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Abstract
Objectives. Methods for spline approximation of a sequence of points in a plane are increasingly used in various 
disciplines. A spline is defined as a single-valued function consisting of a known number of repeating elements, of 
which the most widely used are polynomials. When designing the routes of linear structures, it is necessary to consider 
a problem with an unknown number of elements. An algorithm implemented for solving this problem when designing 
a longitudinal profile was published earlier. Here, since the spline elements comprise circular arcs conjugated by 
line segments, the spline is a single-valued function. However, when designing a route plan, the spline is generally a 
multivalued function. Therefore, the previously developed algorithm is unsuitable for solving this problem, even if the 
same spline elements are used. The aim of this work is to generalize the obtained results to the case of approximation 
of multivalued functions while considering various features involved in designing the routes of linear structures. The 
first stage of this work consisted in determining the number of elements of the approximating spline using dynamic 
programming. In the present paper, the next stage of solving this problem is carried out.
Methods. The spline parameters were optimized using a new mathematical model in the form of a modified Lagrange 
function and a special nonlinear programming algorithm. In this case, it is possible to analytically calculate the 
derivatives of the objective function with respect to the spline parameters in the absence of its analytical expression.
Results. A mathematical model and algorithm were developed to optimize the parameters of a spline as a multi-
valued function consisting of circular arcs conjugated by line segments. The initial approximation is the spline 
obtained at the first stage.
Conclusions. The previously proposed two-stage spline approximation scheme for an unknown number of spline 
elements is also suitable for approximating multivalued functions given by a sequence of points in a plane, in 
particular, for designing a plan of routes for linear structures.
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НАУЧНАЯ СТАТЬЯ

Оптимизация параметров сплайна 
при аппроксимации многозначных функций

Д.А. Карпов,  
В.И. Струченков @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: str1942@mail.ru

Резюме 
Цели. Методы сплайн-аппроксимации последовательности точек на плоскости получают все более широкое 
применение в различных областях. Сплайн рассматривается как однозначная функция с известным числом 
повторяющихся элементов. Наиболее широкое применение получили полиномиальные сплайны. Приме-
нительно к проектированию трасс линейных сооружений приходится рассматривать задачу с неизвестным 
числом элементов. Алгоритм решения задачи применительно к проектированию продольного профиля реа-
лизован и опубликован ранее. В этой задаче элементами сплайна являются дуги окружностей, сопрягаемые 
отрезками прямых, и сплайн представляет собой однозначную функцию. Однако при проектировании плана 
трассы в общем случае сплайн является многозначной функцией. Поэтому разработанный ранее алгоритм 
не пригоден для решения этой задачи, даже в случае использования тех же элементов сплайна. Цель настоя-
щей статьи – обобщение полученных результатов на случай аппроксимации многозначных функций с учетом 
особенностей проектирования трасс линейных сооружений. На первом этапе работы было определено чис-
ло элементов аппроксимирующего сплайна с помощью динамического программирования. В статье рассма-
тривается следующий этап решения задачи.
Методы. Для оптимизации параметров сплайна используется новая математическая модель в виде моди-
фицированной функции Лагранжа и специальный алгоритм нелинейного программирования. При этом уда-
ется вычислять аналитически производные целевой функции по параметрам сплайна при отсутствии ее ана-
литического выражения через эти параметры.
Результаты. Разработаны математическая модель и алгоритм оптимизации параметров сплайна  
(как многозначной функции), состоящего из дуг окружностей, сопрягаемых отрезками прямых. Начальным 
приближением является сплайн, полученный на первом этапе.
Выводы. Двухэтапная схема сплайн-аппроксимации при неизвестном числе элементов сплайна, предло-
женная ранее, пригодна и для аппроксимации многозначных функций, заданных последовательностью точек 
на плоскости, в частности для проектирования плана трасс линейных сооружений.

Ключевые слова: трасса, план и продольный профиль, сплайн, нелинейное программирование, целевая 
функция, ограничения
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INTRODUCTION

The previously proposed [1] method for 
approximating multivalued functions defined discretely 
by a special type of spline uses a two-stage scheme for 
solving the problem. At the first stage, the number of 
elements of the spline along with a calculation of the 
approximate spline parameter values is determined using 
dynamic programming method. At the second stage, the 
parameters are optimized by nonlinear programming 
using the spline obtained at the first stage as an initial 
approximation. The first stage was performed in our 
previous work [2]. The present article, which is a 
continuation of that work, considers the second stage.

A spline represents a chain of repeating “circular arc + 
+ line segment” elements. At this stage, the starting point, 
both the direction of the tangent at this point, as well 
as the lengths of all the arcs and their conjugating line 
segments, are known. Despite the fact that the desired 
spline is a multivalued function, this allows continuous 
optimization methods to be applied—in particular, 
methods of nonlinear programming of the gradient type.

Optimization of the parameters of the spline 
obtained at the first stage is necessary not only due to 
the insufficient accuracy of the solution of the problem 
at the first stage, which is due to the discreteness of the 
search, but also because of the impossibility of strictly 
imposing the constraints on fixed points at the first stage, 
i.e., the starting points, which are not displaced during 
the approximation.

As is common practice in dynamic programming, 
accuracy can be improved by repeating the calculations at 
smaller search steps. In this problem, this is particularly 
important because, at a known number of elements, 
the amount of computation is sharply reduced, which 
enables one to solve the problem at reduced discretes 
with an increase in their number in a reasonable time on 
public computers.

The problem is considered as applied to designing 
a plan for the routes of linear structures. For some of 
them, e.g., for a trench for laying pipelines of various 
purposes, the spline of the considered type is final. 
When designing horizontal road alignment, straight 
lines and circles should be conjugated by clothoids to 
ensure continuity not only of the tangent, but also of the 
curvature. It was shown [2] that, if the clothoids are short, 
their addition to the resulting spline with circles leads 
to insignificant displacements. However, for the general 
case, it is necessary to implement a step-by-step spline 
approximation scheme with repeating elements “straight 
line + clothoid + circle + clothoid.” The solution of this 
problem will be the subject of further research.

As shown previously [2], this approach differs 
significantly from the method of selecting elements in 
interactive mode as accepted in design practice, from 

various semiautomatic methods for searching for curve 
boundaries based on curvature graphs and angular 
diagrams, as well as from a novel heuristic method 
for searching curve boundaries [3] with subsequent 
application of genetic algorithms [4–12]. In contrast, the 
use of adequate mathematical models and mathematically 
correct algorithms seems to be more promising.

1. PROBLEM STATEMENT AND ITS 
FORMALIZATION

The problem is to find a spline of a given type that 
satisfies all the constraints and best approximates a given 
sequence of points in a plane [2, Fig. 1].

The starting point A and the direction of the tangent 
to the desired spline at this point are set and remain 
unchanged during the search for the spline. The quality 
of the approximation is estimated by the sum of the 
squared deviations hi of the given points of the spline.

It is necessary to find

 min ( ) .F hj
nh �� 2
1

  (1)

Here, h(h1, h2, …, hn) is the vector of unknowns, 
while n is their number. Instead of a simple sum, a 
weighted sum of squares can be given.

Deviations hj are calculated differently in design 
practice in different countries and in corresponding 
studies carried out by various researchers. Typically, 
the deviation of a point from a spline is calculated along 
the normal to the spline [2]. In Russia, however, it is 
customary to calculate the deviation along the normal 
to the original polyline [2], i.e., toward the center of the 
circle connecting three adjacent points. If three points lie 
on the same straight line, then the deviation is calculated 
along the normal to this straight line.

Since the noted difference in calculation methods 
does not affect the search for the number of spline 
elements, the simplest method was adopted at the first 
stage, i.e., calculation along the normal to the desired 
spline. At the second stage, when optimizing the spline 
parameters, we use precomputed normals to the original 
polyline, i.e., fixed directions that do not need to be 
recalculated in an iterative process. These are the same 
normals that contain the points that determine the “states 
of the system” in dynamic programming [2, Fig. 2].

The starting point of the first curve may not coincide 
with the starting point A; therefore, the length L1 of the 
initial line is considered unknown, and, unlike the first 
stage, the spline elements are considered in the order 
“straight line + circle”. If the number of such repeating 
elements is m, then the system of constraints has the 
form

 L Lj
line line≥

min
,   (2)
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 L Lj
curve curve≥

min
,   (3)

 R R R j mjmin max , , .� � �1   (4)

Here, as at the first stage [2], Lj
line  and Lj

curve  are the 
lengths of the straight line and the curve in the jth 
element, respectively, while Rj are the radii of the circles, 
whose signs are known. This makes it possible to avoid 
taking the absolute value in constraint (4) and obtain a 
linear constraint on each Rj in the form of a two-sided 
inequality:

 Rmin ≤ Rj ≤ Rmax, if Rj > 0,  (5)

 −Rmax ≤ Rj ≤ −Rmin, if Rj < 0.  (6)

The end point of the spline is fixed, but its length 
is unlimited. If the final direction is also fixed, then 
constraints are imposed not only on hn, but also on 
hn−1. In addition, constraints can also be imposed on the 
displacements of individual points in the form of both 
inequalities, including double ones,

 hmin ≤ hm ≤ hmax,  (7)

and equalities,

 hm = h0.  (8)

These are the same fixed points whose presence 
cannot be taken into account in dynamic programming.

As a result, we obtain a nonlinear programming 
problem with the objective function F(h) under 
constraints (2), (3), and (5)–(8), some of which may be 
absent.

2. FEATURES OF THE PROBLEM

Constraints (2), (3), (5), and (6) are not expressed 
in terms of unknown displacements hi, but if all 
the lengths and radii are known, then all the hj can 
be calculated. Further, all the lengths and radii are 
considered as the main variables, and all the hi are 
regarded as intermediate variables, which depend on the 
main ones. Analytical expressions of these dependences 
are unknown and will not be determined. There is also 
no analytical expression of the objective function F(h) 
in terms of the main variables. As a result, we obtain a 
nonlinear programming problem under a simple system 
of constraints (2), (3) and (5), (6) on the main variables, 
under several constraints (7), (8) on intermediate 
variables, and with the objective function expressed in 
terms of intermediate variables.

Nonlinear programming algorithms, with all their 
diversity1 [13–26], reduce to an iterative process with 
the following steps:

1) construct an admissible initial approximation;
2) determine the direction of descent from the next 

iteration point, in particular, from the starting point;
3) check the conditions for terminating the account. If 

they are not met, then go to the next item, otherwise, 
end the calculations;

4) find the step in the found direction from the condition 
that the constraints are satisfied and the minimum 
point in the direction is reached;

5) go to a new point, and then go to step 2.
In order to solve our problem, we need to repeatedly 

calculate intermediate variables (normal displacements) 
as the main variables are changed. To do this, the 
intersection points of two straight lines and a straight 
line with a circle have to be found (Fig. 1).

The shifts of the initial points to the design position 
are considered positive if they are directed along with 
the outward normal. 

hi

hj

γj

α

A(xA, yA)

O(x0, y0)

D(xD, yD)

C(xC, yC)

B(xj, yj)

Fig. 1. Calculation of normal displacements

Let хА and yА be the coordinates of the beginning 
of the arc of the circle (point A in Fig. 1) and α is the 
angle of the tangent at this point with the OX axis. Then 
the coordinates of the center of the circle are written as 
x0 = xА – Rsinα and y0 = yА + Rcosα. Here and henceforth, 
the radius is positive when moving along the curve 
counterclockwise. The point C of intersection with the 
normal can be both outside and inside the arc of the circle. 
Without loss of generality, for the point of intersection of 
the normal with the circle, one can write xC = xj + hjcosγj 
and yC = yj + hjsinγj. Here and henceforth, γj is the angle 
of the jth normal with the OX axis.

From the condition that the point C belongs to the 
circle, one can obtain a quadratic equation for hj, the 
solution of which gives a formula for hj:

h x R x y R y

R x R x

j j j j j� � � � � � �

� � � �

( sin )cos ( cos )sin

( [( sin

A A

A

� � � �

�2
jj j j jy R y)sin ( cos )cos ] ).� � �� � �A

2

   (9)

1 Panteleev A.V., Letova T.A. Optimization methods: 
A handbook. Moscow: Logos; 2011. 424 p. ISBN 978-5-98704-
540-4 (in Russ.).
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To select a point on the circle that is closest to the 
analyzed point, a minus sign is placed in front of the root 
if the expression in front of the root in formula (9) is 
positive, and vice versa. The deviations hj are calculated 
sequentially from the starting point to the end point. 
In this case, for angles of rotation of the arcs of circles 
that are greater than π, there are features of determining 
whether or not the point of intersection of the circle and 
the normal (point C in Fig. 1) falls inside the arc. For 
example, in the general case, it cannot be assumed that, 
if chord AC < AD (Fig. 1), then point C will fall inside 
the arc AD (Fig. 2).

D

D1

C
hj B(xj, yj)

A

Fig. 2. Determination of whether or not the normal 
and the arc intersect

In the example in Fig. 2, AC > AD, but AC < AD1, 
and the rule of determining the position of a point on 
an arc by comparing the lengths of the chords does not 
work.

The position of the point C with respect to the chord 
AD (Fig. 1) is determined by the sign of d.

d = (yC – yA)(xD – xA) – (xC – xA)(yD – yA).

If d > 0, then the point C is to the left of the direction 
of AD, while if d < 0, it is to the right.

This can be easily verified by passing to a coordinate 
system centered at the point A and directing the OX axis 
along AD. Hence, we obtain the rule: if Rd > 0, then the 
point C is outside the arc AD; otherwise, it is inside.

Another feature of the problem being solved is 
that the admissible domain is unlimited due to the one-
sidedness of because inequalities (2) and (3). However, 
this circumstance is not significant in this case because 
the search for a step in the direction at each iteration can 
be limited to a maximum increase of 1 m in the radii and 
in the lengths of line segments and circular arcs.

A more important complicating feature is the 
already noted absence of an analytical expression for 
the objective function in terms of the main variables. 
On the other hand, a significant simplification consists 
in an extremely simple form of constraints on the main 
variables, owing to which the advisability of changing 

the set of active constraints on the main variables is easy 
to check by considering the sign of the corresponding 
components of the gradient at each iteration when 
searching for the direction of descent.

3. CALCULATION OF THE DERIVATIVES  
OF THE OBJECTIVE FUNCTION WITH RESPECT 

TO THE MAIN VARIABLES

Here, we are talking about an attempt to analytically 
calculate the gradient of the objective function with 
respect to the main variables without having its analytical 
expression in terms of these variables by recalculating 
the derivatives. It turned out that, in the context of our 
problem, such a recalculation is quite possible.

Let us assume that the set of the main variables 
forms vector x. Then the formula for recalculating the 
derivatives has the form

 
�
�

�
�
�

�
�

�
��F

x
F
h

h

x
i n

i j

j

i

n
1

1, , ,   (10)

where 
�
�

�
F
h

h
j

j2  on the strength of expression (1).

This comes down to a calculation of the derivatives 
of the displacements with respect to the normals in terms 
of the main variables. Let us show how this can be done 
in our case. To do this while omitting the subscripts and 
keeping the notation R for the radius of an arbitrary 
circular arc, we denote the length of an arbitrary line 
segment by l and the length of the circular arc by L.

Let us start with the length of the line segment and 
assign it increment δl without changing all other lengths 

and radii. Obviously, the desired 
�

�
�

h

l
j 0  for all normals 

that are closer to the start of the spline than the end of the 
line segment being varied.

If we find the displacement δhj of the point of 
intersection of the jth normal with the spline along this 
normal caused by change δl at unchanged values of 
all the other variables, then, by passing to the limit in 
δhj/δl as δl → 0, we obtain the desired derivative without 
having an analytical expression for the function hj(l).

An increase in the length of the line segment by δl 
at unchanged values of all the other variables results in 
a shift of the entire remaining part of the spline in the 
direction of this straight line by δl. This is the simplest 
variation of the spline. If the point of intersection of the 
spline and the jth normal lies on the straight line (Fig. 3), 
then

 
�

�
�

�
�

h

l
j

j

sin( )

sin( )
,

� �
� �

  (11)
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where β is the angle of this line (spline element AB in 
Fig. 3) with the OX axis; α is the angle of the line being 
varied with the OX axis (establishing the direction of 
the displacement); γj is the angle of the normal (C0C1 in 
Fig. 3) with the OX axis. 

In Fig. 3, point C is the initial position of the point 
of intersection of the normal and the spline, which 
corresponds to the intermediate variable hj. When 
shifting in the direction determined by the angle α by 
δl, AB transforms into A1B1, point C transforms into C2, 
while C1 becomes the point of intersection of the normal 
with the spline. The displacement hj gets an increment 
of hj = CC1.

Y

XО

A1

C0

A

C1
C2

B1

B

C
α

β

δhj

hj

γj

δl

Fig. 3. Calculation of partial derivatives with changing 
length of the line segment

When applied to the triangle C1CC2, formula 
(11) follows from the law of sines. In this formula, 
sin(γj – β) ≠ 0 because the normal to the initial route at 
the point C and the normal to the spline, i.e., to line AB 
are close to each other; i.e., γj – β ≈ π/2. At α = β, the 
direction of the displacement coincides with the direction 
of the straight line; therefore, δhj = 0. Formula (11) is 
also valid at α > π.

If the point of intersection of the spline and 
the normal lies not in a straight line, but a circular 
arc, then β is the angle between the OX axis and 
the tangent to the circular arc at the point of its 
intersection with the normal, and formula (11) 
remains unchanged. 

Let us consider the effect of the increment of the 
length of the circular arc on δL at unchanged values of 
all the other variables. In this case, the spline element 
from the beginning to L inclusive is not changed; in the 
remaining part, there is a shift by δL in the direction 
making angle α with the OX axis and a rotation by angle 
δα of the entire next section of the route plan. Here, α 
is the angle of the tangent at the end of the circular arc 
with the OX axis, while δα is its increment when the arc 
length is changed by δL. The center of rotation is at the 
end of the arc being varied.

The effect of the shift is taken into account by 
formula (11).

Let us now consider the rotation of the element of 
the route plan by the angle δα under the action of the 
elongation δL. Since δα = δL/R, it is sufficient to  

calculate 
�

�

hj
�

.

To calculate 
�

�

hj
�

, it is necessary to calculate the 

radius of rotation S from the coordinates of the end of 
the arc (center of rotation: point A in Fig. 4) and the 
point of intersection of the spline element (the line 
segment or the tangent to the circle) with the normal 
(point C in Fig. 4).

Y

XО

A

S
C

C3

C0(xj
0, yj

0)

C2

D1

D

CC1 = δ1hj
C1C2 = δ2hj
δhj = δ1hj + δ2hj

C1

γj

δα

δα
α

Fig. 4. Calculation of partial derivatives by rotation

The position of the straight line CD after rotation 
can be obtained in two ways. First, by rotating AC by the 
angle δα, point C3 is found. Then, by rotating AD by the 
angle δα, point D1 is determined. The intersection of the 
line C3D1 with the normal gives the sought-for δhj = CC2. 
However, CC2 cannot be analytically expressed in terms 
of the known angles and coordinates.

One can make a parallel shift of CD in the direction 
of CC3 (to obtain point C1 at the intersection with the 
normal) followed by a rotation with the center at C3 by 
the angle δα. Thereby, the same points D1 and then C2 
are obtained.

Let us represent increment δhj as the sum 
δhj = δ1hj + δ2hj. The increment δ1hj = CC1 arises by 
rotating point C about point A (which transforms to 
point C3) followed by a parallel displacement in the 
direction of CC3. Since we want to calculate partial 
derivatives, the lengths of the chord, arc and tangent are 
of the same order at small angles of rotation; therefore, 
we take CC3 = Sδα. Here, CC3, CC1, and C1C3 are of 
the order δα, while the increment δ2hj = C1C2, which is 
caused by the rotation about the point C3 at a first-order 
radius by the angle δα, has a higher order of smallness 
than δ1hj. Therefore, the point C2 is not needed at all.

The increment δ1hj is calculated from expression 
(11) as above by taking into account the shift by Sδα in 
the direction along the normal to AC, which makes the 
angle α + π/2 with the ОХ axis.
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According to formula (11), 

�
�� � � �

� �1

2h S
j

j
�

� �
�

sin( )

sin( )
,

/

where β is the angle of the displaced straight line CD 

with the OX axis. Hence, 
�

��
� �

� �
1h Sj

j
�

�
�

cos( )

sin( )
.  

Let xA and yA be the coordinates of the center of 
rotation, while xC and yC are the points of intersection 
with the normal. Then the derivative can be expressed as

 
�

��
� �
� �

1h x x y yj

j
�

� � �
�

( )cos ( )sin

sin( )
.C A C A   (12)

Here, as above, β is the angle between the OX axis 
and the tangent to the spline at the point of intersection 
with the jth normal, and γj is the angle of this normal 
with the OX axis.

The expression Scos(α – β) is replaced by 
( )cos ( )sin .x x y yC A C A� � �� �

Taking into account tangential shift (11) and 
rotation (12), which reduces to a shift by Sδα for the 
sought-for derivative of the displacement hj along the 
length of the circular arc Li

curve (here, �� �� L Ri i
curve / , 

where Ri is the radius of the circular curve being varied), 
we obtain the formula

�

�
�

�
� �

� � �

�

h

L
x x y y

R

j

i

i

j

curve

C A C Asin( )
( )cos ( )sin

sin( )
.

� �
� �

� �
 (13)

Formulas (11)–(13) can also be applied if the 
normal intersects the circular arc rather than the 
straight line. In this case, β is the angle between the 
OX axis and the tangent to the circle at the point of 
intersection.

Let us turn to the calculation of the partial derivatives 
of the intermediate variables with respect to the radii.

In Fig. 5, AC is the initial position of the arc, while 
AC1 is the position of this arc at a changed value of 
the radius and constant values of the starting point 
A(xA, yA), the angle α of the tangent with the OX axis, 
and the length L of the entire arc AC. Instead of point 
B in the normal, we obtain point B1. Although the 
displacement along the normal is ∂hj = BB1, the new 
position of the point B is not B1 (Figs. 3 and 5) because 
the point B leaves the normal.

Knowing the coordinates of the points A(хА, yА) 
and B(хB, yB), the angles of the tangent at these points 

with the OX axis (α and β, respectively), the length L of 
the arc AB, and the angle γ of the normal with the OX 
axis, one can calculate the derivative of the displacement 
along the normal ∂h/∂R (the subscripts of the normal and 
the curve are omitted because the point B is an arbitrary 
point of an arbitrary arc):

xB – xA = R(sinβ – sinα).

Here, xA is constant, and xB and β depend on R. 
Hence, it follows that

�
�

� � � �
�
�

x
R

R
R

B sin sin cos .� � �
�

Hereinafter, � �� �
L
R

.  L and α are fixed, while 
�
�

� �
�
R

L
R2

.

Y

O

O

D

E A

B B1

C1

C

β

γ

α

X

Fig. 5. Calculation of the derivatives of the displacements 
inside the arc with changing radius

Finally, we obtain

 
�
�

� � � �
x
R
B sin sin ( )cos .� � � � �   (14)

Similarly, we obtain

 
�
�

� � � �
y
R
B cos cos ( )sin .� � � � �   (15)

The increment δR of the radius gives the linear part 
of the increment of the coordinates of the point B:

 � �x
x
R
RB

B�
�
�

 and � �y
y
R
RB

B�
�
�

.   (16)

The shift δhj along the normal is obtained as a result 
of the shift of the tangent at point B along the OX axis 
by δxB and then along the OY axis by δyB. In the former 
case, the direction of the shift in formula (11) is given by 
the angle α = 0, and in the latter case, α = π/2.
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As a result, for points inside the curve, the linear 
part of the normal displacement is represented by the 
formula

�
� � � �

� �
h

y x
j �

�
�

B Bcos sin

sin( )
.

Using expressions (14)–(16), the derivative is 
expressed as
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1
 (17)

Application of formulas (14) and (15) to the end point 
of the curve C gives the linear part of the increments of 
its coordinates:

� � � � �

� � � � �

x L
R

R

y L
R

R
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��

�
��
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�
��

sin sin cos ,

cos cos sin .

Here and henceforth, α and β are the angles between 
the OX axis and the tangents at the initial and final points 
of the arc, respectively.

All the subsequent points of the spline are allocated 
the same increments (shift in the same direction). 
Therefore, for the linear part of the displacement along 
the normal for the point of intersection with the spline, 
we obtain

 �
� � � �

� �
�1h

y x
Rj

j
�

�
�

C t C t

t

cos sin

sin( )
.   (18)

Here and henceforth, βt is the angle of the straight 
line or the tangent to the circle with the OX axis at the 
point of intersection of the jth normal, and γj is the angle 
of the normal with the OX axis.

Formula (18) after simplifications takes the form

�

� � � � � � � �
� �

�

1h

R

j

j

�

�
� � � � � �

�
cos( ) cos( ) ( )sin( )

sin( )
.t t t

t

 (19)

This is only a consequence of the shift with changing 
radius. It is also necessary to take into account the 
rotation of the tangent at the end of the arc (point C in 
Fig. 5) with changing radius; as a result, the rotation of 
all the next points of the spline centered at the end of the 

arc (point C in Fig. 5) by the angle �� �� �
L
R

R
2

,  where 
L is the length of the arc AC.

As the rotation is taken into account with changing 
length of the curve (12), so the linear part δ2hj of the 
displacement is taken into account by the shift by Sδφ 
along the normal to the straight line (or the tangent to 
the circle) at the point D of intersection with the normal. 
Here, S = CD is the radius of rotation.

According to (12), 
�

��
� �

� �
2h Sj

j
�

�
�

cos( )

sin( )
.t

t

 Here, φ, 

βt, and γj are the angles between the OX axis and the 
straight line CD, the straight line (or the tangent), and 
the intersected normal, respectively.

As a result, we obtain
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and, then,
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  (20)

Using expressions (19) and (20), the derivative of 
the displacement along the normal with respect to the 
radius is written as
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 (21)

Formulas (13), (17), and (21) can be applied to any 
normal as well as to all spline elements preceding it. 
This means that it is possible to calculate the gradient 
of objective function (1) without having its analytical 
expression in terms of the main variables.

4. CONSTRUCTION AND USE  
OF THE MODIFIED LAGRANGE FUNCTION

Let us consider the problem of imposing constraints 
(7) and (8) on the intermediate variables.

Even though we do not have the expressions 
for the are nonlinear constraints (7) and (8) on the 
main variables, the penalty method can be used if 
the derivatives of the intermediate variables can be 
calculated with respect to the main variables [19, 24]. 
In this case, one can add a term, called a penalty 
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function, to the objective function, with this penalty 
function determining a penalty for violation of 
constraints. In other words, instead of the original 
objective function, a modified Lagrange function is 
constructed, which takes into account both equality 
and nonequality constraints.

There are several versions of this method, which 
differ in the form of the penalty function and in methods 
for changing its parameters [18, 19, 23, 24].

When solving practical problems, good results were 
obtained using Powell’s method, in which the minimum 
of the original objective function F(x) under constraints 
сj(x) ≤ 0, j m=1, , is searched for using the function

( , , ) ( ) ( ( ) ) .x σ θ x xF cj
m

j j1 2
1

2

Here, x is the vector of unknowns, and F(x) is the 
original objective function. In the context of the present 
problem, the components of the vector x are the lengths 
of the spline elements, while the radii (main variables) 
and cj(x) are implicit functions of x; however, since their 
dependence on the intermediate variables h is explicit 
((7) and (8)), we can calculate their partial derivatives. 
Constraints (7) and (8) can always be represented as 
one-sided inequalities.

The setting by the user vectors σ and θ, which 
have m components each (according to the number of 
constraints), represent a set of parameters of the penalty 
function, with two parameters per constraint. The plus 
sign means that the sum includes only the terms for 
which cj(x) + θj > 0. Here, θj > 0 is the overconstraint in 
the jth constraint; i.e., a penalty is imposed on not only 
an actual violation at cj(x) > 0, but also at cj(x) > −θj.

If there are equalities in the system of constraints, 
then the terms corresponding to them are always present 
in the sum. If θj = 0 and σj = kn (kn are set by the user), 
j m=1, , the penalty function is simpler; however, its 

second derivatives with respect to xi are discontinuous at 
the boundary of the admissible domain. These 
discontinuities increase with greater kn, which have to be 
increased in each new iterative minimization cycle in 
order to reduce the residuals of the constraints. It is a 
different matter when σj are constant and only θj are 
varied. In this case, the surfaces of the discontinuities of 
the second derivatives are far from the minimum points 
determined when solving problems in each optimization 
cycle [19].

The initial values of the parameters θj > 0 and σj > 0 
should be selected based on the meaning and importance 
of the corresponding constraints and the residuals of the 
constraints at the initial approximation point. In our case, 
the solution was started with θj = 0.1 and σj = 1 for all j.

Then, after solving the minimum problem Φ(x, σ, θ) 
under simple constraints (2), (3), (5), and (6) on the 

main variables, constraints (7) and (8) were checked. If 
there were violations, then the parameters σ and θ were 
changed according to the following rule: if there was an 
overconstraint in the jth constraint, i.e., if сj(x) > − θj, 
then the new value θ1

j = 0; otherwise, θ1
j = θj + сj(x). 

Such a substitution was carried out in all the constraints. 
To recalculate σj, another rule was applied: if, as a result 
of solving the problem, the residual of the jth constraint 
decreased rapidly, then σj was not changed; however, if 
the residual decreased slowly, then σj was increased. The 
following constants were used: if the residual decreased 
by a factor of less than 4, then the corresponding σj was 
multiplied by 10, and θj was divided by 2.

After the parameters were recalculated, the process 
was repeated; i.e., the next outer iteration was done. The 
calculation was terminated in the following cases:

1. A solution with acceptable residuals was obtained. 
In this case, one could make one more outer iteration 
for control to make sure that the solution remains 
virtually unchanged.

2. After a specified limit of outer iterations was 
exhausted, no solution was obtained. At the same 
time, there was every reason to doubt the compatibility 
of the system of constraints—and, consequently, 
the existence of a solution to the original problem. 
Such situations arose when specifying fixed points 
through which it was impossible to pass at the given 
minimum length values of elements and radii.

5. MAIN PROVISIONS OF THE METHOD 
FOR SOLVING THE PROBLEM

The initial approximation of the sought-for spline, 
which was obtained using dynamic programming, is used 
to calculate the parameters of the spline optimization 
problem. To do this, the following steps are performed:

1. Outer normals to the original polyline are constructed 
successively at the given points, and their angles 
with the OX axis are memorized. 

2. The points of intersection of the normals with the 
spline are determined and memorized. At large 
angles of rotation, one normal can intersect the 
spline at two points. In this case, the point closest to 
the given point is selected.

3. The values of all intermediate variables are 
calculated.

4. At each point of intersection of the normals with 
the spline element (straight line or circle), the angle 
with the OX axis of the straight line or tangent to the 
circle is calculated and memorized.
The results of the calculations are sufficient to 

calculate the gradient of the modified Lagrange function.
Due to the simple form of the constraints on the 

main variables, various gradient methods can be 
used, including the simple coordinate-wise descent 
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method [18, 19]. For example, when using the gradient 
projection method, after setting the gradient components 
corresponding to the variables that take limit values (the 
so-called active set) to zero, the standard algorithm [19] 
is applied. It has been experimentally established that 
this method does not guarantee obtaining exact solutions 
if penalty functions are used.

The application of optimally efficient second-order 
methods [19] requires the inversion of the matrix of second 
derivatives (Hessian matrix), which, in our case, cannot 
be calculated. Therefore, we used the variable metric 
method, namely, the so-called Davidon–Fletcher–Powell 
(DFP) optimization. In this method, during the course 
of the descent, increasingly accurate approximations of 
the matrices Hi to the inverse Hessian matrix G−1 are 
carried out using the gradients of the objective function 
at already passed points of iteration [23].

Thus [23, 24], if xi be the iteration point, gi be 
the gradient, pi be the direction of descent at the ith 
iteration, zi = xi+1 − xi, and yi = gi+1 − gi, then H0 = E and  
pi = −Higi. Under no constraints, we have

H H H H (Hi i i i i i i i i i i i i� � � �1 z z z y y y y yT T T( , ) , ).  (22)

This formula is applicable to unconstrained 
problems. However, in our case, constraints (2), (3), 
(5), and (6) on the main variables remain. If the initial 
approximation contains the limiting lengths or radii, 
then the identity matrix E should not be used to begin 
with. Instead, a projection matrix should be used, which 
in our cause is simply constructed as follows: in E, 1 is 
replaced by 0 in the rows the numbers of which coincide 
with the numbers of variables that have taken limit 
values (active set).

When changing the set of active constraints, the 
matrix Hi should be modified [24] before calculating the 
direction of descent. This happens both when a constraint 
is included in the active set and when a constraint is 
excluded from the active set. The simple form of the 
constraints allowed the corresponding formulas [24] 
to be significantly simplified using the noted simple 
method of constructing a projection matrix.

Since DFP optimization works well (in the sense of 
approaching the inverse Hessian matrix) for points close 
to the extremum [19, 23, 24], a combination of methods 
was used: the simple gradient projection method 
(ensures a descent into the “ravine”) with subsequent 
DFP optimization.

6. MAIN RESULTS AND OBJECTIVES  
OF FURTHER RESEARCH

The main result of this work is a solution to the 
problem of optimizing a sequence of points in a plane 
by a spline that is not a single-valued function. This 

solution is obtained not by heuristic techniques, but by 
mathematically correct methods (dynamic and nonlinear 
programming). However, due to the variety of nonlinear 
programming methods used, we cannot claim that the 
method used in the calculations is the most efficient. Of 
particular interest is the use of ravine algorithms [23]. 
It was stated [23] that the ravine conjugate gradient 
method, in which p0 = −g0, pi+1 = −gi+1 + bipi, and 
bi = (gi+1 − gi, gi)/|pi, gi|, has advantages for inaccurate 
one-dimensional minimization and for ravine bends.

In the context of our problem, instead of the gradient, 
its projection should be used; here, when the active set 
is changed, one should start with updating, i.e., from the 
step along the antigradient projection.

There are more complex algorithms than DFP, e.g., 
the Broyden–Fletcher–Goldfarb–Shanno method [23]. 
In this method, the term v vi i

T  is added to formula (22) 
for calculating the matrix H, where the vector  
vi = (yi, Hi)

1/2[zi/(zi, yi) − Hiyi/(yi, Hiyi)].
The efficiency of using more complex methods can 

only be determined experimentally.
It should be noted that gradient methods give a local 

minimum of the objective function. Therefore, to obtain 
an initial approximation in our problem, it is especially 
important to use dynamic programming (possibly 
with repetition of calculations with decreasing search 
increments), since dynamic programming gives a global 
minimum, excluding the discreteness effect.

To combat local minima, descents from different 
points were used. Following completion of the 
optimization process, the obtained solution is checked. 
The process starts anew with the obtained solution 
used as the initial approximation. All the coefficients 
of the modified Lagrange function take initial values. 
At the first iterations, the sum of their squares takes a 
smaller value due to the violation of constraints on the 
intermediate variables. However, the coefficients of the 
modified Lagrange function then change, resulting in the 
disappearance of the constraint violations. As a result, in 
experimental calculations, virtually the same solution was 
obtained. While this is not a guarantee of reaching the 
global minimum, it offers a real opportunity to recede from 
a local minimum point. To select the most efficient method 
of nonlinear programming for solving the problem under 
consideration, additional experimental studies are needed.

The main objective of further research is to generalize 
the results obtained for a spline with circles to the more 
complex problem of approximation by a spline with 
clothoids. First of all, it is necessary to obtain formulas 
for calculating derivatives in the absence of an analytical 
expression of the objective function in terms of the 
parameters of the clothoid in addition to the formulas for 
lines and arcs of circles that were presented in this article.
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