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Abstract

Objectives. In recent years, there has been growing scientific interest in the creation of intelligent interfaces for
computer control based on biometric data, such as electromyography signals (EMGs), which can be used to classify
human hand gestures to form the basis for organizing an intuitive human-computer interface. However, problems
arising when using EMG signals for this purpose include the presence of nonlinear noise in the signal and the
significant influence of individual human characteristics. The aim of the present study is to investigate the possibility
of using neural networks to filter individual components of the EMG signal.

Methods. Mathematical signal processing techniques are used along with machine learning methods.

Results. The overview of the literature on the topic of EMG signal processing is carried out. The concept of intelligent
processing of biological signals is proposed. The signal filtering model using a convolutional neural network structure
based on Python 3, TensorFlow and Keras technologies was developed. Results of an experiment carried out on an
EMG data set to filter individual signal components are presented and discussed.

Conclusions. The possibility of using artificial neural networks to identify and suppress individual human
characteristics in biological signals is demonstrated. When training the network, the main emphasis was placed on
individual features by testing the network on data received from subjects not involved in the learning process. The
achieved average 5% reduction in individual noise will help to avoid retraining of the network when classifying EMG
signals, as well as improving the accuracy of gesture classification for new users.
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Pesiome

Llenu. B nocnegHve rofbl BO3POC HayYHbIA MHTEPEC K MOCTPOEHUIO MHTENNEKTYaNbHbIX MHTEPdENCOB ANs ynpas-
JIEHUS KOMMbIOTEPOM Ha OCHOBE OMOMETPUYECKMX AaHHbIX. OOHUM N3 NCTOYHUKOB TaKMX OAHHBIX CIYXUT CUrHanN
anekTpomMuorpadum (AMrI). CurHan SMIN MOXHO MCNONb30BaTb A KlaccudurKaumm XecToB pyK YyesoBeka. ITo
NO3BOJISET OPraHN30BaTb MHTYUTUBHO MOHATHBIN MHTEPDENC «4enoBek — KoMMbloTep». OCHOBHbIMY NpobneMamm
npwv MCNoNb3oBaHUK curHanoB OMI™ ABASIOTCA HANWMYME HENIMHENHBIX LLYMOB B CUTHANE U 3HAYNTENBHOE BIVSIHNE
MHOVBMUAYanbHbIX 0OCOOEHHOCTEN Yenoseka. Llenb paboTbl — nccnepoBaHve BO3MOXHOCTEN NPUMEHEHUS HEAPOH-
HbIX ceTel ons GunbTpaumm MHAMBUAYaNbHbIX KOMMOHEHT curHana SMr .

MeTopabl. Vicnonb3oBaHbl MaTeMaTU4eCKMe MeToapl 06paboTKy CUMHANOB U METOAb! MALLMHHOMO 0OYYeHNS.
PesynbTathl. [TpoBeaeH aHanM3 nccnenoBaHunii no tTemMe 06padotkn IMI-curHanos. MpennoxeHa KOHUENUUs NH-
TennekTyanbHo 06paboTkm Buonornyeckmx curHanoB. PaspaboTtaHa Moaenbs GunbTpaumMm curHana, nocTtpoeHa
CTPYKTypa CBEPTOYHOWN HEIMPOHHOW ceTn Ha OcHoBe TexHonoruin Python 3, TensorFlow n Keras. lNMpoBeaeH akcnepu-
MEHT Ha Habope aaHHbIX OMI™ no dunbTpaumm MHAMBUAYANbHBIX KOMMOHEHT CUrHanNa.

BeiBoabl. [poaeMOHCTpUpoBaHa BO3MOXHOCTb NMPUMEHEHNSI UCKYCCTBEHHbBIX HEMPOHHbIX CETEN ONs BbISBIEHUS
1 NOAABNEHUS MHAMBUAYAJbHBIX 0COOEHHOCTEN YenoBeka B G1onornyecknx curHanax. Mpu oby4eHnm cetm OCHOB-
HOW yrnop Aenancsa Ha MHAMBUAYyasbHble 0COOEHHOCTUN, TECTUPYS CETb Ha AAHHbIX, MOMYYEHHbIX OT CYOBEKTOB, HE
y4yacTBylOLLMX B Npouecce 06y4yeHust. JoCTUrHyTO YMEHbLUEHNE UHOVBUAYANIbHOTO LyMa B cpeaHeM Ha 5%. Ons
pelueHuns 3aa4m knaccubukaumm curdana AMIT gaHHbI pe3ynbTaT NOMOXET n3bexartb nepeobyveHns ceTu 1 no-
BbICUTb TOYHOCTb KNlaCcCUPUKALLMM XXECTOB A HOBbIX NMOJIb30BaTENEN.

KnioueBble cnoBa: undposas 06paboTka curHana, 4actotTHasa GunbTpaums, anekTpoMmmorpadust, MallMHHoe 00y-
YeHVe, HEMPOHHbIE CeTU, MHTEePdENCHI, ynpaBieHne xectamu

e MocTtynuna: 17.06.2022 ¢ flopa6oTaHa: 22.09.2022 ¢ MpuHaTa k ony6nukosanuio: 09.02.2023

Ana uutupoBaHus: Bacunees A.B., MenbHukoB A.O., Jlecbko C.A. MNMpumeHeHne pobacTHOW HellpoceTeBoin dusb-
Tpauun B 3agavyax MOCTPOEHUS MHTENNeKTyasnbHblX nHTepdencos. Russ. Technol. J. 2023;11(2):7-19. https://doi.
org/10.32362/2500-316X-2023-11-2-7-19

Mpo3payHocTb pUHAHCOBOM AeATENbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTN B MPEACTaBEH-
HbIX MaTepuanax nin Metoaax.

ABTOpPbI 3a9BASAOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.

INTRODUCTION this is what standardizes the interaction and determines

the boundaries of the functionality of working with the

One of the key steps in software design is the choice  software. Thus, interface concept is closely related to the

of a method to communicate with an individual. For  ysability of software systems. First of all, the usability is
this, unified structural, hardware, and software tools are  associated with a graphical user interface. The interface

used, which are necessary for the interaction of various s considered usable if the user needs the least amount
functional elements ofthe system. A set Of SUCh elements Of time to use the information System. The Second

is referred to as an “interface”. The interface between  parameter that affects the usability is, of course, the
an individual and software is especially important since  simplicity and time needed to train a new user to work
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with the information system. A good interface should
be intuitive and have as few hidden dependencies as
possible, as well as a minimal learning curve. In addition
to the graphical interface, an information system may
also have some command-program interface, which is
a set of messages (commands) that can be perceived by
the software system and processed using the application
programming interface (API). The usability of this type
of interface is evaluated by the number of commands
that need to be used to perform the targeted action on the
system. At the same time, it is desirable that commands
for different target actions not be repeated (duplicated).
These requirements impose a serious responsibility
on interface developers when designing interfaces for
software products and systems.

In the modern digital space, a human (user) is
transformed into an interactive system possessing
a rapidly expanding set of its capabilities. However,
the range of interactivity varies from system to system.
For example, in the aviation or aerospace industry,
where the working conditions of a user operating with
an information system are constrained by physical
conditions, interactivity can be described as limited.
On the other hand, everyday interactive systems, such
as multimedia devices and gaming complexes, do not
impose significant physical restrictions on the set of
interactions of an individual (user) with an information
system.

In order to improve the efficiency and usability
of information systems, researchers are constantly
looking for new ways to organize interfaces. Among
the factors that reduce the usability of information
systems, we can distinguish between technical, physical,
and informational varieties. Technical factors refer to
the quality of technologies applied both in software
development (network speed, amount of memory) and
in hardware (for example, the quality of a computer
monitor or camera). Physical factors mean the physical
environmental conditions during the use of the software
system, such as humidity, light, visibility, the possibility
of physical movements, etc. Information factors are
understood as the development of the interface of the
software system that ensures ease of use in general, for
example, the size of buttons in the graphical interface,
the ability to enter text, the ability to save data, etc.

Interfaces can be divided into several categories:
text, graphic, voice, video and hybrid. To improve
usability, each of these approaches should be
considered. Currently, interfaces based on audio and
video information received from various external
sensors are being actively developed. Among the
difficulties of using video, the following factors can be
distinguished: extraneous noise, poor visibility, physical
obstacles between the camera and the subject, the lack
of the appropriate angle for shooting, or a lack of verbal

communication (silence mode). Nevertheless, interfaces
based on audio or video can greatly expand the scope
of software systems. Moreover, while a text-based or
graphical interface necessarily requires an input console
or a screen plus input devices (keyboard), an audio- or
video-based interface requires only a microphone and
avideo camera. This allows a user to free his or her hands
and improve the quality of the user experience when
working with the system, using hands as an additional
control channel. In order to overcome the discussed
limitations of interfaces based on video information and
preserve their advantages, it is required to use a new
type of interface either hybrid or biological. Biological
interfaces are widespread in medicine. It should be
noted, however, that in medicine, an individual interacts
with information systems mostly passively, allowing the
device to retrieve and process the information received
through the interface. At the same time, the potential of
using biological interfaces is much wider. They can be
used to build complete information systems with a high
level of usability.

Measurements of biological signals, such as
electromyography (EMGQG), electroencephalography
(EEG), etc., can be used as additional information
exchange channels. In recent years, innovative research
has been carried out on the development and use of clothes
containing various sensors and transducers [1, 2], which
allow a person’s physiological activities to be recorded.
Such studies commonly use items of clothing that
contain sensors for recording EMG signals [3, 4]. EMG
allows you to record the electrical activity that occurs
when the muscle fibers are excited. Clothes containing
EMG sensors are in demand in many areas: from any
physically active activity (e.g., construction work and
sporting activities) to the calmest (e.g., office work).

EMG signals are used to diagnose neuromuscular
diseases, in psychophysiology, in the study of motor
activity, in studies of higher nervous activity, to evaluate
the results of prosthetics and orthopedics, and in
engineering psychology. Among other things, research
into the possibility of organizing a silent interface, that is,
an interface that does not require voice input and allows
controlling the information system through articulation,
has recently gained popularity.

The present work is focused on the use of EMG
signals as a basis for a human-computer interface.
Much research is aimed at analyzing the EMG signal
for developing smart prosthetics systems [5, 6] and
systems controlled by gestures [7]. Besides the EMG
signal, ultrasonic scanners can be used to solve the
problems of gesture classification [8]. A particular
problem identified by researchers involves the difficulty
of recovering specific control units in the EMG signal,
along with a high dependence of classification accuracy
on the specific person with whom the experiment is
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carried out [9, 10]. To solve such problems, methods of
decomposition [11] and clustering of EMG signals are
used in order to identify the muscle groups involved in
a particular hand gesture [3]. Signal conversion methods
used to minimize noise include the method of principle
components, auto-encoders, etc. [12, 13].

1. LITERATURE OVERVIEW

In a number of studies devoted to the classification
of the EMG signal, the problem of its filtering is raised.
In most of the publications only frequency filtering is
used, but other approaches are researched as well. The
most effective method is the preliminary clustering of
EMG signals in order to isolate motor units. However,
this approach leads to irreversible signal distortion and
does not apply to filtering.

In[14], the authors developed a system for identifying
muscles using needle EMG for prosthetics. The main
characteristics of this model are the following: the use of
needle EMG (16 sensors) and kinematic gloves, signal
preprocessing with low (10 Hz) and high (100 Hz)
frequency filters, and the use of artificial neural
networks. The data set consists of 5 movements with
10 repetitions of each movement. The input data for the
neural network are correlation matrices. The advantage
of the model is the compactness of a fully connected
neural network (3 hidden layers). The disadvantages of
the model include relatively low accuracy (90.1% for
the test set) and the need to use kinematic gloves. The
negative impact in model evaluation is due to the low
accuracy of signal recognition from a number of muscles
for the data set. The authors note that classification
errors may be due to insufficiently accurate labeling of
reference data.

In [15], the authors conducted an experiment to
compare statistical approaches to classify an EMG signal
with machine learning models. The task of the researchers
was the binary classification of the EMG signal. The
goal was to recognize meal intervals in a person’s
daily activities. The comparison was made between
SVM [16], RandomForest [17], LogisticRegression [18],
XGBoost [19], LightGBM [20], LSTM [21], and
Conv-LSTM models [22]. The advantages of the
work include an extensive comparison of statistical
methods and machine learning methods. An accuracy
of 94.76% was achieved for the balanced dataset for
statistical methods and 95.35% for the unbalanced
dataset. XGBoost turned out to be the most effective
statistical method for classifying the EMG signal.
The use of LSTM-type neural networks has improved
the classification accuracy up to 97%, however, the
researchers note the problem associated with the need for
a large amount of data to train this type of networks, as
well as insufficient data for machine learning methods,

data pollution by cumulative actions, poor Bluetooth
connectivity, features of right-handers and left-handers.

In [3], the authors developed a device for reading
an EMG signal powered by solar energy. The main
characteristics of the developed model are ultra-low
power consumption and an intelligent EMF sensor
localization system on a user’s wrist. Data for the
experiment were collected from 20 people and included
15 unique hand movements. Accuracy of 95.3% was
achieved when classifying 15 gestures. The position
of sensors on a person’s wrist is one of the problems
for this kind of tasks. EMG signal analysis methods are
highly sensitive to the position of sensors. Therefore, the
model needs to be retrained every time the position of the
sensors changes. This problem can be solved by locating
sensors on the wrist using intelligent data processing
from capacitive sensors. In order to analyze EMG
signals, clustering of all wrist muscles into 8 groups
was performed. To adjust the position of the bracelet
on the wrist, calibration based on data from 15 sensors
using convolution was used. To classify gestures, a
convolutional neural network with two convolution
layers with the rectified linear unit (ReLU) activation
function was used. It is noted that it is such small number
of layers allows solving the problem of retraining. The
disadvantage of the method is a significant drop in the
accuracy of the classification of movements in a static
position (a decrease in accuracy by 3%). Also, gestures
describing fine motor skills of fingers were not included
in the work.

In [23], a model for classifying gestures based on
ultrasound was developed. An ultrasound representation
of the muscles of the forearm was used to classify
gestures.

2. NATURE OF THE EMG SIGNAL

EMG is a method for studying the bioelectric
potentials that arise in the skeletal muscles of humans
and animals during excitation of muscle fibers.

There are three types of EMG:

1) EMG using needle electrodes that are inserted into
the muscle;

2) stimulation EMG;

3) EMG using skin electrodes.

Needle EMG provides the most accurate
representation of the electrical activity that occurs during
muscle stimulation but requires physical penetration into
human muscle tissue. The invasive nature of the method
is a limitation for use as a basis for an information
system interface.

Stimulation EMG is a type of non-invasive EMG
that uses skin surface electrodes to assess the conduction
of an impulse along peripheral nerves in response to
stimulation with a low-intensity electrical current. This
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Fig. 1. EMG signals in the time and frequency domains

type of EMG is used, in particular, to diagnose diseases
of the peripheral nervous system.

Surface EMG is a type of EMG in which skin
surface electrodes are used. Unlike stimulation EMG,
this type does not involve stimulation of the nervous
system but, on the contrary, consists only in recording
electrical activity during active excitation and relaxation
of muscle tissues.

With weak muscle contraction, either the potential
of a single motor unit or the potential of many motor
units is recorded. With an average strength and strong
muscle contraction, interference EMG is observed, in
which it is almost impossible to identify the potentials
of individual motor units. For people at rest, who do
not have problems in the area of the nervous system,
usually either no electrical potential activity is detected
or electrical potentials of individual muscle fibers are
recorded.

In a simple case, we will consider the following
scenario: a muscle reacts to a single action with
a single contraction. In this case, three phases can be
distinguished:

e latent period (from 2-3 to 10 ms), lasting from
the moment of applying irritation to the start of
contraction;

e shortening or contraction phase (40-50 ms);

e relaxation phase (about 50 ms).

The device for recording an EMG signal includes
electrodes that pick up muscle potentials, an amplifier of
these potentials, and a recording device.

The main parameters of the EMG signal are:

e amplitude (1 pV —50 mV),

e frequency (0.5-500 Hz).

To analyze the EMG signal in more detail, it
is presented as a decomposition of frequencies and
amplitudes obtained using the Fourier transform.

Any part of a muscle can contain muscle fibers
belonging to 20-50 motor cells. As a result of movement,

many motor units are excited. The cumulative action
potential can be recorded using EMG equipment and will
be presented in the time domain in the following form:

+n(t)

S(1)= 3 SAPMC () +n(0)=3_ 3 k; -
j

Joi J

where SAPMCJ. is the sequence of the action potential of
the motor cell; £; is the amplitude factor for the muscle
of the jth motor cell; fis the shape of the action potential;
0.. is the time of occurrence of SAPMC; a, is the scale
clllange n(t) is the additional noise.

In this work, we use the signal obtained with
a single-channel surface EMG. The use of a single-
channel system makes it possible to simplify signal
registration by ignoring the time synchronization of data
from parallel EMG channels.

The main problem when using EMG signals as
a control interface is their variability and instability,
primarily due to external interference, -electrode
displacement, skin sweating, and muscle fatigue.

Attempts to eliminate the influence of muscle fatigue
consist in the use of switching devices when the signal
changes, or the use of static methods such as filtering.

The success of the implementation of the device
control interface is determined by the degree of reliability
of the decoding of muscle biopotentials in the registered
EMG signal during the planned movement. An accurate
determination of the motion type is hindered by the low
signal-to-noise ratio in the measuring system.

Signal distortions can occur due to the side effect of
the signals of the electrical activity of the heart, shifts of
the electrodes relative to the designated position, changes
in muscle biopotentials, noise from electronic devices,
ambient electromagnetic radiation, and similar factors.

To date, a common method for determining the types
of movement is the use of various classifiers.

Russian Technological Journal. 2023;11(2):7-19

11



Robust neural network filtering
in the tasks of building intelligent interfaces

Anton V. Vasiliev,
Alexey O. Melnikov, Sergey A. Lesko

3. PROBLEM STATEMENT

To build an efficient interface based on EMG
signals, it is necessary to solve a number of problems.
First, it is necessary to clean the signal from noise,
which is recorded during excitation of human muscles.
Secondly, the signal must be classified in some way
so that the received actions or patterns can be used
to create control actions by the information system.
In this work, we will solve the problem of cleaning
the signal from noise. The main problem is the non-
linear nature of the noise. By noise, we mean some
non-linear component of the signal, which depends
on the parameters of recording the EMG signal from
a biological object. The amount of noise depends on
such parameters as the level of voltage in the laptop
electrical network, the parameters of the signal
amplifier, the quality of the electrodes, the quality of
the preparation of the skin surface for installing EMG
electrodes, etc.

A signal X is a sequence of samples x; (i = I,_N). It
is assumed that this signal may contain non-linear noise
Z., which can be suppressed using a filter:

I=X xh,

where I is a useful signal, X is a noisy signal, h is
a neural network filter.

We compared data for one type of gesture from two
subjects (Fig. 2). As can be seen from the figure, these
signals differ from each other not only in the phase of the
signal, but also in the shape. Neural network filtering is
used to minimize these differences.

The purpose of neural network filtering is to get rid of
the individual component of the signal, which varies from
person to person. This type of distortion is called individual
noise. Individual noise is understood as a non-linear
component of the signal, which can be defined as follows:

Z=X-1,

where Z is individual noise.

Signal from the first subject

Class 0 EMG signal for two subjects

60 —— Subject 1
- Subject 2
40 4
_g; 20 -
3 o L
IS
<

150 200 250 300 350 400
Time
Fig. 2. EMG signal for one gesture received from two
different subjects

0 50 100

The task is to find the filter parameters h, which will
minimize the difference in signals describing the same
gesture class, but received from different subjects. Such
a task can be described as:

X % h—X, x h) — min,
where i is the subject index, & is the gesture class number.
3.1. Signal processing block-diagram

After receiving the EMG signal from the sensors,
filtering is carried out in two stages. At the first stage,
a low-bandpass filter (up to 50 Hz) and a high-bandpass
filter (more than 1.5 MHz) are used. These filters allow
you to get rid of the noise generated by electronic
equipment and external static electric field. The signal
processing block-diagram is shown in Fig. 3.

3.2. Datasets

When planning the experiment, two databases
containing EMG data were considered suitable for
building an information system with gesture-based
control. The experiment required a data set containing
EMG signals received from the forearm region when

Unprocessed Frequency Neural network Filtered
signal filtering filtering signal l
The same
signal
Signal from the second subject
Unpr_ocessed » Fr(_equ(_ancy Neur.al ngtwork FiI_tered T
signal filtering filtering signal

Fig. 3. Block-diagram of neural network filtering
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making a set of hand gestures. When working with the
information system, each of the gestures can be used as
a control action when.

3.2.1. Ninapro Data

This database is available for academic purposes
on a dedicated website! [24]. The goal of the project is
to develop a family of algorithms that can significantly
increase dexterity and reduce learning time for
a controlled SEMG prosthesis. The project’s challenge
is how to provide patients with a cheap, easy to use
prosthesis that can be controlled in a natural way.

The data set consists of bioelectrical muscle activities
collected under special conditions using differential
SEMG electrodes. Currently, data are available for
67 healthy subjects and 11 amputees.

The Ninapro data collection process was designed to
be easily repeated for obtaining new data from different
research groups.

3.2.2. RF-Lab. Digital Signal Processing
Laboratory (DSP) RTU MIREA

The project database contains EMG signals sampled
from the forearm area. Six subjects participated in data
collection. Each subject consistently repeated one of
the 9 hand movements (gesture) 79 times. The signals
recorded for each gesture were written into a 400-sample
vector. The total number of signals is 2820 [9]. The data
set includes gestures of the following classes:

o wrist up (class 0);
wrist down (class 1);
clenching all fingers (class 2);
clenching the index finger (class 3);
clenching the middle finger (class 4);
clenching the ring finger (class 5);
clicking the thumb with the middle finger (class 6);
unclenching all fingers (class 7);
turning the hand to the left (class 8).
The following components were used to register
the signals: Arduino Leonardo (Arduino AG, China),
ECG-EMG Arduino Shield (OLIMEX LTD, Bulgaria),
single-channel surface electrodes and USB Type-A /
USB Micro-B.

As a result, 79 vectors of 400 units in length were
used for each gesture which provided a window in which
the action potential was captured. Thus, it includes
only the most important data that are needed for the
classification task, thereby reducing the consumed
computing resources and increasing the accuracy.

As part of this work, the RF-Lab? dataset was used
as it is focused on building a human-machine interface
with gesture control.

' http://ninapro.hevs.ch/. Accessed June 15, 2022.
2 https://rf-lab.org/. Accessed June 01, 2022.

3.3. Filtration quality assessment

To assess the quality of the signal, the standard
deviation of the EMG signals is analyzed. For each type
of movement, the value of the standard deviation of the
signal for all subjects is calculated (Fig. 4).
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Fig. 4. Standard deviation for gesture classes
for each subject

When filtering the signal, it is necessary to reduce
the standard deviation of the EMG signal within each
gesture class. As an example, the standard deviation was
calculated for a class 0 gesture before and after filtering
using a frequency filter (Fig. 5).

35
30
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— Before filtering
— After filtering
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Bpewms

Fig. 5. Comparison of the standard deviation of the EMG
signal amplitude before and after frequency filtering

It can be seen from the figure that frequency filtering
reduces the standard deviation of the signal over the
entire segment; therefore, this method is used to evaluate
the efficiency of signal filtering in our experiment.

4. DEVELOPED MODEL
OF A NEURAL NETWORK

Digital filters are widely used today in various areas
of signal processing, both technical and biological, which
include the EMG signal. Mathematical models of digital
filters can be described using vectors and numerical
matrices. For a binary signal, the numbers in the matrices
can be binary. There are two types of filters: finite pulse
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Fig. 6. Comparison of the activation function of ReLU (left), LeakyRelLU (center), and PReLU (right).
ais a parameter of the PReLU activation function; y is an input signal

response and infinite pulse response. The filter must
suppress the harmonic components of the original signal in
one frequency band (stop band) and pass them in another
frequency band (pass band). In most cases, in extremely
complex problems of signal analysis, classical techniques
based on the Fourier transform and wavelet transform are
used to construct the feature space. Due to the complexity
of understanding the nature of the signal, the features of one
task may be completely unsuitable for another task, and it is
required to construct a feature space from scratch. The EMG
signal falls into the category of signals with a complex nature,
for which standard filters are not suitable for processing. It
can be represented as a time series [25]. Therefore, to build
a filter for the EMG signal, it may be appropriate to use
intelligent models. One of the most effective intellectual
models at the moment is neural networks.

To solve the problem, we will use a neural network
type that includes convolution layers. Such networks are
called convolutional networks. As an activation function,
it is proposed to use parameterized ReLU (PReLU).
The use of this activation function is an achievement
in machine vision that has allowed for surpassing the
human level in ImageNet® image recognition tasks. The
error back propagation and update process for PReLUs
is simple and similar to traditional ReLUs. The main
difference between PReL U and ReLU is that this function
does not zero out negative input signals. Instead, negative
input signals are multiplied by some non-zero factor,
which allows negative values to be taken into account in
network training and signal processing. A comparison of
the PReLU activation function with a regular ReLU is
shown in Fig. 6.

As part of the National Data Science Bowl (NDSB)
Kaggle competition, the PReLU activation function
made it possible to reduce overtraining due to the
element of randomness in the work. When comparing
the classification accuracy of two convolutional artificial
neural networks with different activation functions on data
sets (images used to test the quality of pattern recognition
algorithms) CIFAR-10, CIFAR-100%, and NDSB?®,

3 https://www.image-net.org/. Accessed June 09, 2022.

4https://www.cs.toronto.edu/~kriz/cifarhtml. Accessed June 10,
2022.

5 https://www.kaggle.com/competitions/datasciencebowl/
overview/about-the-ndsb. Accessed June 10, 2022.

results were obtained that indicate that for all sets the
modified functions ReL U family activations have surpassed
traditional functions. RReLU is significantly superior to
other activation functions on the NDSB dataset because
on this dataset, the activation function avoids overtraining
as this dataset contains less training data. To train machine
learning models, modern cloud infrastructure tools such as
Docker® and Amazon Azure’ were used [26].

In the experiment, the Python 3.8 programming
language and the Keras 2.9.0% library were used when
building a neural network model. The architecture of the
neural network developed for filtering the EMG signal
is shown in Fig. 7.

conv2d_26_input: InputLayer

'

conv2d_26: Conv2D

l

dropout_6: Dropout

'

conv2d_27: Conv2D

'

flatten_11: Flatten

:

dense_11: Dense

Fig. 7. Convolutional neural network architecture

The developed model contains two convolutional
layers. A matrix of 20 % 20 serves as input data for
the network, which is a raw EMG signal consisting of

Shttps://www.docker.com/. Accessed June 10, 2022.

7https://azure.microsoft.com/en-us. Accessed June 10, 2022.

8 https://github.com/keras-team/keras/releases/tag/v2.9.0.
Accessed June 10, 2022.
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400 samples. The first layer contains 64 feature maps
of size 5 x 5 and the PReLLU activation function (with
parameter a = 0.02). The second convolutional layer
contains 32 feature maps of size 3 x 3. Then there is
a rectification layer and a fully connected output layer
with a dimension of 400, which corresponds to the
dimension of the input signal. Such a dimension at the
output of the network allows the output signal to be used
on a par with the input signal, expecting that the output
signal will retain useful information about the subject’s
wrist movement pattern. The model was trained using
Microsoft Azure® cloud computing power [26].

5. IMPLEMENTATION OF THE MODEL
AND ASSESSMENT OF THE OBTAINED RESULTS

In the experiment, a data set was used collected by
the team of the DSP Laboratory (RF-Lab) [9], containing
the data of one channel of the EMG signal received from
6 subjects. Each subject performed 9 different hand gestures.

5.1. Experiment structure

To train the neural network, the dataset was
transformed as follows. First, it was divided into
3 parts: training, validation and test sets. The training set
comprised 60% of the total data and included data from
four of the six subjects. The validation set contained
20% of the data, including data from the same four
subjects. The test sample contained the remaining 20%
of the total data and included data from two subjects
not participating in training. This approach was used to
demonstrate the validity of the resulting model on data
from subjects that the model did not see during training.
Each training example consisted of the original signal
as input and the paired signal as the target value. The
paired (target) signal was selected in such a way that it
belonged to another subject. The neural network was
trained using the Adam optimization algorithm [27], the

9 https://azure.microsoft.com/en-us. Accessed June 01, 2022.

Result of neural network filtering
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Fig. 8. Comparison of the standard deviation before
and after neural network filtering for each signal class

number of training epochs was 25. The mean squared
error [28] was used as the error function.

5.2. Results

After training, the resulting model was evaluated on the
remaining two subjects from the data set. Comparisons were
made for each signal class separately (such as wrist movement).
As an indicator of the effectiveness of the developed model,
the standard deviation of the signal before and after filtering
was measured. Its values before and after filtering are shown
in Fig. 8. The measurements were carried out for signals of
each class separately. As can be seen from the figure, the
signals for gestures with class 6 (clenching the ring finger) and
8 (unclenching all fingers) have the greatest deviation.

As can be seen, on average, the reduction in the
standard deviation is 5% for the signals received during
the movement of the hand. The best result was obtained
for movements with classes 4 and 5. An increase in the
standard deviation was recorded for signals with classes
2 and 8. A decrease in the standard deviation was achieved
for signals belonging to classes 0, 1, 3,4, 5, 6, and 7.

The results obtained allow us to speak about the
possibility of using neural network filtering in the tasks
of cleaning individual signals. The filtering result for the
class 0 gesture is shown in Fig. 9.

EMG signal before and after filtering

— Before filtering
After filtering

Amplitude

150 200 250 300 350 400
Time

0 50 100

Fig. 9. Signal standard deviation before and after neural network filtering
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for each subject from the sample
Table 1. Comparison of the filtering result for different signal classes
Signal class 0 1 2 3 4 5 6 7 8
Change in the value
of standard deviation 3.93 3.1 -1.33 2.16 3.95 6.03 0.99 0.07 —2.41
after filtering
CONCLUSIONS

We also compared the standard deviation between
different gestures for the same subject before and after
filtering. The data obtained show that the difference
between gestures remained almost at the same
level (Fig. 10).

As can be seen from the results, the developed
neural network filtering model is able to compensate for
individual components in the EMG signal. The obtained
indicators of signal quality improvement are shown in
Table 1.

In this work, a study of approaches and methods for
the development of neural network filters for biological
signals was carried out. The proposed scheme for filtering
biological signals takes the presence of individual signal
components into account. A model was developed and
a convolutional neural network for intelligent filtering
was trained. Over the course of the study, an efficient
convolutional neural network architecture for filtering
the EMG signal was identified.
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An experiment on filtering a single-channel EMG
signal showed the effectiveness of the proposed model.
By using neural network filtering, the influence of
individual noise in the EMG signal can be reduced by
an average of 5%.

In further studies, it is planned to evaluate the effect
of neural network filtering on the accuracy of gesture
classification using an EMG signal.
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