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Abstract

Objectives. Network diagrams are used as an information support element in planning and project management
processes for structuring planned work and calculating project efficiency characteristics. In order to optimize and
balance resources used in projects, it becomes necessary to locate in these models not only the critical path of the
maximum weighted length, but also the subcritical paths closest to it having a shorter length in relation to it. The
aim of the work is to synthesize and analyze an algorithm for finding k-shortest paths between the input and output
network vertices, on which basis the above-mentioned subcritical paths can be identified.

Methods. The provisions of graph theory and group theory, as well as the method of dynamic programming, were
used.

Results. An algorithm for finding k-shortest paths in contourless directed graphs having a strict order relation
was developed. Abstract elements were defined according to group theory in graphs as p-contours, between
which a multilevel structure of relations for implementing the necessary search of paths was then established. For
substantiating the efficiency of the constructed algorithm, the validity of the main provisions was demonstrated
as follows: firstly, the multilevel system of relations is exhaustive; secondly, there is no loss in the final solution during
the operation of the algorithm; thirdly, the paths obtained as a result of the work of the algorithm satisfy the main
required relation between them. Numerically, the algorithm was implemented by the dynamic programming method
extended by means of an additional functional relationship, implying the presence of suboptimal policies.
Conclusions. The conducted runs of computational experiments confirmed the operability and efficiency of the
software-implemented algorithm. The performed analysis demonstrated the good convergence characteristics
of the proposed algorithm as compared with other algorithms of this class applied to network diagrams. On this
basis, it can be recommended for practical use in project management information systems.
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Peslome

Lenu. MHdopmaunoHHasa nogaepxka npoueccoB NAaHMPOBaHUS U yNpaBieHUs NPoeKTaMn UCMNosb3yeT B Kade-
CTBE MOAenn ceTeBble rpadunkun, NnomorarLwme B GoOpM1MpPOBaHNN CTPYKTYPbI MIaHUpyeMbix paboT 1 pacyeTe xa-
pakTepncTuK 9hPeKkTMBHOCTN NpoekTa. C Lenbio ONTMMU3aumnmy 1 BbipaBHUBAHUS PECYPCOB, NCMOJIb3YEMbIX B MPO-
eKTax, BOSHMKAEeT HEOBXOAMMOCTb HAXOXAEHUSI HA 3TUX MOAENSX HEe TONbKO KPUTUYECKOro NyTu MakCUMaslbHOM
B3BELLUEHHOW OJINHbI, HO 1 BAMXKAALLMX K HEMY MOAKPUTUYECKUX NMYyTEN C MEHbLLEN MO OTHOLLEHUIO K HEMY OJINHOWA.
Llenb paboTbl — CUHTE3 1 aHaIM3 aNiropUTMa Nomcka k-kpaTdyanimx nyTen Mexay BepLinHamMm BXo4a 1 BbiIxoga CeTu,
NMO3BOJIAIOLLENrO MAEHTUDULMPOBATD BbllleHAa3BaHHbIE MOAKPUTUYECKUE MYTU.

MeTopabl. Vicnonb3oBaHbl NOMOXEHUS Teopun rpadoB 1 TEOPUM TPYIM, a TakkKe MeTon, AMHAMUYECKOro nporpam-
MUPOBaHUS.

PesynbTaTtbl. Pa3paboTaH anropmutM nomcka k-kpatyaniimx nyTei Ha OPUEHTUPOBAHHbLIX rpadax 6e3 KOHTYPOB C OT-
HOLLEHMEM cTpororo nopsiaka. C ncnonbL3oBaHneM Teopun rpynn Ha rpadax 6bm onpeneneHbl abCTpakTHbIE 31EMEH-
Tbl — P-KOHTYPbI, MEXAY KOTOPbIMU Oblnia yCTaHOBIEHA MHOrOYPOBHEBAS CTPYKTYypPa OTHOLLIEHWIA, MO3BOMMBLUAS Peaninso-
BbIBaTb HEOOXOAMMBI MOUCK NMyTel. B pamkax 060CHOBaHUS paboToCnoCOOHOCTY NOCTPOEHHOrO alropmUTMa AoKa3aHa
CNpaBe/IMBOCTb OCHOBHbIX MOJIOXEHWIA: BO-NEPBbIX, MHOrOYPOBHEBASI CUCTEMA OTHOLLIEHUI SIBNSIETCS UCUEPTbIBAIOLLIEN;
BO-BTOPbIX, HE MPOVCXOAMT NOTEPb B OKOHYATESIbHOM PELLEHNM B NMPoLLecce paboTbl anroputma; B-TPEeTbUX, MyTH, Haii-
LeHHble B peaynbTate paboThl anroputMa, YA0BNIETBOPSAIOT OCHOBHOMY TPEOYEMOMY COOTHOLLEHMIO MEXAy HUMU. Yumc-
JIEHHO aNrOpPUTM peasiM3oBaH METOA0M ANHAMUYECKOIO NPOrpaMMNPOBaHUS, KOTOPbIM Oblil pacLLUMPEH 3a CHET UCMOJb-
30BaHWS JOMNONHUTENBHOIO GYHKUMOHAIBHOrO COOTHOLLEHUS, MpeanofiaratoLLero Hannmyme noaonTMMasbHbIX MOUTYK.
BbiBoAgbl. MMpoBeaeHHas cepust BbIMUCTIUTENBbHbIX 3KCNEPMMEHTOB noaTeepanna padboTocrnocobHOCTb U adpdek-
TUBHOCTb NPOrpaMMHO peanm30BaHHOIO afiropuTMa. BbINONHEHHbIM aHann3 nokasas XopoLune XapakTepucTukm
CXOAMMOCTU MPEeasIoXXeHHOro anropuTMa B CpaBHEHUM C aIfTOPUTMaMM AAHHOIO Kflacca, NPUMEHSIEMbIMU K ceTe-
BbIM rpadukamM. To No3BONSET PEKOMEHAOBATL €ro K NPakTUYeCKOMY UCMOJIb30BaHNIO B UHPOPMALIMOHHBLIX CUCTE-
Max yrnpaBJieHNs NPOEeKTaMu.

KnioueBble cnosa: yrnpassieHne rnpoekrtamm, ceteBor rpaduk, KPUTUYECKUA NyTb, airOPUTM, BbIHUCIIUTESbHbIN

9KCMNEePUMEHT
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Mpo3payHocTb GUHAHCOBOW AEeATENIbHOCTU: ABTOP HE MMeeT GMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEACTaBNEH-

HbIX MaTepunanax nin Mmetogax.

ABTOp 3asB155€T 06 OTCYTCTBUM KOHGDINKTA UHTEPECOB.

INTRODUCTION

Established project management methodologies use
a contourless network-oriented graph as the main model
for displaying the structure of the mutual dependence of
project work stages and calculating the time characteristics
of these stages, as well as those of the project as a
whole [1-3]. In the terminology of network planning and

management, such a model is referred to as a network
diagram, which may be constructed according to one of
two principles. In the first case, typical for the Project
Evaluation and Review Technique (PERT) methodology,
the work in the model display uses graph arcs to represent
the “event-work”™ principle, while the second uses graph
vertices according to the “work-relationship™ principle.
However, both of these approaches involve the definition of
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a critical path on the network diagram, having a maximum
weighted length and connecting a hanging vertex to a dead
end, which may correspond to the beginning or end of
the project. In this case, the length is calculated based on
the value of the critical work execution time displayed by
the active elements of the path (arcs or vertices). The use
of a critical path is an integral part of network planning
and project management methodology, as reflected in
studies at the stage of its theoretical development (an
extensive bibliography of this period is presented in [4])
and subsequent development [5—8].

Actual projects are implemented in various
arcas under conditions of limited material, labor and
financial resources. This implies the development
of project management theory in the direction of
optimizing the structure of the project according to the
criterion of its minimum cost under particular resource
constraints [7—12]. In this case, the question arises of the
need to search the network diagram not only for critical,
but also for subcritical paths in order to implement the
above-mentioned optimization and leveling of resources.
If the critical path Q can be defined as

Q: L(Qo)=é?2>;z{L(Qj)}, )

where L(€) is the length of the critical path, and Q is
the set of all full paths on the network diagram, then the
subcritical paths will form an ordered set of full paths of
the graph {Q, Q,, ...}, characterized as follows:

L(€Qg) = L(Q)); L(€2) = L(; ). 2

To find the critical path, it is sufficient to use any
algorithm to find the shortest weighted path between the
vertices that represent the beginning and end points of
the project on the network diagram after changing the
weights of'its active elements (time to complete the work)
to negative. Such algorithms can be based on dynamic
programming [13, 14] or heuristic methods [15]. When
obtaining subcritical paths, algorithms for finding
k-shortest paths between graph vertices either use
dynamic programming directly [16-22] or with repeated
application of the shortest path search [23-25], or other
contemporary approaches [26-28], as well as those
focused on more complex network designs [29-32].

The present paper describes an algorithm for finding
k-shortest paths on network graphs based on the selection
of elements of a higher order and structuring relations
between them.

STRUCTURING RELATIONSHIPS ON GRAPHS

The performed studies are focused on the use
of network graphs of the “works-connections” type,
using as a model network directed graphs G(X, U)

(Xis a set of vertices, U is a set of arcs) without contours
with a strict order relation, and with division into

layers [33] (Fig. 1).

Fig. 1. Network diagram

Let us construct a free Abelian group P(U) over the
generating set U of all arcs of the graph G = (X, U) as
follows. As elements of P(U) we will consider the set
of formal linear combinations of elements from U with
integer coefficients in the form of

n
P =2 u), pj ePU); u; €Uy, =0, 51,
i=1

where n is the number of graph arcs.
As a binary additive operation, we define the sum of
elements from the set P(U) by the formula:

n n n
:Z(Y,' '”i)"‘Z(Y;' '”i):Z(Y,' +Y;~)'ui-
i=1 i=1 i=1

Similarly, we construct a group H(X) over the set X
of all vertices of the graph, defining its elements as

m
hj :Z(yi -x;), h; eH(X); x; €X;v; =0,£1, ..., where
m is lthle number of vertices. In what follows, when
writing elements of the groups P(U) and H(X), we will
omit their constituent elements that have zero
coefficients.

Definition 1. A differential d of a group P(U) is
called a homomorphism d: P(U) — H(X) defined as
follows:

1)ifu, = (x;, x) then du, = x;
2) 1fp = Zyt u,, then dp = ﬁyt
forp € P(U) u, e U,xl,x] e X.

Deﬁnmon 2 An element r € P(U) is called a
p-contour if dr = 0. The subgroup R = Ker d c P(U) is
called a subgroup of p-contours.

Lemma 1. The sum of several p-contours is a
p-contour.

Proof. First, the sum Xr; is an element of the group
P(U) as a result of addition of its elements. Second, the
distributivity of the mapping d according to Definition 1
allows us to write down dXr; = Xdr,= 0. The assertion of
the lemma is proved.
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Using the generally accepted concept of a path on
a graph as a connected finite sequence of arcs, we will
denote it as

Q= {up, uy, st} 3)

Moreover, if u = (x, x,), T0 X, = u", x, = u". We
will determine the length of this path through the above
numerical weighted estimates of the vertices g(x) by the
expression

L) =)+ Y e(u). 4)

i=1

If the path connects the input vertex x' with the
output vertex x"' of the network, then we will call such a
path complete.

We define the mapping ¢ as follows:

n
(p({Y]uls YZuz’--', Ynun})=ZYiu,-, Yi >0: (5)
i=1

and also, the converse to the above:

Voltgs |y u,b. (6)

n
(P'[Zyi”iJ:{hJ”l’
i=1

Definition 3. The image of a path QQ — U on the graph
G = (X, U) is called a mapping ¢(€2).

Lemma 2. The differential of the image of any
complete path on a network graph is defined as
dp(Q)=x"—x".

Proof. Since the full path Q on the graphs under
consideration is a simple path that does not have multiple
arcs, then its image, taking into account (3), can be
written as @(Q) = u; +u, + ... +u . In accordance with
Definition 1, we obtain either do(QQ) = du; + du, +
+ o+ du, or do(Q)=(uf —uy)+ Uz —uy)+..+

+(u:’v—u;v), or
do(Q) =—uy +(uf —uy)+...+ Wl —uy)+uf. (7)

The incidence property of path arcs implies
uf =u;,,i€[l,w—1]. Therefore, expression (7) can be
written in the form do(Q) =u, —u;” or dp(Q) =x"—x".

Lemma 3. The difference between the images of two
complete paths on a network graph is a p-contour.

Proof. The difference between the images of
the full paths ¢(€2;,) and (p(Qj), being the result
of the additive function of adding two elements
of the group P(U), also belongs to this group. On
the other hand, the differential of this difference

is defined as d[@(Q) — o(2 j)] = do(Q2,) — do(Q j).

However, by the assertion of Lemma 2 do(Q2,) = d(p(Qj).

Hence, d[@(€)) — @(Q j)] = 0, which proves the lemma.
Let us define the mapping o as follows:

a(p)= D v; &), @®)

u;ep

Definition 4. The value of the p-contour r is the
value a(r).

Lemma 4. The difference between the lengths of two
complete paths on a network graph is equal to the value
p of the contour formed by the difference of their images.

Proof. Let Q; = {u;, u,, ..., u;} and Qj =
= {”jp Ups s ujs} be any two complete paths of the graph.

Then their lengths, in accordance with (4), can be

w
written as L(Q;)=&(x") + Zs(u;; , L(Qj) =g(x')+
1=l

S
+ Zs(u}t), and the difference in lengths as
t=1

LQ) - L)) = Ye(ui) - Dewh).  (9)

=1 t=1

On the other hand, in accordance with Lemma 3,
the p-contour defined by the images of these full paths
can be written, taking into account expression (5), as
r=(Q)— (p(Qj) = Tu, .t Uy, = Uy — Uy = e~ Uy
and the value of this p-contour, taking into account (8),
as

a(r) =Y e(u) —Za(u;.,) . (10)

t=1 t=1

Comparing expressions (9) and (10), we conclude
that the lemma is true.

Definition 5. An elementary p-contour g(@?) with
respect to an arc of a graph u = (a, b) € U is an element
of the group P(U), defined as the sum of this arc with
the difference between the images of the shortest
weighted paths connecting the vertices x’ and a, as
well as the vertices x” and b (see Fig. 2). In this case,
the elementary p-contours are oriented to the shortest
paths, since the main goal is to find k-shortest paths of
the graph.

Definition 6. An arc u; is said to be incident to the
path Q at the vertex b if the following conditions are
met:

1) u;, & Qy
2) Ju; € Qy, uf =u;f =bh.

The vertex b is called the vertex of the section of the

path Q (Fig. 2).
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Uyy
U .\. Uy,
<G u \ aeX
’7\ %
o h
X' u, Ug u, beX
o -0 e

Fig. 2. {u,, us, ug, u,, ug} — shortest path between
vertices x’and a.

{uy, Uy, ug, ug} — shortest path between vertices x’'and b.
{ug + ug + u, + ug t Uy — U, — Uy — U,} — elementary
p-contour (g(@), based along the path {u, u,, us, U, ...}
along the incident arc u, at the vertex of the section b:
glab) = phi

Definition 7. An elementary p-contour with respect
to an arc incident to the path Q at the vertex of the
section b € X is called based on this path and is denoted
as r? (Fig. 2).

In connection with the consideration of the full paths
of the graph in the framework of the network planning
problem, the p-contour based on the path €, which
allows us to determine another full path Qg will be
called generating. Based on lemmas 3 and 4, we write
the relations

Q) = 0(Q) + 1, LQ) = L(Q) + a(r?),  (11)
which are further used in the algorithm for finding
k-shortest paths of the graph.

In order to use the models to efficiently solve
numerical problems, an ordered structure of relations
between the complete paths of the network graph can be
constructed on the basis of the introduced mathematical
objects.

With regard to the development of the described
algorithm, we consider the problem of finding an ordered
set of full paths

190, Qs s Q, L(Q) S L(Q,,)), i < [0, A~1].(12)

The system of relationships between paths is built
relative to the full path ), which has a minimum length
Qq: L(Qo)zgménQ{L(Qj)}, can be easily obtained

using one of the well-known algorithms, for example as
givenin [13, 14]. This system is described by a hierarchical
multilevel structure of shortest path €3 generating
p-contours in the form of a graph G = (R, V),
V =R, x R. Here R, is the complete set of generating
p-contours, while V is the set of relations between them
that connect the generating p-contours of adjacent levels.
So, for the upper Oth level, the connection of p-contours?

I Several elementary contours can be based on the vertex b
in the presence of several incident arcs.

2 An additional subscript is introduced to denote the level
number in the system of generating p-contours.

Ry, = {ré’} with p-contours of the next 1st level R, is
represented by the relation

whe =rf +re;a(Pe) =a(d) + a(re),  (13)
where b is the vertex of the section of the path Q; e is
the vertex of the section of the path formed by the
p-contour rob (11) located on this path to the left of the
vertex b (i.e., e < b)>. The grouping by levels defines the

entire set of generating p-contours R, = UR0 7
VA

DESCRIPTION OF THE ALGORITHM

The algorithm is presented below in a less compact
form, excluding loops, in order to visually show the
finiteness of the number of steps performed.

Step 1. Find the full path Q; with the minimum
length.

Step 2. Put the set Ry, = {r,, r,, 75, ...} of generating
p-contours of the Oth level in ascending order of their
values* and exclude from further consideration the
p-contours that are below the kth place in the resulting

sequence; R = R(y. Find the full path Q, through
relations (11) using the p-contour 7|, which is the first in
the sequence.

Step 3. Include in the set R the p-contours of the
next level, determined by the p-contour r, through
relations (13) over all vertices of the section, excluding

the p-contour 7| itself. Order the set R according to the
relation a(r) < a(r,,) and exclude from further
consideration the p-contours that are below (k— 1)
places in the resulting sequence.

Find the full path Q, through relations (11) using the
p-contour ry.

Step(s). Include in the set R p-contours of the next
level, determined by the p-contour r; through relations
(13) over all vertices of the section, excluding the

p-contour 7, itself. Order the set ﬁaccording to the
relation a(r) < ofr,,) and exclude from further
consideration p-contours that are in the resulting
sequence below [k — (s — 2)] place’.

3 This condition is related to the orientation to the input
vertex x’ when constructing elementary p-contours (see
Definition 5).

4 A simplified designation of generating contours was
introduced in order to better understand the operation of the
algorithm. The subscript shows the place of the contour in the
ordered set.

5> The particular case is when the number of elements of
the set R is less than [k —(i — 2)]. In this case, contours are not
excluded from the set, which does not affect the course of all
reasoning and the final result.

Russian Technological Journal. 2023;11(1):60-69

64



Algorithm for finding subcritical paths
on network diagrams

Mikhail A. Anfyorov

Find the full path Q_ | through relations (11) using
the p-contour 7.

Step (k + 1). Include in the set R p-contours of the
next level, which are determined by the p-contour r,
through relations (13) over all vertices of the section,

excluding the p-contour r| itself. Order the set R
according to the relation a(r,) < a(r;,,) and exclude from
further consideration the p-contours that are below
[k — (k—1)] =1 place in the resulting sequence.

Find the full path €, through relations (11) using the
p-contour r,.

The implementation of the algorithm is based on the
search for generating p-contours and the full path Q,
which has a minimum length. This problem is effectively
solved by the dynamic programming method. The main
Bellman recursive functional relation for the problem of

finding the shortest path® Qgﬁn connecting the input

vertex (x,) with any vertex x, can be written as

L(Qlt

min) = min {e(x) + LQE )} i€, (14)

where I, is a subset of graph vertex numbers defined by

the condition Vx, (i € I) Ju, such that x; =uy, x; = u;.

An element from I, which is the optimal policy defined
by (14), will be denoted as i

To search for generating p-contours based on the
vertex of the section ¢, one more functional relation must
be defined in the form

LQY) =e(x) + L(QY

min

), jed, 3, =1/, (15)

where Qljt is the path connecting vertices x; and x, and
passing through vertex X; (Fig. 3).

—-.— —PathQlt, =Q,

— Path Ql/

min
— Generating p-contour
Q! - p(Qt,)

Fig. 3. Graphical explanation for the above calculations

Relation (15) implies the presence of suboptimal
policies in the dynamic programming method, whose
presence demonstrated by R. Bellman [34]. This relation

6 The superscripts show the numbers of connected vertices.

defines the set of incident arcs {(xj, x)},j€d, {(xj, x)}
at the vertex of the section x, and the corresponding
generating p-contours through the knowledge of paths

1/ ..
Q.. (see Definition 5).

A software implementation of the algorithm in
the Delphi programming language was performed.
The conducted testing of the program confirmed the

efficiency and effectiveness of the presented algorithm.
JUSTIFICATION OF THE ALGORITHM

To prove the efficiency of the constructed algorithm,
it is necessary to verify the validity of the following
provisions:

e firstly, any generating p-contour of the complete

path Q is described by the system G = (R, V);

e secondly, there is no loss in the final solution during
the operation of the algorithm;
e thirdly, the paths found as a result of the algorithm’s

operation meet the condition (12).

The validity of the first proposition is confirmed by
the following theorem.

Theorem 1. Any generating p-contour of the complete
path Q) is described by the system G = (R, V).

Proof. Let r, be an arbitrarily chosen generating
p-contour of the path €, Let us show that this
p-contour is described by one of the levels of the system
G=(R, V).

There necessarily exists an arc u, incident to the
path Q, with the section vertex b, such that u, € @’(r,).
This arc corresponds to an elementary p-contour

gho = 0 based on Q,.
If % = 7., then the p-contour 7, is described by the
system G = (R, V) at the Oth level. If the equality is not

maintained, then oc(rbO)S(x(rx) , which follows from
Definition 5; therefore, the inequality L(QQ)) < L(€)) is
true, where Q; and Q are full paths defined by p-contours

0 and r, through relations (11), i.e.
O(Q)) = 9(Q) + 0, L(Q)) = L(Qg) + (), (16)

O(Q,) = 0()) + 7, L(Q,) = L(Q) + alry). (17)

Subtracting equalities (16) and (17) term by term,
and having transformed the result, we obtain
PQ,) = (@) +(r, —r'0), where (r,=r") s the
generating p-contour of the path Q,. Moreover, its value
(obtained by the same subtraction of equalities (16) and
(17)) is equal to a(r,)—a(r%)>0.

Since u, € Q, then the vertex of the section b, of
the p-contour (7, — rbo) is to the left of b,,.

Let us go to the next similar step of calculations.
There is an arc u, incident to the path Q; with the section
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vertex b, suchthat u; € Q'(r, — rbo ). This arc corresponds
to an elementary p-contour g“1 = ™ based on Q.

If 2 = e — 7%, then p-contour 7, = o 1 e
is described by the system G = (R, V) at the 1st level. If

the equality is not maintained, then OL(rbl ) <olr, — rbO)

or a(r,) = a(r®)+a(?), and, hence, L(Q,) < L(Q,),
where Q, is the full path determined by the p-contour

b through relations (11) as ©(£2,)=@(€2)) + P oor
taking into account (16)

Q) =p(Q) + 70 + 0, L(Q,) =

= L(Qy) + a(rPo + ). (18)
As a result, by analogy, there is a p-contour of the
path Q, generating p in the form

(r, =% =), a(r, = rP0) — a(r7) > 0.

Thus, atany Nth step calculations, the non-fulfillment
of the equality condition

rbN =7, —rbO —rbl —...—rbN—l

19)
leads to the next step. However, since the number of
steps is limited, therefore, at a certain step, equality (19)

will be maintained (i.e., PN will be an elementary
p-contour). This means that the p-contour 7 of the path
Q, will be described by the system G = (R, V) at the
(N-1) level.

The limited number of steps is confirmed by the
following considerations. Firstly, the incident arc chosen
at any step belongs to the path Q ; secondly, as noted
above, the section vertex is located to the left of that
chosen at the previous step. Since the number of arcs of
the path Q_ is limited, the number of steps in the main
reasoning is also limited.

Since the p-contour r was chosen arbitrarily, the
theorem can be considered to have been proved.

To validate the second statement, we introduce into
consideration the vector Q; = [0(ry)), a(ry), ..., @iyl
whose elements are the values of p-contours that make
up the set R when the algorithm works at the stage of
determining the path Qj (the number of the path
determines the second subscript in the designation of
these p-contours). Recall that the elements of the vector
Q. form a non-decreasing sequence.

We also introduce a vector W =[a(r,), a(r(k_l)z), (]
(here, the semantic meaning of the indices corresponds
to the vector Qj), whose elements a(r(kﬂ_j)/) are the
values of p-contours that are at the last place in the set

R at the stage of determining the path Qj.

Theorem 2. The elements of the vector W form a
non-increasing sequence.

Proof. Consider an arbitrarily chosen jth element
of the vector W, i.e., a(r(k +17‘)j)’ which is also the last
element of the vector Q ). We are interested in the process
of transition during the operation of the algorithm from
the vector Q, ) to the vector Q, b1 looking to the appearance
of'a new element o(r ) +1)) of the vector W. It consists
of the following stages

e the first element of the vector Q. is excluded;

e new elements are added to the remaining elements,
corresponding to the lower level p-contours included
in the consideration;

e ordering of the resulting set;

e exclusion from further consideration of extra
p-contours.

Exclusion of the first element of the vector Q ’ cannot
affect the choice of the element a(r(, ;). 1))-

The result of the procedures that should follow will
not change if they are performed in a slightly different
order. To the remaining elements of the vector Q : (their
number now corresponds to the required number of
elements of the vector Q ), +1)» we will add one element of
the new set of p-contour values. After each such addition,

we will arrange the set R and climinate the extra
element.

The elements of the vector Q 1 before adding new
clements are determined as follows: a(r, i +1)) = a(rzj),
(x(r2(/.+l)) = (x(r3j), res a(r(k_j)(].+l)) = a(r(k+1_j)j). For the
added element ou(r ), there are two possible cases: either
(x(ry) > a(r(kﬂ_j)].)? or (x(r(m)j) > (x(ry) > a(rtj), t € [2, k.
In the first case, it is the element o7 ) that is excluded
from further consideration, which will not change the
ordered position of the remaining elements of the vector
Q ). In the second case, following ordering, the element
oc(ry) will take the place of the element a(r([ +1)/.), the
element a(r(t +1)j) will replace element a(r(t +2)j), etc.

Ultimately, the element a(r, k*')i) will take the place
of the element a(r, e 1— ) that will be removed. But,
since a(r )/) a(r(k 1) ) (due to the definition of the
vector Q) then in this case there will be no increase
in the value of the last element either, i.c., the element
(x(r(k e 1)) cannot be greater than the element o7 1 w)

Since an arbitrary element of the vector W was
chosen as the jth element, the theorem can be considered
to have been proved.

Using Theorem 2, it is easy to prove that there are
no losses in the final solution during the operation of the
algorithm. Indeed, losses can occur only in the procedure
of excluding p-contours from further consideration after
they are ordered at each step’. However, at any step of

7 The exclusion of the contour that is the first does not lead
to losses, since on the one hand it is used to obtain a solution, and
on the other hand, all lower-level contours generated by it fall into
consideration.
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the algorithm, the values of the eliminated p-contours
are not less than the element a(r(k +17.)/.) of the vector Qj.
Based on Theorem 2, we can conclude that these values
are also certainly not less than the subsequent elements of
the vector W: (x(r(k,j)(j +1.))’ a(r(k,j,l)(/. +2)), = ary,), 1€,
they should not be considered at the remaining steps of
the algorithm and cannot be included in the final decision.

To validate the last statement, we introduce into
consideration a vector consisting of the first elements of
the vectors Qj,j e[l,kl: W =[ou(ry1),(F5)5 s ()],
participating in the formation of the final solution
through relations (11). Then the validity of condition
(12) is affirmed by the following theorem.

Theorem 3. Vector elements W form a non-
decreasing sequence.
Proof. Consider an arbitrarily chosen jth element

a(rlj) of the vector W . This element is also the first
element of the vector Q.. In the process of transition
from the vector Qj to the vector Qj +1> the added new set
of p-contours is characterized by their values certainly
being not less than a(r, j); this is because they are at the
next level after the p-contour and are determined by this
p-contour through relations (13).

After ordering the set R, the element a(rl(]. +1))
will be replaced by the element o(r, j) or by the smallest
from. the added set amin(radd), Le., a(ry)
= mln{a(rzj), o i(rqq) - But since (x(rzj) > a(rlj),
i (Faga) = a(rlj), then (x(rl(].+1)) > a(rlj). B

Since an arbitrary element of the vector W was chosen
as the jth one, the last inequality proves the theorem.

The performance of the algorithm was evaluated in
comparisonwiththe “doublesweep’ algorithm, according
to which its author conducted serious computational
experiments [35]. Moreover, the analytical performance
assessment for algorithms of this category is far from
real results, since the computation time strongly depends
on the configuration of the networks used; moreover, the
generalized operations performed during the execution
of the algorithm cannot be unambiguously mapped into
elementary operations of addition and comparison. Thus,
for the mentioned algorithm, which belongs to the class
of the most productive algorithms of this category, the
analytical estimated computation time is of the order of
O(kN?) [19, 20], while computational experiments show
other results [35]; instead of a linear one, a polynomial
dependence is observed of computation time t on the
number of shortest paths k:

1=0.8457 +0.1616 k + 0.0260 k.

At the same time, it should be noted that studies [35]
were carried out not on network- but directed graphs,
whose vertices formed a lattice structure with contours.
The dimension of the graphs was taken into account
through the dimensions and configuration of the lattice

formed by the vertices. The weights of the arcs were
generated by random integers in the range up to 100. In
addition, the value of k was significantly limited.

Therefore, in connection with the search for
subcritical paths on network graphs, a series of
computational experiments was carried out on an Intel
microprocessor with a clock frequency of 1.7 GHz in
order to compare the algorithm obtained in this work
with the Double sweep algorithm. The results of the
dependence of the computation time (¢) on the number of
subcritical paths (k) and the dimensional characteristic
of the network graphs (z) are shown in Fig. 4. The
dimensional characteristic z is the product of the total
number of graph arcs and the number of arcs in the path
of maximum length connecting the input and output
vertices of the network.

© 1) Ig(1) =0.0033k - 1.4655, R? = 0.5899
B 2) Ig(t) = -0.0007k2 + 0.0736k — 1.9681, R% = 0.9994

lg(r),c

-0.5 /.
» //

-1.5 < > —°
-2.0

5 10 15 20 25 30 35 40 45
k
(a)

©1)Ig(t) =0.0333Ig(z) - 1.4262, R2 = 0.7356
m2)Ig(1) = 0.8221Ig(z) + 2.8379, R2 = 0.9999

1 —a

_(1) //

o

1.5 2.5 3.5 4.5 5.5 6.5
lg(2)
(b)
Fig. 4. Comparative analysis of algorithms:
(a) z=1600; (b) k=40.
1 — Algorithm used in this work; 2 — Double sweep
algorithm

The higher performance of the algorithm presented
in the paper is explained by its special orientation to
the considered class of network graphs, while other
algorithms, including the Double sweep one, are more
universal in relation to computed graphs.

CONCLUSIONS

The presented algorithm implements the search
for k-shortest paths without contourless directed
graphs having a strict order relation used as models
(so-called network graphs) in network planning and
project management problems. This can be used to find
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subcritical paths on these models in order to align and
optimize the resources used in a project.

The above-described features of the graphs were
instrumental in building a multilevel structure of relations
between specially introduced abstractions (p-contours)
that display the structural elements of graphs. This
served as the basis for the development of the algorithm,
which was numerically implemented by the dynamic
programming method and extended through the use of
an additional functional relation.

The narrow focus of the algorithm on graphs used in
project management determined its high performance,
which was confirmed by a series of comparative
computational experiments. The efficiency of the
algorithm is stable relative to the size of the computed
graphs and the number of subcritical paths. For this
reason, it can be recommended for practical use in
project management information systems.
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