOr03HauHbIX PyHKUMM. Russ. Technol. J. 2023;11(2):72-83. https://doi.org/10.32362/2500-316X-2023-11-2-72-83

Mpo3payHocTb GUHAHCOBOW AEeATENIbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOW 3aMHTEPECOBAHHOCTN B NPEACTABNEH-
HbIX MaTepuanax uam meTogax.

ABTOPbI 3a5BASIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.
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INTRODUCTION

The previously proposed [1] method for
approximating multivalued functions defined discretely
by a special type of spline uses a two-stage scheme for
solving the problem. At the first stage, the number of
elements of the spline along with a calculation of the
approximate spline parameter values is determined using
dynamic programming method. At the second stage, the
parameters are optimized by nonlinear programming
using the spline obtained at the first stage as an initial
approximation. The first stage was performed in our
previous work [2]. The present article, which is a
continuation of that work, considers the second stage.

A spline represents a chain of repeating “circular arc +
+ line segment” elements. At this stage, the starting point,
both the direction of the tangent at this point, as well
as the lengths of all the arcs and their conjugating line
segments, are known. Despite the fact that the desired
spline is a multivalued function, this allows continuous
optimization methods to be applied—in particular,
methods of nonlinear programming of the gradient type.

Optimization of the parameters of the spline
obtained at the first stage is necessary not only due to
the insufficient accuracy of the solution of the problem
at the first stage, which is due to the discreteness of the
search, but also because of the impossibility of strictly
imposing the constraints on fixed points at the first stage,
i.e., the starting points, which are not displaced during
the approximation.

As is common practice in dynamic programming,
accuracy can be improved by repeating the calculations at
smaller search steps. In this problem, this is particularly
important because, at a known number of elements,
the amount of computation is sharply reduced, which
enables one to solve the problem at reduced discretes
with an increase in their number in a reasonable time on
public computers.

The problem is considered as applied to designing
a plan for the routes of linear structures. For some of
them, e.g., for a trench for laying pipelines of various
purposes, the spline of the considered type is final.
When designing horizontal road alignment, straight
lines and circles should be conjugated by clothoids to
ensure continuity not only of the tangent, but also of the
curvature. It was shown [2] that, if the clothoids are short,
their addition to the resulting spline with circles leads
to insignificant displacements. However, for the general
case, it is necessary to implement a step-by-step spline
approximation scheme with repeating elements “straight
line + clothoid + circle + clothoid.” The solution of this
problem will be the subject of further research.

As shown previously [2], this approach differs
significantly from the method of selecting elements in
interactive mode as accepted in design practice, from

various semiautomatic methods for searching for curve
boundaries based on curvature graphs and angular
diagrams, as well as from a novel heuristic method
for searching curve boundaries [3] with subsequent
application of genetic algorithms [4—12]. In contrast, the
use of adequate mathematical models and mathematically
correct algorithms seems to be more promising.

1. PROBLEM STATEMENT AND ITS
FORMALIZATION

The problem is to find a spline of a given type that
satisfies all the constraints and best approximates a given
sequence of points in a plane [2, Fig. 1].

The starting point A and the direction of the tangent
to the desired spline at this point are set and remain
unchanged during the search for the spline. The quality
of the approximation is estimated by the sum of the
squared deviations /; of the given points of the spline.

It is necessary to find

min F(h) =" 'h?. (1)

Here, h(h,, h,, ..., h,) is the vector of unknowns,
while 7 is their number. Instead of a simple sum, a
weighted sum of squares can be given.

Deviations %, are calculated differently in design
practice in different countries and in corresponding
studies carried out by various researchers. Typically,
the deviation of a point from a spline is calculated along
the normal to the spline [2]. In Russia, however, it is
customary to calculate the deviation along the normal
to the original polyline [2], i.e., toward the center of the
circle connecting three adjacent points. If three points lie
on the same straight line, then the deviation is calculated
along the normal to this straight line.

Since the noted difference in calculation methods
does not affect the search for the number of spline
elements, the simplest method was adopted at the first
stage, i.e., calculation along the normal to the desired
spline. At the second stage, when optimizing the spline
parameters, we use precomputed normals to the original
polyline, i.e., fixed directions that do not need to be
recalculated in an iterative process. These are the same
normals that contain the points that determine the “states
of the system” in dynamic programming [2, Fig. 2].

The starting point of the first curve may not coincide
with the starting point A; therefore, the length L, of the
initial line is considered unknown, and, unlike the first
stage, the spline elements are considered in the order
“straight line + circle”. If the number of such repeating
elements is m, then the system of constraints has the
form

L,ljl'ne > Jline )

min’
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L;urve > L%lirl;/e’ (3)
Rosin <| R < Ry = Lm. 4)

Here, as at the first stage [2], Llji.ne and Li.ur"e are the
lengths of the straight line and the curve in the jth
element, respectively, while R ! are the radii of the circles,
whose signs are known. This makes it possible to avoid
taking the absolute value in constraint (4) and obtain a
linear constraint on each R/. in the form of a two-sided
inequality:

Rmin = Rj = Rmax’ iij - 0’ (5)
"Ry SR SR TR, <0 (6)

The end point of the spline is fixed, but its length
is unlimited. If the final direction is also fixed, then
constraints are imposed not only on 4,, but also on
h,_,. In addition, constraints can also be imposed on the
displacements of individual points in the form of both
inequalities, including double ones,

h. <h <h (7)

min — "“m — ""max’

and equalities,
h,, = h (8)

These are the same fixed points whose presence
cannot be taken into account in dynamic programming.

As a result, we obtain a nonlinear programming
problem with the objective function F(h) under
constraints (2), (3), and (5)—(8), some of which may be
absent.

2. FEATURES OF THE PROBLEM

Constraints (2), (3), (5), and (6) are not expressed
in terms of unknown displacements 4, but if all
the lengths and radii are known, then all the 4. can
be calculated. Further, all the lengths and radii are
considered as the main variables, and all the 4, are
regarded as intermediate variables, which depend on the
main ones. Analytical expressions of these dependences
are unknown and will not be determined. There is also
no analytical expression of the objective function F(h)
in terms of the main variables. As a result, we obtain a
nonlinear programming problem under a simple system
of constraints (2), (3) and (5), (6) on the main variables,
under several constraints (7), (8) on intermediate
variables, and with the objective function expressed in
terms of intermediate variables.

Nonlinear programming algorithms, with all their
diversity! [13-26], reduce to an iterative process with
the following steps:

1) construct an admissible initial approximation;

2) determine the direction of descent from the next
iteration point, in particular, from the starting point;

3) check the conditions for terminating the account. If
they are not met, then go to the next item, otherwise,
end the calculations;

4) find the step in the found direction from the condition
that the constraints are satisfied and the minimum
point in the direction is reached;

5) go to a new point, and then go to step 2.

In order to solve our problem, we need to repeatedly
calculate intermediate variables (normal displacements)
as the main variables are changed. To do this, the
intersection points of two straight lines and a straight
line with a circle have to be found (Fig. 1).

The shifts of the initial points to the design position
are considered positive if they are directed along with
the outward normal.

Fig. 1. Calculation of normal displacements

Let x, and y, be the coordinates of the beginning
of the arc of the circle (point A in Fig. 1) and a is the
angle of the tangent at this point with the OX axis. Then
the coordinates of the center of the circle are written as
X, =x, —Rsinaand y, =y, + Rcosa. Here and henceforth,
the radius is positive when moving along the curve
counterclockwise. The point C of intersection with the
normal can be both outside and inside the arc of the circle.
Without loss of generality, for the point of intersection of
the normal with the circle, one can write x = x; + COsY;
and y. = vt h siny.. Here and henceforth, y f is the angle
of the jth normal with the OX axis.

From the condition that the point C belongs to the
circle, one can obtain a quadratic equation for hj, the
solution of which gives a formula for hj:

hj =(xy 7Rsinocij)cosyj +(p +Rcoscxfyj)sinyj +

©)

i\/(R2 —[(xp —Rsina—xj)sinyj —(¥p +Rcosot—yj)cosyj]2).

! Panteleev A.V., Letova T.A. Optimization methods:
A handbook. Moscow: Logos; 2011. 424 p. ISBN 978-5-98704-
540-4 (in Russ.).
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To select a point on the circle that is closest to the
analyzed point, a minus sign is placed in front of the root
if the expression in front of the root in formula (9) is
positive, and vice versa. The deviations /, are calculated
sequentially from the starting point to the end point.
In this case, for angles of rotation of the arcs of circles
that are greater than m, there are features of determining
whether or not the point of intersection of the circle and
the normal (point C in Fig. 1) falls inside the arc. For
example, in the general case, it cannot be assumed that,
if chord AC < AD (Fig. 1), then point C will fall inside
the arc AD (Fig. 2).

BOG ¥)

Fig. 2. Determination of whether or not the normal
and the arc intersect

In the example in Fig. 2, AC > AD, but AC <AD,,
and the rule of determining the position of a point on
an arc by comparing the lengths of the chords does not
work.

The position of the point C with respect to the chord
AD (Fig. 1) is determined by the sign of d.

d= (yc _yA)(x[) _xA) - (xc _xA)(yD _yA)-

If d > 0, then the point C is to the left of the direction
of AD, while if d <0, it is to the right.

This can be easily verified by passing to a coordinate
system centered at the point A and directing the OX axis
along AD. Hence, we obtain the rule: if Rd > 0, then the
point C is outside the arc AD; otherwise, it is inside.

Another feature of the problem being solved is
that the admissible domain is unlimited due to the one-
sidedness of because inequalities (2) and (3). However,
this circumstance is not significant in this case because
the search for a step in the direction at each iteration can
be limited to a maximum increase of 1 m in the radii and
in the lengths of line segments and circular arcs.

A more important complicating feature is the
already noted absence of an analytical expression for
the objective function in terms of the main variables.
On the other hand, a significant simplification consists
in an extremely simple form of constraints on the main
variables, owing to which the advisability of changing

the set of active constraints on the main variables is easy
to check by considering the sign of the corresponding
components of the gradient at each iteration when
searching for the direction of descent.

3. CALCULATION OF THE DERIVATIVES
OF THE OBJECTIVE FUNCTION WITH RESPECT
TO THE MAIN VARIABLES

Here, we are talking about an attempt to analytically
calculate the gradient of the objective function with
respect to the main variables without having its analytical
expression in terms of these variables by recalculating
the derivatives. It turned out that, in the context of our
problem, such a recalculation is quite possible.

Let us assume that the set of the main variables
forms vector x. Then the formula for recalculating the
derivatives has the form

or

= _._7.:13 s 10
o =gy o =b (10)

oF
where e =2h ;- on the strength of expression (1).

This comes down to a calculation of the derivatives
of the displacements with respect to the normals in terms
of the main variables. Let us show how this can be done
in our case. To do this while omitting the subscripts and
keeping the notation R for the radius of an arbitrary
circular arc, we denote the length of an arbitrary line
segment by / and the length of the circular arc by L.

Let us start with the length of the line segment and
assign it increment 6/ without changing all other lengths

Oh;
and radii. Obviously, the desired —ZL =0 forall normals

that are closer to the start of the spline than the end of the
line segment being varied.

If we find the displacement 6/, of the point of
intersection of the jth normal with the spline along this
normal caused by change &/ at unchanged values of
all the other variables, then, by passing to the limit in
0hj/dl as 6 — 0, we obtain the desired derivative without
having an analytical expression for the function /4 (/).

An increase in the length of the line segment by &/
at unchanged values of all the other variables results in
a shift of the entire remaining part of the spline in the
direction of this straight line by &/. This is the simplest
variation of the spline. If the point of intersection of the
spline and the jth normal lies on the straight line (Fig. 3),
then

0h;  sin(o.—p)

ol sin(y; —P)’ (b
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where B is the angle of this line (spline element AB in
Fig. 3) with the OX axis; a is the angle of the line being
varied with the OX axis (establishing the direction of
the displacement); V; is the angle of the normal (C,C, in
Fig. 3) with the OX axis.

In Fig. 3, point C is the initial position of the point
of intersection of the normal and the spline, which
corresponds to the intermediate variable /. When
shifting in the direction determined by the angle o by
0/, AB transforms into A B, point C transforms into C,,
while C,; becomes the point of intersection of the normal
with the spline. The displacement hj gets an increment
of h = CC,.

0 > X

Fig. 3. Calculation of partial derivatives with changing
length of the line segment

When applied to the triangle C,CC,, formula
(11) follows from the law of sines. In this formula,
sin(yj — PB) # 0 because the normal to the initial route at
the point C and the normal to the spline, i.e., to line AB
are close to each other; i.e., Y - B =m/2. At a = B, the
direction of the displacement coincides with the direction

of the straight line; therefore, Shj = (. Formula (11) is
also valid at o > m.

If the point of intersection of the spline and
the normal lies not in a straight line, but a circular
arc, then P is the angle between the OX axis and
the tangent to the circular arc at the point of its
intersection with the normal, and formula (11)
remains unchanged.

Let us consider the effect of the increment of the
length of the circular arc on 6L at unchanged values of
all the other variables. In this case, the spline element
from the beginning to L inclusive is not changed; in the
remaining part, there is a shift by oL in the direction
making angle a with the OX axis and a rotation by angle
da of the entire next section of the route plan. Here, o
is the angle of the tangent at the end of the circular arc
with the OX axis, while da is its increment when the arc
length is changed by 6L. The center of rotation is at the
end of the arc being varied.

The effect of the shift is taken into account by
formula (11).

Let us now consider the rotation of the element of
the route plan by the angle da under the action of the
elongation S8L. Since 6o = OL/R, it is sufficient to

Oh ;
calculate —.
fandP’

(03

oh

To calculate a—J , it is necessary to calculate the
o

radius of rotation S from the coordinates of the end of
the arc (center of rotation: point A in Fig. 4) and the
point of intersection of the spline element (the line
segment or the tangent to the circle) with the normal
(point C in Fig. 4).

X
a2
- Oy 2 D, CCy=6:h;
"1 CiCy=6,h;
4D 6h,=8,h;+8,h;
A
CotxP, ¥)
(o) X

Fig. 4. Calculation of partial derivatives by rotation

The position of the straight line CD after rotation
can be obtained in two ways. First, by rotating AC by the
angle da, point C, is found. Then, by rotating AD by the
angle da, point D, is determined. The intersection of the
line C;D, with the normal gives the sought-for 6/ = CC,.
However, CC, cannot be analytically expressed in terms
of the known angles and coordinates.

One can make a parallel shift of CD in the direction
of CC; (to obtain point C, at the intersection with the
normal) followed by a rotation with the center at C, by
the angle da. Thereby, the same points D, and then C,
are obtained.

Let us represent increment oA, as the sum
Shj = 51hj + Szhj. The increment 61hj = CC, arises by
rotating point C about point A (which transforms to
point C,) followed by a parallel displacement in the
direction of CC;. Since we want to calculate partial
derivatives, the lengths of the chord, arc and tangent are
of the same order at small angles of rotation; therefore,
we take CC; = S6a. Here, CC,, CC,, and C,C; are of
the order da, while the increment 82hj = C,C,, which is
caused by the rotation about the point C, at a first-order
radius by the angle da, has a higher order of smallness
than 51hj- Therefore, the point C, is not needed at all.

The increment § 4, is calculated from expression
(11) as above by taking into account the shift by Soa in
the direction along the normal to AC, which makes the
angle o + m/2 with the OX axis.
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According to formula (11),

>

Sdasin(n/2 + o —p)
sin(y ; )
where 3 is the angle of the displaced straight line CD
51hj _ Scos(a—P)
o sin(y; —P) '

Let x, and y, be the coordinates of the center of
rotation, while x and y. are the points of intersection
with the normal. Then the derivative can be expressed as

with the OX axis. Hence,

51hj B (xc —xp)c08PB+ (yc — yp)sinf
= : - (12)
da sin(y I B)

Here, as above, [ is the angle between the OX axis
and the tangent to the spline at the point of intersection
with the jth normal, and i is the angle of this normal
with the OX axis.

The expression Scos(o.—f) is
(xC —xA)cosB+(yC —y)sinf.

Taking into account tangential shift (11) and
rotation (12), which reduces to a shift by Séa for the
sought-for derivative of the displacement #; along the
length of the circular arc L{"™V¢(here, o =3L{""™ / R,
where R, is the radius of the circular curve being varied),
we obtain the formula

replaced by

oh i
aL(i:urve

sin(a.—B) + (x¢ _XA)COSﬁ;‘ (¥ —yu)sinP
- : . 13
sin(yj -B) 13)

Formulas (11)—(13) can also be applied if the
normal intersects the circular arc rather than the
straight line. In this case, B is the angle between the
OX axis and the tangent to the circle at the point of
intersection.

Let us turn to the calculation of the partial derivatives
of the intermediate variables with respect to the radii.

In Fig. 5, AC is the initial position of the arc, while
AC, is the position of this arc at a changed value of
the radius and constant values of the starting point
A(x,, y4), the angle a of the tangent with the OX axis,
and the length L of the entire arc AC. Instead of point
B in the normal, we obtain point B,. Although the
displacement along the normal is 0k, = BB,, the new
position of the point B is not B, (Figs. 3 and 5) because
the point B leaves the normal.

Knowing the coordinates of the points A(x,, y,)
and B(xg, yp), the angles of the tangent at these points

with the OX axis (o and B, respectively), the length L of
the arc AB, and the angle y of the normal with the OX
axis, one can calculate the derivative of the displacement
along the normal 0/4/0R (the subscripts of the normal and
the curve are omitted because the point B is an arbitrary
point of an arbitrary arc):

Xg — X, = R(sinp — sina).

Here, x, is constant, and xp and B depend on R.
Hence, it follows that

0
ﬁ:sinﬁ—sinawLRcosB-@.
OR OR

L
Hereinafter, B—CX:E. L and o are fixed, while

B__L
OR  R?’
Y A

(0] > X

Fig. 5. Calculation of the derivatives of the displacements
inside the arc with changing radius

Finally, we obtain

%5 _ginp-sina-(B-ojcosp. (14

—= =sinfB —sina— (B — a)cosp.

R (14)
Similarly, we obtain

v _ .

a—R—cosa—cosB—(B—(x)smB. (15)

The increment SR of the radius gives the linear part
of the increment of the coordinates of the point B:

ox 0
Sy :8_11336R and Oyp :LI}:SR' (16)

0

The shift ok ’ along the normal is obtained as a result
of the shift of the tangent at point B along the OX axis
by 6xp and then along the OY axis by 6yy. In the former
case, the direction of the shift in formula (11) is given by
the angle a = 0, and in the latter case, a = 7/2.
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As a result, for points inside the curve, the linear
part of the normal displacement is represented by the
formula

Sh. = dyp cos P — dxy sin B
7o sin(y-p)

Using expressions (14)—(16), the derivative is
expressed as

Shj _ (cosa.—cosP—(B—a)sinP)cosP
R sin(y —B) )
_(sinB-sino—(B—a)cosP)sinp _
sin(y — )

_cos(B-a)—1
sin(y —p)

(17

Application of formulas (14) and (15) to the end point
of the curve C gives the linear part of the increments of
its coordinates:

dxe = [sinB —sina — %cos B} OR,
L .
dyc = [cosoc —cosP— Esm B} OR.

Here and henceforth, o and B are the angles between
the OX axis and the tangents at the initial and final points
of the arc, respectively.

All the subsequent points of the spline are allocated
the same increments (shift in the same direction).
Therefore, for the linear part of the displacement along
the normal for the point of intersection with the spline,
we obtain

51hj _ e co.s By —dxc sin B, SR.
sin(y ; —B,)

(18)

Here and henceforth, B, is the angle of the straight
line or the tangent to the circle with the OX axis at the
point of intersection of the jth normal, and V; is the angle
of the normal with the OX axis.

Formula (18) after simplifications takes the form

_ cos(B, — ) —cos(B, =B + (B~ w)sin(B, =)
sin(y, —P,)

SR. (19)

This is only a consequence of the shift with changing
radius. It is also necessary to take into account the
rotation of the tangent at the end of the arc (point C in
Fig. 5) with changing radius; as a result, the rotation of
all the next points of the spline centered at the end of the

L
arc (point C in Fig. 5) by the angle d¢ = _FSR’ where

L is the length of the arc AC.

As the rotation is taken into account with changing
length of the curve (12), so the linear part 3,4, of the
displacement is taken into account by the shift by S&¢
along the normal to the straight line (or the tangent to
the circle) at the point D of intersection with the normal.
Here, S = CD is the radius of rotation.

According to (12), 62h] = S.cos((p B

o sin(y; —B,)
B, and y; are the angles between the OX axis and the
straight lline CD, the straight line (or the tangent), and
the intersected normal, respectively.

As a result, we obtain

. Here, o,

52hj _ (xp —xc)cosB; +(yp — yc)sinP,
8([) SlIl(’Yj _Bt)

and, then,

8,0, __(p = xg)cos, +Op _zyc)smﬁt L3R, (20)
sin(y ; ~B)R

Using expressions (19) and (20), the derivative of
the displacement along the normal with respect to the
radius is written as

ahj

OR
_ cos(B; —a)—cos(B; —P)+ (B—a)sin(B, —P)
B sin(y ; - By)
- (xp —xc)cosP, +(yp —yc)sinf, I
sin(y; — )R>

- @D

Formulas (13), (17), and (21) can be applied to any
normal as well as to all spline elements preceding it.
This means that it is possible to calculate the gradient
of objective function (1) without having its analytical
expression in terms of the main variables.

4. CONSTRUCTION AND USE
OF THE MODIFIED LAGRANGE FUNCTION

Let us consider the problem of imposing constraints
(7) and (8) on the intermediate variables.

Even though we do not have the expressions
for the are nonlinear constraints (7) and (8) on the
main variables, the penalty method can be used if
the derivatives of the intermediate variables can be
calculated with respect to the main variables [19, 24].
In this case, one can add a term, called a penalty
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function, to the objective function, with this penalty
function determining a penalty for violation of
constraints. In other words, instead of the original
objective function, a modified Lagrange function is
constructed, which takes into account both equality
and nonequality constraints.

There are several versions of this method, which
differ in the form of the penalty function and in methods
for changing its parameters [18, 19, 23, 24].

When solving practical problems, good results were
obtained using Powell’s method, in which the minimum
of the original objective function F(x) under constraints

cj(x) <0, j= 1,m, is searched for using the function
D(x,6,0) = F(x) +1/2z:n(5j(cj(x) +0,)2.

Here, x is the vector of unknowns, and F(x) is the
original objective function. In the context of the present
problem, the components of the vector x are the lengths
of the spline elements, while the radii (main variables)
and CI(X) are implicit functions of x; however, since their
dependence on the intermediate variables h is explicit
((7) and (8)), we can calculate their partial derivatives.
Constraints (7) and (8) can always be represented as
one-sided inequalities.

The setting by the user vectors ¢ and 6, which
have m components each (according to the number of
constraints), represent a set of parameters of the penalty
function, with two parameters per constraint. The plus
sign means that the sum includes only the terms for
which ¢(x) + Ol. > (. Here, 9/. > ( is the overconstraint in
the jth constraint; i.e., a penalty is imposed on not only
an actual violation at cj(x) >0, but also at cj(x) > —Q -

If there are equalities in the system of constraints,
then the terms corresponding to them are always present
in the sum. If ej =0 and 0; = k, (k, are set by the user),

Jj=Lm, the penalty function is simpler; however, its
second derivatives with respect to x; are discontinuous at
the boundary of the admissible domain. These
discontinuities increase with greater k,, which have to be
increased in each new iterative minimization cycle in
order to reduce the residuals of the constraints. It is a
different matter when o, are constant and only 6 ), are
varied. In this case, the surfaces of the discontinuities of
the second derivatives are far from the minimum points
determined when solving problems in each optimization
cycle [19].

The initial values of the parameters Gj >( and c;> 0
should be selected based on the meaning and importance
of the corresponding constraints and the residuals of the
constraints at the initial approximation point. In our case,
the solution was started with 6. = 0.1 and 6, =1 for all ;.

Then, after solving the minimum problem ®(x, o, 0)
under simple constraints (2), (3), (5), and (6) on the

main variables, constraints (7) and (8) were checked. If
there were violations, then the parameters ¢ and 6 were
changed according to the following rule: if there was an
overconstraint in the jth constraint, i.e., if cj(x) > — GJ.,
then the new value 91]. = 0; otherwise, 0!, = Gj + cj(x).
Such a substitution was carried out in all tI;e constraints.
To recalculate ¢, another rule was applied: if, as a result
of solving the problem, the residual of the jth constraint
decreased rapidly, then o, was not changed; however, if
the residual decreased slowly, then o, was increased. The
following constants were used: if the residual decreased
by a factor of less than 4, then the corresponding G; was
multiplied by 10, and 0 ); was divided by 2.

After the parameters were recalculated, the process
was repeated; i.e., the next outer iteration was done. The
calculation was terminated in the following cases:

1. A solution with acceptable residuals was obtained.
In this case, one could make one more outer iteration
for control to make sure that the solution remains
virtually unchanged.

2. After a specified limit of outer iterations was
exhausted, no solution was obtained. At the same
time, there was every reason to doubt the compatibility
of the system of constraints—and, consequently,
the existence of a solution to the original problem.
Such situations arose when specifying fixed points
through which it was impossible to pass at the given
minimum length values of elements and radii.

5. MAIN PROVISIONS OF THE METHOD
FOR SOLVING THE PROBLEM

The initial approximation of the sought-for spline,
which was obtained using dynamic programming, is used
to calculate the parameters of the spline optimization
problem. To do this, the following steps are performed:

1. Outer normals to the original polyline are constructed
successively at the given points, and their angles
with the OX axis are memorized.

2. The points of intersection of the normals with the
spline are determined and memorized. At large
angles of rotation, one normal can intersect the
spline at two points. In this case, the point closest to
the given point is selected.

3. The wvalues of all intermediate variables are
calculated.

4. At each point of intersection of the normals with
the spline element (straight line or circle), the angle
with the OX axis of the straight line or tangent to the
circle is calculated and memorized.

The results of the calculations are sufficient to
calculate the gradient of the modified Lagrange function.

Due to the simple form of the constraints on the
main variables, various gradient methods can be
used, including the simple coordinate-wise descent
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method [18, 19]. For example, when using the gradient
projection method, after setting the gradient components
corresponding to the variables that take limit values (the
so-called active set) to zero, the standard algorithm [19]
is applied. It has been experimentally established that
this method does not guarantee obtaining exact solutions
if penalty functions are used.

The application of optimally efficient second-order
methods [ 19] requires the inversion of the matrix of second
derivatives (Hessian matrix), which, in our case, cannot
be calculated. Therefore, we used the variable metric
method, namely, the so-called Davidon—Fletcher—Powell
(DFP) optimization. In this method, during the course
of the descent, increasingly accurate approximations of
the matrices H; to the inverse Hessian matrix G are
carried out using the gradients of the objective function
at already passed points of iteration [23].

Thus [23, 24], if x; be the iteration point, g, be
the gradient, p; be the direction of descent at the ith
iteration, z, = x;,, — X, andy, =g, , — g, then H, = E and
p; = —H,g,. Under no constraints, we have

H, =H, +z;z] /(Zi’yi) ~Hy,y[H,/M,y,.¥]). (22)

This formula is applicable to unconstrained
problems. However, in our case, constraints (2), (3),
(5), and (6) on the main variables remain. If the initial
approximation contains the limiting lengths or radii,
then the identity matrix E should not be used to begin
with. Instead, a projection matrix should be used, which
in our cause is simply constructed as follows: in E, 1 is
replaced by 0 in the rows the numbers of which coincide
with the numbers of variables that have taken limit
values (active set).

When changing the set of active constraints, the
matrix H, should be modified [24] before calculating the
direction of descent. This happens both when a constraint
is included in the active set and when a constraint is
excluded from the active set. The simple form of the
constraints allowed the corresponding formulas [24]
to be significantly simplified using the noted simple
method of constructing a projection matrix.

Since DFP optimization works well (in the sense of
approaching the inverse Hessian matrix) for points close
to the extremum [19, 23, 24], a combination of methods
was used: the simple gradient projection method
(ensures a descent into the “ravine”) with subsequent
DFP optimization.

6. MAIN RESULTS AND OBJECTIVES
OF FURTHER RESEARCH

The main result of this work is a solution to the
problem of optimizing a sequence of points in a plane
by a spline that is not a single-valued function. This

solution is obtained not by heuristic techniques, but by
mathematically correct methods (dynamic and nonlinear
programming). However, due to the variety of nonlinear
programming methods used, we cannot claim that the
method used in the calculations is the most efficient. Of
particular interest is the use of ravine algorithms [23].
It was stated [23] that the ravine conjugate gradient
method, in which p, = ~g,, p;;; = —8,, * bp,, and
b,= (g, — g5 &)Ip; &, has advantages for inaccurate
one-dimensional minimization and for ravine bends.

In the context of our problem, instead of the gradient,
its projection should be used; here, when the active set
is changed, one should start with updating, i.e., from the
step along the antigradient projection.

There are more complex algorithms than DFP, e.g.,
the Broyden—Fletcher—Goldfarb—Shanno method [23].

In this method, the term v, v} is added to formula (22)
for calculating the matrix H, where the vector
A (yi, Hi)l/z[zi/(zp Y,») - Hl-yl-/(yi, H,»yi)]-

The efficiency of using more complex methods can
only be determined experimentally.

It should be noted that gradient methods give a local
minimum of the objective function. Therefore, to obtain
an initial approximation in our problem, it is especially
important to use dynamic programming (possibly
with repetition of calculations with decreasing search
increments), since dynamic programming gives a global
minimum, excluding the discreteness effect.

To combat local minima, descents from different
points were used. Following completion of the
optimization process, the obtained solution is checked.
The process starts anew with the obtained solution
used as the initial approximation. All the coefficients
of the modified Lagrange function take initial values.
At the first iterations, the sum of their squares takes a
smaller value due to the violation of constraints on the
intermediate variables. However, the coefficients of the
modified Lagrange function then change, resulting in the
disappearance of the constraint violations. As a result, in
experimental calculations, virtually the same solution was
obtained. While this is not a guarantee of reaching the
global minimum, it offers a real opportunity to recede from
a local minimum point. To select the most efficient method
of nonlinear programming for solving the problem under
consideration, additional experimental studies are needed.

The main objective of further research is to generalize
the results obtained for a spline with circles to the more
complex problem of approximation by a spline with
clothoids. First of all, it is necessary to obtain formulas
for calculating derivatives in the absence of an analytical
expression of the objective function in terms of the
parameters of the clothoid in addition to the formulas for
lines and arcs of circles that were presented in this article.
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