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Abstract
Objectives. In recent years, there has been growing scientific interest in the creation of intelligent interfaces for 
computer control based on biometric data, such as electromyography signals (EMGs), which can be used to classify 
human hand gestures to form the basis for organizing an intuitive human-computer interface. However, problems 
arising when using EMG signals for this purpose include the presence of nonlinear noise in the signal and the 
significant influence of individual human characteristics. The aim of the present study is to investigate the possibility 
of using neural networks to filter individual components of the EMG signal.
Methods. Mathematical signal processing techniques are used along with machine learning methods.
Results. The overview of the literature on the topic of EMG signal processing is carried out. The concept of intelligent 
processing of biological signals is proposed. The signal filtering model using a convolutional neural network structure 
based on Python 3, TensorFlow and Keras technologies was developed. Results of an experiment carried out on an 
EMG data set to filter individual signal components are presented and discussed.
Conclusions. The possibility of using artificial neural networks to identify and suppress individual human 
characteristics in biological signals is demonstrated. When training the network, the main emphasis was placed on 
individual features by testing the network on data received from subjects not involved in the learning process. The 
achieved average 5% reduction in individual noise will help to avoid retraining of the network when classifying EMG 
signals, as well as improving the accuracy of gesture classification for new users.
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Применение робастной нейросетевой фильтрации 
в задачах построения интеллектуальных интерфейсов
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@ Автор для переписки, e-mail: bysslaev@gmail.com

Резюме 
Цели. В последние годы возрос научный интерес к построению интеллектуальных интерфейсов для управ-
ления компьютером на основе биометрических данных. Одним из источников таких данных служит сигнал 
электромиографии (ЭМГ). Сигнал ЭМГ можно использовать для классификации жестов рук человека. Это 
позволяет организовать интуитивно понятный интерфейс «человек – компьютер». Основными проблемами 
при использовании сигналов ЭМГ являются наличие нелинейных шумов в сигнале и значительное влияние 
индивидуальных особенностей человека. Цель работы – исследование возможностей применения нейрон-
ных сетей для фильтрации индивидуальных компонент сигнала ЭМГ.
Методы. Использованы математические методы обработки сигналов и методы машинного обучения.
Результаты. Проведен анализ исследований по теме обработки ЭМГ-сигналов. Предложена концепция ин-
теллектуальной обработки биологических сигналов. Разработана модель фильтрации сигнала, построена 
структура сверточной нейронной сети на основе технологий Python 3, TensorFlow и Keras. Проведен экспери-
мент на наборе данных ЭМГ по фильтрации индивидуальных компонент сигнала.
Выводы. Продемонстрирована возможность применения искусственных нейронных сетей для выявления 
и подавления индивидуальных особенностей человека в биологических сигналах. При обучении сети основ-
ной упор делался на индивидуальные особенности, тестируя сеть на данных, полученных от субъектов, не 
участвующих в процессе обучения. Достигнуто уменьшение индивидуального шума в среднем на 5%. Для 
решения задачи классификации сигнала ЭМГ данный результат поможет избежать переобучения сети и по-
высить точность классификации жестов для новых пользователей.

Ключевые слова: цифровая обработка сигнала, частотная фильтрация, электромиография, машинное обу-
чение, нейронные сети, интерфейсы, управление жестами

INTRODUCTION

One of the key steps in software design is the choice 
of a  method to communicate with an individual. For 
this, unified structural, hardware, and software tools are 
used, which are necessary for the interaction of various 
functional elements of the system. A set of such elements 
is referred to as an “interface”. The interface between 
an individual and software is especially important since 

this is what standardizes the interaction and determines 
the boundaries of the functionality of working with the 
software. Thus, interface concept is closely related to the 
usability of software systems. First of all, the usability is 
associated with a graphical user interface. The interface 
is considered usable if the user needs the least amount 
of time to use the information system. The second 
parameter that affects the usability is, of course, the 
simplicity and time needed to train a new user to work 
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with the information system. A  good interface should 
be intuitive and have as few hidden dependencies as 
possible, as well as a minimal learning curve. In addition 
to the graphical interface, an information system may 
also have some command-program interface, which is 
a set of messages (commands) that can be perceived by 
the software system and processed using the application 
programming interface (API). The usability of this type 
of interface is evaluated by the number of commands 
that need to be used to perform the targeted action on the 
system. At the same time, it is desirable that commands 
for different target actions not be repeated (duplicated). 
These requirements impose a  serious responsibility 
on interface developers when designing interfaces for 
software products and systems.

In the modern digital space, a  human  (user) is 
transformed into an interactive system possessing 
a  rapidly expanding set of its capabilities. However, 
the range of interactivity varies from system to system. 
For example, in the aviation or aerospace industry, 
where the working conditions of a user operating with 
an information system are constrained by physical 
conditions, interactivity can be described as limited. 
On the other hand, everyday interactive systems, such 
as multimedia devices and gaming complexes, do not 
impose significant physical restrictions on the set of 
interactions of an individual (user) with an information 
system.

In order to improve the efficiency and usability 
of information systems, researchers are constantly 
looking for new ways to organize interfaces. Among 
the factors that reduce the usability of information 
systems, we can distinguish between technical, physical, 
and informational varieties. Technical factors refer to 
the quality of technologies applied both in software 
development  (network speed, amount of memory) and 
in hardware  (for example, the quality of a  computer 
monitor or camera). Physical factors mean the physical 
environmental conditions during the use of the software 
system, such as humidity, light, visibility, the possibility 
of physical movements, etc. Information factors are 
understood as the development of the interface of the 
software system that ensures ease of use in general, for 
example, the size of buttons in the graphical interface, 
the ability to enter text, the ability to save data, etc.

Interfaces can be divided into several categories: 
text, graphic, voice, video and hybrid. To improve 
usability, each of these approaches should be 
considered. Currently, interfaces based on audio and 
video information received from various external 
sensors are being actively developed. Among the 
difficulties of using video, the following factors can be 
distinguished: extraneous noise, poor visibility, physical 
obstacles between the camera and the subject, the lack 
of the appropriate angle for shooting, or a lack of verbal 

communication (silence mode). Nevertheless, interfaces 
based on audio or video can greatly expand the scope 
of software systems. Moreover, while a  text-based or 
graphical interface necessarily requires an input console 
or a screen plus input devices (keyboard), an audio- or 
video-based interface requires only a  microphone and 
a video camera. This allows a user to free his or her hands 
and improve the quality of the user experience when 
working with the system, using hands as an additional 
control channel. In order to overcome the discussed 
limitations of interfaces based on video information and 
preserve their advantages, it is required to use a  new 
type of interface either hybrid or biological. Biological 
interfaces are widespread in medicine. It should be 
noted, however, that in medicine, an individual interacts 
with information systems mostly passively, allowing the 
device to retrieve and process the information received 
through the interface. At the same time, the potential of 
using biological interfaces is much wider. They can be 
used to build complete information systems with a high 
level of usability.

Measurements of biological signals, such as 
electromyography  (EMG), electroencephalography 
(EEG), etc., can be used as additional information 
exchange channels. In recent years, innovative research 
has been carried out on the development and use of clothes 
containing various sensors and transducers [1, 2], which 
allow a person’s physiological activities to be recorded. 
Such studies commonly use items of clothing that 
contain sensors for recording EMG signals [3, 4]. EMG 
allows you to record the electrical activity that occurs 
when the muscle fibers are excited. Clothes containing 
EMG sensors are in demand in many areas: from any 
physically active activity  (e.g., construction work and 
sporting activities) to the calmest (e.g., office work).

EMG signals are used to diagnose neuromuscular 
diseases, in psychophysiology, in the study of motor 
activity, in studies of higher nervous activity, to evaluate 
the results of prosthetics and orthopedics, and in 
engineering psychology. Among other things, research 
into the possibility of organizing a silent interface, that is, 
an interface that does not require voice input and allows 
controlling the information system through articulation, 
has recently gained popularity.

The present work is focused on the use of EMG 
signals as a  basis for a  human-computer interface. 
Much research is aimed at analyzing the EMG signal 
for developing smart prosthetics systems  [5, 6] and 
systems controlled by gestures  [7]. Besides the EMG 
signal, ultrasonic scanners can be used to solve the 
problems of gesture classification  [8]. A  particular 
problem identified by researchers involves the difficulty 
of recovering specific control units in the EMG signal, 
along with a high dependence of classification accuracy 
on the specific person with whom the experiment is 
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carried out [9, 10]. To solve such problems, methods of 
decomposition [11] and clustering of EMG signals are 
used in order to identify the muscle groups involved in 
a particular hand gesture [3]. Signal conversion methods 
used to minimize noise include the method of principle 
components, auto-encoders, etc. [12, 13].

1. LITERATURE OVERVIEW

In a number of studies devoted to the classification 
of the EMG signal, the problem of its filtering is raised. 
In most of the publications only frequency filtering is 
used, but other approaches are researched as well. The 
most effective method is the preliminary clustering of 
EMG signals in order to isolate motor units. However, 
this approach leads to irreversible signal distortion and 
does not apply to filtering.

In [14], the authors developed a system for identifying 
muscles using needle EMG for prosthetics. The main 
characteristics of this model are the following: the use of 
needle EMG (16 sensors) and kinematic gloves, signal 
preprocessing with low  (10  Hz) and high  (100  Hz) 
frequency filters, and the use of artificial neural 
networks. The data set consists of 5  movements with 
10 repetitions of each movement. The input data for the 
neural network are correlation matrices. The advantage 
of the model is the compactness of a  fully connected 
neural network (3 hidden layers). The disadvantages of 
the model include relatively low accuracy  (90.1% for 
the test set) and the need to use kinematic gloves. The 
negative impact in model evaluation is due to the low 
accuracy of signal recognition from a number of muscles 
for the data set. The authors note that classification 
errors may be due to insufficiently accurate labeling of 
reference data.

In  [15], the authors conducted an experiment to 
compare statistical approaches to classify an EMG signal 
with machine learning models. The task of the researchers 
was the binary classification of the EMG signal. The 
goal was to recognize meal intervals in a  person’s 
daily activities. The comparison was made between 
SVM [16], RandomForest [17], LogisticRegression [18], 
XGBoost  [19], LightGBM  [20], LSTM  [21], and 
Conv-LSTM models  [22]. The advantages of the 
work include an extensive comparison of statistical 
methods and machine learning methods. An accuracy 
of 94.76% was achieved for the balanced dataset for 
statistical methods and 95.35% for the unbalanced 
dataset. XGBoost turned out to be the most effective 
statistical method for classifying the EMG signal. 
The use of LSTM-type neural networks has improved 
the classification accuracy up to 97%, however, the 
researchers note the problem associated with the need for 
a large amount of data to train this type of networks, as 
well as insufficient data for machine learning methods, 

data pollution by cumulative actions, poor Bluetooth 
connectivity, features of right-handers and left-handers.

In [3], the authors developed a device for reading 
an EMG signal powered by solar energy. The main 
characteristics of the developed model are ultra-low 
power consumption and an intelligent EMF sensor 
localization system on a user’s wrist. Data for the 
experiment were collected from 20 people and included 
15 unique hand movements. Accuracy of 95.3% was 
achieved when classifying 15 gestures. The position 
of sensors on a person’s wrist is one of the problems 
for this kind of tasks. EMG signal analysis methods are 
highly sensitive to the position of sensors. Therefore, the 
model needs to be retrained every time the position of the 
sensors changes. This problem can be solved by locating 
sensors on the wrist using intelligent data processing 
from capacitive sensors. In order to analyze EMG 
signals, clustering of all wrist muscles into 8  groups 
was performed. To adjust the position of the bracelet 
on the wrist, calibration based on data from 15 sensors 
using convolution was used. To classify gestures, a 
convolutional neural network with two convolution 
layers with the rectified linear unit (ReLU) activation 
function was used. It is noted that it is such small number 
of layers allows solving the problem of retraining. The 
disadvantage of the method is a significant drop in the 
accuracy of the classification of movements in a static 
position (a decrease in accuracy by 3%). Also, gestures 
describing fine motor skills of fingers were not included 
in the work.

In  [23], a  model for classifying gestures based on 
ultrasound was developed. An ultrasound representation 
of the muscles of the forearm was used to classify 
gestures.

2. NATURE OF THE EMG SIGNAL

EMG is a  method for studying the bioelectric 
potentials that arise in the skeletal muscles of humans 
and animals during excitation of muscle fibers.

There are three types of EMG:
1)	EMG using needle electrodes that are inserted into 

the muscle;
2)	stimulation EMG;
3)	EMG using skin electrodes.

Needle EMG provides the most accurate 
representation of the electrical activity that occurs during 
muscle stimulation but requires physical penetration into 
human muscle tissue. The invasive nature of the method 
is a  limitation for use as a  basis for an information 
system interface.

Stimulation EMG is a  type of non-invasive EMG 
that uses skin surface electrodes to assess the conduction 
of an impulse along peripheral nerves in response to 
stimulation with a low-intensity electrical current. This 
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type of EMG is used, in particular, to diagnose diseases 
of the peripheral nervous system.

Surface EMG is a  type of EMG in which skin 
surface electrodes are used. Unlike stimulation EMG, 
this type does not involve stimulation of the nervous 
system but, on the contrary, consists only in recording 
electrical activity during active excitation and relaxation 
of muscle tissues.

With weak muscle contraction, either the potential 
of a  single motor unit or the potential of many motor 
units is recorded. With an average strength and strong 
muscle contraction, interference EMG is observed, in 
which it is almost impossible to identify the potentials 
of individual motor units. For people at rest, who do 
not have problems in the area of the nervous system, 
usually either no electrical potential activity is detected 
or electrical potentials of individual muscle fibers are 
recorded.

In a  simple case, we will consider the following 
scenario: a  muscle reacts to a  single action with 
a  single contraction. In this case, three phases can be 
distinguished:

•	 latent period  (from 2–3  to 10  ms), lasting from 
the moment of applying irritation to the start of 
contraction;

•	 shortening or contraction phase (40–50 ms);
•	 relaxation phase (about 50 ms).

The device for recording an EMG signal includes 
electrodes that pick up muscle potentials, an amplifier of 
these potentials, and a recording device.

The main parameters of the EMG signal are:
•	 amplitude (1 µV – 50 mV),
•	 frequency (0.5–500 Hz).

To analyze the EMG signal in more detail, it 
is presented as a  decomposition of frequencies and 
amplitudes obtained using the Fourier transform.

Any part of a  muscle can contain muscle fibers 
belonging to 20–50 motor cells. As a result of movement, 

many motor units are excited. The cumulative action 
potential can be recorded using EMG equipment and will 
be presented in the time domain in the following form:

S t t n t k f
t

a
n tj

j
j

ij

ij

j
( ) ( ) ( ) ( )� � �

��

�
�
�

�

�
�
�
�� ��SAPMC

�

where SAPMCj is the sequence of the action potential of 
the motor cell; kj is the amplitude factor for the muscle 
of the jth motor cell; f is the shape of the action potential; 
θij is the time of occurrence of SAPMC; aj is the scale 
change; n(t) is the additional noise.

In this work, we use the signal obtained with 
a  single-channel surface EMG. The use of a  single-
channel system makes it possible to simplify signal 
registration by ignoring the time synchronization of data 
from parallel EMG channels.

The main problem when using EMG signals as 
a  control interface is their variability and instability, 
primarily due to external interference, electrode 
displacement, skin sweating, and muscle fatigue.

Attempts to eliminate the influence of muscle fatigue 
consist in the use of switching devices when the signal 
changes, or the use of static methods such as filtering.

The success of the implementation of the device 
control interface is determined by the degree of reliability 
of the decoding of muscle biopotentials in the registered 
EMG signal during the planned movement. An accurate 
determination of the motion type is hindered by the low 
signal-to-noise ratio in the measuring system.

Signal distortions can occur due to the side effect of 
the signals of the electrical activity of the heart, shifts of 
the electrodes relative to the designated position, changes 
in muscle biopotentials, noise from electronic devices, 
ambient electromagnetic radiation, and similar factors.

To date, a common method for determining the types 
of movement is the use of various classifiers.

Fig. 1. EMG signals in the time and frequency domains
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3. PROBLEM STATEMENT

To build an efficient interface based on EMG 
signals, it is necessary to solve a number of problems. 
First, it is necessary to clean the signal from noise, 
which is recorded during excitation of human muscles. 
Secondly, the signal must be classified in some way 
so that the received actions or patterns can be used 
to create control actions by the information system. 
In this work, we will solve the problem of cleaning 
the signal from noise. The main problem is the non-
linear nature of the noise. By noise, we mean some 
non-linear component of the signal, which depends 
on the parameters of recording the EMG signal from 
a biological object. The amount of noise depends on 
such parameters as the level of voltage in the laptop 
electrical network, the parameters of the signal 
amplifier, the quality of the electrodes, the quality of 
the preparation of the skin surface for installing EMG 
electrodes, etc.

A signal X is a sequence of samples xi (i = 1, N ). It 
is assumed that this signal may contain non-linear noise 
Z, which can be suppressed using a filter:

I = X × h,

where I  is a  useful signal, X  is a  noisy signal, h  is 
a neural network filter.

We compared data for one type of gesture from two 
subjects (Fig. 2). As can be seen from the figure, these 
signals differ from each other not only in the phase of the 
signal, but also in the shape. Neural network filtering is 
used to minimize these differences.

The purpose of neural network filtering is to get rid of 
the individual component of the signal, which varies from 
person to person. This type of distortion is called individual 
noise. Individual noise is understood as a  non-linear 
component of the signal, which can be defined as follows:

Z = X – I,

where Z is individual noise.

Signal from the first subject

The same  
signal

Signal from the second subject

Unprocessed 
signal

Unprocessed 
signal

Frequency  
filtering

Frequency  
filtering

Neural network 
filtering

Neural network 
filtering

Filtered  
signal

Filtered  
signal

Fig. 3. Block-diagram of neural network filtering

The task is to find the filter parameters h, which will 
minimize the difference in signals describing the same 
gesture class, but received from different subjects. Such 
a task can be described as:

(Xi, k × h − Xj, k × h) → min,

where i is the subject index, k is the gesture class number.

3.1. Signal processing block-diagram

After receiving the EMG signal from the sensors, 
filtering is carried out in two stages. At the first stage, 
a low-bandpass filter (up to 50 Hz) and a high-bandpass 
filter (more than 1.5 MHz) are used. These filters allow 
you to get rid of the noise generated by electronic 
equipment and external static electric field. The signal 
processing block-diagram is shown in Fig. 3.

3.2. Datasets

When planning the experiment, two databases 
containing EMG data were considered suitable for 
building an information system with gesture-based 
control. The experiment required a  data set containing 
EMG signals received from the forearm region when 
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making a set of hand gestures. When working with the 
information system, each of the gestures can be used as 
a control action when.

3.2.1. Ninapro Data
This database is available for academic purposes 

on a dedicated website1 [24]. The goal of the project is 
to develop a family of algorithms that can significantly 
increase dexterity and reduce learning time for 
a  controlled sEMG prosthesis. The project’s challenge 
is how to provide patients with a  cheap, easy to use 
prosthesis that can be controlled in a natural way.

The data set consists of bioelectrical muscle activities 
collected under special conditions using differential 
sEMG electrodes. Currently, data are available for 
67 healthy subjects and 11 amputees.

The Ninapro data collection process was designed to 
be easily repeated for obtaining new data from different 
research groups.

3.2.2. RF-Lab. Digital Signal Processing 
Laboratory (DSP) RTU MIREA

The project database contains EMG signals sampled 
from the forearm area. Six subjects participated in data 
collection. Each subject consistently repeated one of 
the 9 hand movements  (gesture) 79  times. The signals 
recorded for each gesture were written into a 400-sample 
vector. The total number of signals is 2820 [9]. The data 
set includes gestures of the following classes:

•	 wrist up (class 0);
•	 wrist down (class 1);
•	 clenching all fingers (class 2);
•	 clenching the index finger (class 3);
•	 clenching the middle finger (class 4);
•	 clenching the ring finger (class 5);
•	 clicking the thumb with the middle finger (class 6);
•	 unclenching all fingers (class 7);
•	 turning the hand to the left (class 8).

The following components were used to register 
the signals: Arduino Leonardo  (Arduino AG, China), 
ECG-EMG Arduino Shield (OLIMEX LTD, Bulgaria), 
single-channel surface electrodes and USB Type-A / 
USB Micro-B.

As a result, 79 vectors of 400 units in length were 
used for each gesture which provided a window in which 
the action potential was captured. Thus, it includes 
only the most important data that are needed for the 
classification task, thereby reducing the consumed 
computing resources and increasing the accuracy.

As part of this work, the RF-Lab2 dataset was used 
as it is focused on building a human-machine interface 
with gesture control.

1   http://ninapro.hevs.ch/. Accessed June 15, 2022.
2   https://rf-lab.org/. Accessed June 01, 2022.

3.3. Filtration quality assessment

To assess the quality of the signal, the standard 
deviation of the EMG signals is analyzed. For each type 
of movement, the value of the standard deviation of the 
signal for all subjects is calculated (Fig. 4).
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Fig. 4. Standard deviation for gesture classes  
for each subject

When filtering the signal, it is necessary to reduce 
the standard deviation of the EMG signal within each 
gesture class. As an example, the standard deviation was 
calculated for a class 0 gesture before and after filtering 
using a frequency filter (Fig. 5).
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Fig. 5. Comparison of the standard deviation of the EMG 
signal amplitude before and after frequency filtering

It can be seen from the figure that frequency filtering 
reduces the standard deviation of the signal over the 
entire segment; therefore, this method is used to evaluate 
the efficiency of signal filtering in our experiment.

4. DEVELOPED MODEL  
OF A NEURAL NETWORK

Digital filters are widely used today in various areas 
of signal processing, both technical and biological, which 
include the EMG signal. Mathematical models of digital 
filters can be described using vectors and numerical 
matrices. For a binary signal, the numbers in the matrices 
can be binary. There are two types of filters: finite pulse 

http://ninapro.hevs.ch/
https://rf-lab.org/
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response and infinite pulse response. The filter must 
suppress the harmonic components of the original signal in 
one frequency band (stop band) and pass them in another 
frequency band  (pass band). In most cases, in extremely 
complex problems of signal analysis, classical techniques 
based on the Fourier transform and wavelet transform are 
used to construct the feature space. Due to the complexity 
of understanding the nature of the signal, the features of one 
task may be completely unsuitable for another task, and it is 
required to construct a feature space from scratch. The EMG 
signal falls into the category of signals with a complex nature, 
for which standard filters are not suitable for processing. It 
can be represented as a time series [25]. Therefore, to build 
a filter for the EMG signal, it may be appropriate to use 
intelligent models. One of the most effective intellectual 
models at the moment is neural networks.

To solve the problem, we will use a neural network 
type that includes convolution layers. Such networks are 
called convolutional networks. As an activation function, 
it is proposed to use parameterized ReLU  (PReLU). 
The use of this activation function is an achievement 
in machine vision that has allowed for surpassing the 
human level in ImageNet3 image recognition tasks. The 
error back propagation and update process for PReLUs 
is simple and similar to traditional ReLUs. The main 
difference between PReLU and ReLU is that this function 
does not zero out negative input signals. Instead, negative 
input signals are multiplied by some non-zero factor, 
which allows negative values to be taken into account in 
network training and signal processing. A comparison of 
the PReLU activation function with a  regular ReLU is 
shown in Fig. 6.

As part of the National Data Science Bowl  (NDSB) 
Kaggle competition, the PReLU activation function 
made it possible to reduce overtraining due to the 
element of randomness in the work. When comparing 
the classification accuracy of two convolutional artificial 
neural networks with different activation functions on data 
sets (images used to test the quality of pattern recognition 
algorithms) CIFAR-10, CIFAR-1004, and NDSB5,  

3 https://www.image-net.org/. Accessed June 09, 2022.
4 https://www.cs.toronto.edu/~kriz/cifar.html. Accessed June 10, 

2022.
5 https://www.kaggle.com/competitions/datasciencebowl/

overview/about-the-ndsb. Accessed June 10, 2022.

results were obtained that indicate that for all sets the 
modified functions ReLU family activations have surpassed 
traditional functions. RReLU is significantly superior to 
other activation functions on the NDSB dataset because 
on this dataset, the activation function avoids overtraining 
as this dataset contains less training data. To train machine 
learning models, modern cloud infrastructure tools such as 
Docker6 and Amazon Azure7 were used [26].

In the experiment, the Python 3.8  programming 
language and the Keras 2.9.08 library were used when 
building a neural network model. The architecture of the 
neural network developed for filtering the EMG signal 
is shown in Fig. 7.

Fig. 7. Convolutional neural network architecture

The developed model contains two convolutional 
layers. A  matrix of 20  × 20  serves as input data for 
the network, which is a raw EMG signal consisting of 

6 https://www.docker.com/. Accessed June 10, 2022.
7 https://azure.microsoft.com/en-us. Accessed June 10, 2022.
8 https://github.com/keras-team/keras/releases/tag/v2.9.0. 

Accessed June 10, 2022.
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Fig. 6. Comparison of the activation function of ReLU (left), LeakyReLU (center), and PReLU (right).  
а is a parameter of the PReLU activation function; y is an input signal

https://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/competitions/datasciencebowl/overview/about-the-ndsb
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https://www.docker.com/
https://azure.microsoft.com/en-us
https://github.com/keras-team/keras/releases/tag/v2.9.0
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400 samples. The first layer contains 64 feature maps 
of size 5 × 5 and the PReLU activation function (with 
parameter a  = 0.02). The second convolutional layer 
contains 32 feature maps of size 3 × 3. Then there is 
a rectification layer and a fully connected output layer 
with a  dimension of 400, which corresponds to the 
dimension of the input signal. Such a dimension at the 
output of the network allows the output signal to be used 
on a par with the input signal, expecting that the output 
signal will retain useful information about the subject’s 
wrist movement pattern. The model was trained using 
Microsoft Azure9 cloud computing power [26].

5. IMPLEMENTATION OF THE MODEL  
AND ASSESSMENT OF THE OBTAINED RESULTS

In the experiment, a  data set was used collected by 
the team of the DSP Laboratory (RF-Lab) [9], containing 
the data of one channel of the EMG signal received from 
6 subjects. Each subject performed 9 different hand gestures.

5.1. Experiment structure

To train the neural network, the dataset was 
transformed as follows. First, it was divided into 
3 parts: training, validation and test sets. The training set 
comprised 60% of the total data and included data from 
four of the six subjects. The validation set contained 
20% of the data, including data from the same four 
subjects. The test sample contained the remaining 20% 
of the total data and included data from two subjects 
not participating in training. This approach was used to 
demonstrate the validity of the resulting model on data 
from subjects that the model did not see during training. 
Each training example consisted of the original signal 
as input and the paired signal as the target value. The 
paired (target) signal was selected in such a way that it 
belonged to another subject. The neural network was 
trained using the Adam optimization algorithm [27], the 

9 https://azure.microsoft.com/en-us. Accessed June 01, 2022.
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Fig. 8. Comparison of the standard deviation before  
and after neural network filtering for each signal class

number of training epochs was 25. The mean squared 
error [28] was used as the error function.

5.2. Results

After training, the resulting model was evaluated on the 
remaining two subjects from the data set. Comparisons were 
made for each signal class separately (such as wrist movement). 
As an indicator of the effectiveness of the developed model, 
the standard deviation of the signal before and after filtering 
was measured. Its values before and after filtering are shown 
in Fig. 8. The measurements were carried out for signals of 
each class separately. As can be seen from the figure, the 
signals for gestures with class 6 (clenching the ring finger) and 
8 (unclenching all fingers) have the greatest deviation.

As can be seen, on average, the reduction in the 
standard deviation is 5% for the signals received during 
the movement of the hand. The best result was obtained 
for movements with classes 4 and 5. An increase in the 
standard deviation was recorded for signals with classes 
2 and 8. A decrease in the standard deviation was achieved 
for signals belonging to classes 0, 1, 3, 4, 5, 6, and 7.

The results obtained allow us to speak about the 
possibility of using neural network filtering in the tasks 
of cleaning individual signals. The filtering result for the 
class 0 gesture is shown in Fig. 9.
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We also compared the standard deviation between 
different gestures for the same subject before and after 
filtering. The data obtained show that the difference 
between gestures remained almost at the same 
level (Fig. 10).

As can be seen from the results, the developed 
neural network filtering model is able to compensate for 
individual components in the EMG signal. The obtained 
indicators of signal quality improvement are shown in 
Table 1.

CONCLUSIONS

In this work, a study of approaches and methods for 
the development of neural network filters for biological 
signals was carried out. The proposed scheme for filtering 
biological signals takes the presence of individual signal 
components into account. A model was developed and 
a  convolutional neural network for intelligent filtering 
was trained. Over the course of the study, an efficient 
convolutional neural network architecture for filtering 
the EMG signal was identified.
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Table 1. Comparison of the filtering result for different signal classes

Signal class 0 1 2 3 4 5 6 7 8

Change in the value  
of standard deviation  

after filtering
3.93 3.1 −1.33 2.16 3.95 6.03 0.99 0.07 −2.41
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