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Abstract
Objectives. Network diagrams are used as an information support element in planning and project management 
processes for structuring planned work and calculating project efficiency characteristics. In order to optimize and 
balance resources used in projects, it becomes necessary to locate in these models not only the critical path of the 
maximum weighted length, but also the subcritical paths closest to  it having a shorter length in relation to  it. The 
aim of the work is to synthesize and analyze an algorithm for finding k-shortest paths between the input and output 
network vertices, on which basis the above-mentioned subcritical paths can be identified.
Methods. The provisions of graph theory and group theory, as well as the method of dynamic programming, were 
used.
Results. An  algorithm for finding k-shortest paths in  contourless directed graphs having a  strict order relation 
was developed. Abstract elements were defined according to  group theory in  graphs as  p-contours, between 
which a multilevel structure of relations for implementing the necessary search of paths was then established. For 
substantiating the efficiency of  the constructed algorithm, the validity of  the main provisions was demonstrated 
as follows: firstly, the multilevel system of relations is exhaustive; secondly, there is no loss in the final solution during 
the operation of the algorithm; thirdly, the paths obtained as a result of the work of the algorithm satisfy the main 
required relation between them. Numerically, the algorithm was implemented by the dynamic programming method 
extended by means of an additional functional relationship, implying the presence of suboptimal policies.
Conclusions. The conducted runs of  computational experiments confirmed the operability and efficiency of  the 
software-implemented algorithm. The performed analysis demonstrated the good convergence characteristics 
of  the proposed algorithm as  compared with other algorithms of  this class applied to  network diagrams. On  this 
basis, it can be recommended for practical use in project management information systems.
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Резюме 
Цели. Информационная поддержка процессов планирования и управления проектами использует в каче-
стве модели сетевые графики, помогающие в формировании структуры планируемых работ и расчете ха-
рактеристик эффективности проекта. С целью оптимизации и выравнивания ресурсов, используемых в про-
ектах, возникает необходимость нахождения на  этих моделях не  только критического пути максимальной 
взвешенной длины, но и ближайших к нему подкритических путей с меньшей по отношению к нему длиной. 
Цель работы – синтез и анализ алгоритма поиска k‑кратчайших путей между вершинами входа и выхода сети, 
позволяющего идентифицировать вышеназванные подкритические пути. 
Методы. Использованы положения теории графов и теории групп, а также метод динамического програм-
мирования.
Результаты. Разработан алгоритм поиска k‑кратчайших путей на ориентированных графах без контуров с от-
ношением строгого порядка. С использованием теории групп на графах были определены абстрактные элемен-
ты – p‑контуры, между которыми была установлена многоуровневая структура отношений, позволившая реализо-
вывать необходимый поиск путей. В рамках обоснования работоспособности построенного алгоритма доказана 
справедливость основных положений: во-первых, многоуровневая система отношений является исчерпывающей; 
во-вторых, не происходит потерь в окончательном решении в процессе работы алгоритма; в-третьих, пути, най-
денные в результате работы алгоритма, удовлетворяют основному требуемому соотношению между ними. Чис-
ленно алгоритм реализован методом динамического программирования, который был расширен за счет исполь-
зования дополнительного функционального соотношения, предполагающего наличие подоптимальных политик.
Выводы. Проведенная серия вычислительных экспериментов подтвердила работоспособность и  эффек-
тивность программно реализованного алгоритма. Выполненный анализ показал хорошие характеристики 
сходимости предложенного алгоритма в сравнении с алгоритмами данного класса, применяемыми к сете-
вым графикам. Это позволяет рекомендовать его к практическому использованию в информационных систе-
мах управления проектами. 

Ключевые слова: управление проектами, сетевой график, критический путь, алгоритм, вычислительный 
эксперимент

INTRODUCTION

Established project management methodologies use 
a contourless network-oriented graph as the main model 
for displaying the structure of the mutual dependence of 
project work stages and calculating the time characteristics 
of these stages, as well as those of the project as a 
whole [1–3]. In the terminology of network planning and 

management, such a model is referred to as a network 
diagram, which may be constructed according to one of 
two principles. In the first case, typical for the Project 
Evaluation and Review Technique (PERT) methodology, 
the work in the model display uses graph arcs to represent 
the “event-work” principle, while the second uses graph 
vertices according to the “work-relationship” principle. 
However, both of these approaches involve the definition of 
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a critical path on the network diagram, having a maximum 
weighted length and connecting a hanging vertex to a dead 
end, which may correspond to the beginning or end of 
the project. In this case, the length is calculated based on 
the value of the critical work execution time displayed by 
the active elements of the path (arcs or vertices). The use 
of a critical path is an integral part of network planning 
and project management methodology, as reflected in 
studies at the stage of its theoretical development (an 
extensive bibliography of this period is presented in [4]) 
and subsequent development [5–8].

Actual projects are implemented in various 
areas under conditions of limited material, labor and 
financial resources. This implies the development 
of project management theory in the direction of 
optimizing the structure of the project according to the 
criterion of its minimum cost under particular resource 
constraints [7–12]. In this case, the question arises of the 
need to search the network diagram not only for critical, 
but also for subcritical paths in order to implement the 
above-mentioned optimization and leveling of resources. 
If the critical path Ω0 can be defined as

	 0 0: ( ) max { ( )},L L
j

jΩ
 � (1)

where L(Ω0) is the length of the critical path, and Ω is 
the set of all full paths on the network diagram, then the 
subcritical paths will form an ordered set of full paths of 
the graph {Ω1, Ω2, ...}, characterized as follows:

	 L(Ω0) ≥ L(Ω1); L(Ωj) ≥ L(Ωj+1).�  (2)

To find the critical path, it is sufficient to use any 
algorithm to find the shortest weighted path between the 
vertices that represent the beginning and end points of 
the project on the network diagram after changing the 
weights of its active elements (time to complete the work) 
to negative. Such algorithms can be based on dynamic 
programming [13, 14] or heuristic methods [15]. When 
obtaining subcritical paths, algorithms for finding 
k-shortest paths between graph vertices either use 
dynamic programming directly [16–22] or with repeated 
application of the shortest path search [23–25], or other 
contemporary approaches [26–28], as well as those 
focused on more complex network designs [29–32].

The present paper describes an algorithm for finding 
k-shortest paths on network graphs based on the selection 
of elements of a higher order and structuring relations 
between them.

STRUCTURING RELATIONSHIPS ON GRAPHS

The performed studies are focused on the use 
of network graphs of the “works-connections” type, 
using as a model network directed graphs G(X,  U)  

(X is a set of vertices, U is a set of arcs) without contours 
with a strict order relation, and with division into  
layers [33] (Fig. 1).

x1

x2

x3

x4

x5

x6

x7

Fig. 1. Network diagram

Let us construct a free Abelian group P(U) over the 
generating set U of all arcs of the graph G = (X, U) as 
follows. As elements of P(U) we will consider the set 
of formal linear combinations of elements from U with 
integer coefficients in the form of 

p uj i i
i

n
� �

�
� ( ),�

1

p j ∈P U( );  ui i� � �U; , , ... ,� 0 1

where n is the number of graph arcs.
As a binary additive operation, we define the sum of 

elements from the set P(U) by the formula:

p u u uj i i
i

n

i i
i

n

i i i
i

n
� � � � � � � � �

� � �
� � �( ) ( ) ( ) .� � � �

1 1 1

Similarly, we construct a group H(X) over the set X 
of all vertices of the graph, defining its elements as 

h xj i i
i

m
� �

�
� ( ),�

1

hj ∈H X( ); xi i� � �X; , , ... ,� 0 1  where  

m is the number of vertices. In what follows, when 
writing elements of the groups P(U) and H(X), we will 
omit their constituent elements that have zero 
coefficients.

Definition 1. A differential d of a group P(U) is 
called a homomorphism d: P(U)  →  H(X) defined as 
follows:

1)	if ut = (xi, xj), then dut = xj – xi;
2)	if pq = ∑gt ut, then dpq = ∑gt dut

for pq ∈ P(U); ut ∈ U; xi, xj ∈ X.
Definition 2. An element r  ∈  P(U) is called a 

p-contour if dr = 0. The subgroup R = Ker d ⊂ P(U) is 
called a subgroup of p-contours.

Lemma 1. The sum of several p-contours is a 
p-contour.

Proof. First, the sum Σri is an element of the group 
P(U) as a result of addition of its elements. Second, the 
distributivity of the mapping d according to Definition 1 
allows us to write down dΣri = Σdri = 0. The assertion of 
the lemma is proved.
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Using the generally accepted concept of a path on 
a graph as a connected finite sequence of arcs, we will 
denote it as

	 Ω = {u1, u2, …, uw}.� (3)

Moreover, if u =  (x1, x2), то x1 = u−, x2 = u+. We 
will determine the length of this path through the above 
numerical weighted estimates of the vertices e(x) by the 
expression

	 L u u
i

w
( ) ( ) ( ).� � �� �

�
�� �1 1

1

� (4)

If the path connects the input vertex x' with the 
output vertex x'' of the network, then we will call such a 
path complete.

We define the mapping j as follows:

	 � � � � � �({ , , ..., }) , ,1 1 2 2
1

0u u u un n i i
i

n

i� �
�
� � (5)

and also, the converse to the above:

	 �
�

�
��

�

�
�� �

�
�� � � � �i i
i

n

n nu u u u
1

1 1 2 2{ , , ... , }.  � (6)

Definition 3. The image of a path W ⊂ U on the graph 
G = (X, U) is called a mapping j(W).

Lemma 2. The differential of the image of any 
complete path on a network graph is defined as 
dφ(W) = x’’ − x’.

Proof. Since the full path W on the graphs under 
consideration is a simple path that does not have multiple 
arcs, then its image, taking into account (3), can be 
written as φ(W) = u1 + u2 + … + uw. In accordance with 
Definition 1, we obtain either dφ(W)  =  du1  +  du2  + 
+  …  +  duw or d u u u u u uw w�( ) ( ) ( ) ... ( ),� � � � � � � �� � � � � �

1 1 2 2

d u u u u u uw w�( ) ( ) ( ) ... ( ),� � � � � � � �� � � � � �
1 1 2 2  or

	 d u u u u u uw w w�( ) ( ) ... ( ) .� � � � � � � � �� � �
�

� � �
1 1 2 1 �(7)

The incidence property of path arcs implies 
u u i wi i
�

�
�� � �1 1 1, [ , ].  Therefore, expression (7) can be 

written in the form d u uw�( )� � �� �
1  or dφ(W) = x'' − x'.

Lemma 3. The difference between the images of two 
complete paths on a network graph is a p-contour.

Proof. The difference between the images of 
the full paths j(Wi) and j(Wj), being the result 
of the additive function of adding two elements 
of the group P(U), also belongs to this group. On 
the other hand, the differential of this difference 

is defined as d[j(Wi)  −  j(Wj)]  =  dj(Wi)  −  dj(Wj).  
However, by the assertion of Lemma 2 dj(Wi) = dj(Wj). 
Hence, d[j(Wi) − j(Wj)] = 0, which proves the lemma.

Let us define the mapping a as follows:	

	 � � �( ) ( ).p ui i
u p

n

i

� � �

�
�  � (8)

Definition 4. The value of the p-contour r is the 
value a(r).

Lemma 4. The difference between the lengths of two 
complete paths on a network graph is equal to the value 
p of the contour formed by the difference of their images.

Proof. Let Wi  =  {ui1, ui2, …, uiw} and Wj  = 
= {uj1, uj2, …, ujs} be any two complete paths of the graph. 

Then their lengths, in accordance with (4), can be 

written as L x ui it
t

w
( ) ( ) ( ),� � � � �

�
�� �

1

 L x uj jt
t

s
( ) ( ) ( ),� � � � �

�
�� �

1

L x uj jt
t

s
( ) ( ) ( ),� � � � �

�
�� �

1

 and the difference in lengths as

	 L L u ui j it
t

w

jt
t

s
( ) ( ) ( ) ( ).� �� � ��

�

�

�
� �� �

1 1

 � (9)

On the other hand, in accordance with Lemma 3, 
the p-contour defined by the images of these full paths 
can be written, taking into account expression (5), as 
r = j(Wi) – j(Wj) = ui1 + ui2 + ... + uiw – uj1 – uj2 – ... – ujs, 
and the value of this p-contour, taking into account (8), 
as

	 � � �( ) ( )r u uit
t

w

jt
t

s
� ��

�

�

�
� �

1 1

( ) . � (10)

Comparing expressions (9) and (10), we conclude 
that the lemma is true.

Definition 5. An elementary p-contour g(ab) with 
respect to an arc of a graph u = (a, b) ∈ U is an element 
of the group P(U), defined as the sum of this arc with 
the difference between the images of the shortest 
weighted paths connecting the vertices x’ and a, as 
well as the vertices x’ and b (see Fig. 2). In this case, 
the elementary p-contours are oriented to the shortest 
paths, since the main goal is to find k-shortest paths of 
the graph.

Definition 6. An arc ui is said to be incident to the 
path W0 at the vertex b if the following conditions are 
met:

1)	 ui ∉ W0;
2)	� � � �� �u u u bi i j�0 , .

The vertex b is called the vertex of the section of the 
path W0 (Fig. 2).



64

Russian Technological Journal. 2023;11(1):60–69

Mikhail A. AnfyorovAlgorithm for finding subcritical paths  
on network diagrams

x' u1 u2 u3 u4

u5

u6 u7 u8

u9

a ∈ X

b ∈ X

u10
u11

u12

Fig. 2. {u1, u5, u6, u7, u8} – shortest path between 
vertices x' and a.

{u1, u2, u3, u8} – shortest path between vertices x' and b.
{u5 + u6 + u7 + u8 + u9 – u2 – u3 – u4} – elementary 

p-contour (g(ab)), based along the path {u1, u2, u3, u4, …} 
along the incident arc u9 at the vertex of the section b: 

g(ab) ≡ rbi

Definition 7. An elementary p-contour with respect 
to an arc incident to the path W at the vertex of the 
section b ∈ X is called based on this path and is denoted 
as rb (Fig. 2)1.

In connection with the consideration of the full paths 
of the graph in the framework of the network planning 
problem, the p-contour based on the path W0, which 
allows us to determine another full path Ws, will be 
called generating. Based on lemmas 3 and 4, we write 
the relations

	 φ(Ω') = φ(Ω0) + rb, L(Ω') = L(Ω0) + α(rb),� (11)

which are further used in the algorithm for finding 
k-shortest paths of the graph.

In order to use the models to efficiently solve 
numerical problems, an ordered structure of relations 
between the complete paths of the network graph can be 
constructed on the basis of the introduced mathematical 
objects.

With regard to the development of the described 
algorithm, we consider the problem of finding an ordered 
set of full paths

	 {Ω0, Ω1, …, Ωk}, L(Ωi) ≤ L(Ωi+1), i ≤ [0, k−1].�(12)

The system of relationships between paths is built 
relative to the full path W0, which has a minimum length
0 0: ( ) min { ( )},L L

j
jΩ

 can be easily obtained 

using one of the well-known algorithms, for example as 
given in [13, 14]. This system is described by a hierarchical 
multilevel structure of shortest path W0 generating 
p-contours in the form of a graph G  =  (R0, V),  
V = R0 × R0. Here R0 is the complete set of generating 
p-contours, while V is the set of relations between them 
that connect the generating p-contours of adjacent levels. 
So, for the upper 0th level, the connection of p-contours2

1   Several elementary contours can be based on the vertex b 
in the presence of several incident arcs.

2   An additional subscript is introduced to denote the level 
number in the system of generating p-contours.

R00 0= { }rb  with p-contours of the next 1st level R01 is 
represented by the relation

	 r r r r r rbe b e be b e
1 0 1 0� � � �; ( ) ( ) ( ),� � � � (13)

where b is the vertex of the section of the path W0; e is 
the vertex of the section of the path formed by the 
p-contour r0

b (11) located on this path to the left of the 
vertex b (i.e., e < b)3. The grouping by levels defines the 
entire set of generating p-contours R R0 0= Z

Z


.

DESCRIPTION OF THE ALGORITHM

The algorithm is presented below in a less compact 
form, excluding loops, in order to visually show the 
finiteness of the number of steps performed.

Step 1. Find the full path W0 with the minimum 
length.

Step 2. Put the set R00 = {r1, r2, r3, ...} of generating 
p-contours of the 0th level in ascending order of their 
values4 and exclude from further consideration the 
p-contours that are below the kth place in the resulting 
sequence; R R= 00.  Find the full path W1 through 
relations (11) using the p-contour r1, which is the first in 
the sequence.

Step 3. Include in the set R  the p-contours of the 
next level, determined by the p-contour r1 through 
relations (13) over all vertices of the section, excluding 
the p-contour r1 itself. Order the set R  according to the 
relation α(ri) ≤ α(ri+1) and exclude from further 
consideration the p-contours that are below (k − 1) 
places in the resulting sequence. 

Find the full path W2 through relations (11) using the 
p-contour r1.

. . . . . . . . . .
Step(s). Include in the set R  p-contours of the next 

level, determined by the p-contour r1 through relations 
(13) over all vertices of the section, excluding the 
p-contour r1 itself. Order the set R according to the 
relation α(ri) ≤ α(ri+1) and exclude from further 
consideration p-contours that are in the resulting 
sequence below [k − (s − 2)] place5.

3   This condition is related to the orientation to the input 
vertex x' when constructing elementary p-contours (see 
Definition 5).

4   A simplified designation of generating contours was 
introduced in order to better understand the operation of the 
algorithm. The subscript shows the place of the contour in the 
ordered set.

5   The particular case is when the number of elements of 
the set R0 is less than [k −(i − 2)]. In this case, contours are not 
excluded from the set, which does not affect the course of all 
reasoning and the final result.
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Find the full path Ws–1 through relations (11) using 
the p-contour r1.

. . . . . . . . . .
Step (k + 1). Include in the set R  p-contours of the 

next level, which are determined by the p-contour r1 
through relations (13) over all vertices of the section, 
excluding the p-contour r1 itself. Order the set R
according to the relation α(ri) ≤ α(ri+1) and exclude from 
further consideration the p-contours that are below 
[k − (k − 1)] = 1 place in the resulting sequence.

Find the full path Wk through relations (11) using the 
p-contour r1.

The implementation of the algorithm is based on the 
search for generating p-contours and the full path W0, 
which has a minimum length. This problem is effectively 
solved by the dynamic programming method. The main 
Bellman recursive functional relation for the problem of 
finding the shortest path6 Wmin

1t  connecting the input 
vertex (x1) with any vertex xt can be written as

	 L x L it

i
t

i
t( ) min { ( ) ( )}, ,min min� �1 1� � �� I � (14)

where It is a subset of graph vertex numbers defined by 
the condition ∀xi (i ∈ It) ∃uy such that x u x ui y t y� �� �, .  
An element from It, which is the optimal policy defined 
by (14), will be denoted as io.

To search for generating p-contours based on the 
vertex of the section t, one more functional relation must 
be defined in the form

	 L x L j ij
t

t
j

t t t( ) ( ) ( ), , ,min� �1 1� � � �� J J I / o � (15)

where W j
t1  is the path connecting vertices x1 and xt and 

passing through vertex xj (Fig. 3).

x1

xj

xt

Path Ω1t
min ≡ Ω0

Path Ω1j
min

Generating p-contour  
φ(Ω1t

j  ) – φ(Ω1t
min)

Fig. 3. Graphical explanation for the above calculations

Relation (15) implies the presence of suboptimal 
policies in the dynamic programming method, whose 
presence demonstrated by R. Bellman [34]. This relation 

6   The superscripts show the numbers of connected vertices.

defines the set of incident arcs {(xj, xt)}, j ∈ Jt {(xj, xt)} 
at the vertex of the section xt and the corresponding 
generating p-contours through the knowledge of paths 
Wmin

1 j  (see Definition 5).
A software implementation of the algorithm in 

the Delphi programming language was performed. 
The conducted testing of the program confirmed the 
efficiency and effectiveness of the presented algorithm.

JUSTIFICATION OF THE ALGORITHM

To prove the efficiency of the constructed algorithm, 
it is necessary to verify the validity of the following 
provisions:

•	 firstly, any generating p-contour of the complete 
path W0 is described by the system G = (R0, V);

•	 secondly, there is no loss in the final solution during 
the operation of the algorithm;

•	 thirdly, the paths found as a result of the algorithm’s 
operation meet the condition (12).
The validity of the first proposition is confirmed by 

the following theorem.
Theorem 1. Any generating p-contour of the complete 

path W0 is described by the system G = (R0, V).
Proof. Let rx be an arbitrarily chosen generating 

p-contour of the path W0. Let us show that this 
p-contour is described by one of the levels of the system 
G = (R0, V).

There necessarily exists an arc u0 incident to the 
path W0 with the section vertex b0 such that u0 ∈ j’(rx). 
This arc corresponds to an elementary p-contour 
g ru b0 0=  based on W0.

If r rb
x0 = , then the p-contour rx is described by the 

system G = (R0, V) at the 0th level. If the equality is not 
maintained, then � �( ) ( )r rb

x0 � , which follows from 
Definition 5; therefore, the inequality L(W1) ≤ L(Wx) is 
true, where W1 and Wx are full paths defined by p-contours 
rb0  and rx through relations (11), i.e.

	 � � �( ) ( ) , ( ) ( ) ( ),� � � �1 0 1 0
0 0� � � �r L L rb b �(16)

	 � � �( ) ( ) , ( ) ( ) ( ).� � � �x x x xr L L r� � � �0 0 � (17)

Subtracting equalities (16) and (17) term by term, 
and having transformed the result, we obtain 
� �( ) ( ) ( )� �x x

br r� � �1
0 , where ( )r rx

b− 0  is the 
generating p-contour of the path W1. Moreover, its value 
(obtained by the same subtraction of equalities (16) and 
(17)) is equal to � �( ) ( )r rx

b� �0 0 .
Since u0 ∈ W1, then the vertex of the section b1 of 

the p-contour ( )r rx
b− 0  is to the left of b0.

Let us go to the next similar step of calculations. 
There is an arc u1 incident to the path W1 with the section 
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vertex b1 such that u r rx
b

1
0� � �� ( ). This arc corresponds 

to an elementary p-contour g ru b1 1=  based on W0.
If r r rb

x
b1 0� � ,  then p-contour r r rx

b b� �0 1 ,  i.e. 
is described by the system G = (R0, V) at the 1st level. If 
the equality is not maintained, then � �( ) ( )r r rb

x
b1 0� �  

or � � �( ) ( ) ( )r r rx
b b� �0 1 , and, hence, L(W2) ≤ L(Wx), 

where W2 is the full path determined by the p-contour 
rb1  through relations (11) as � �( ) ( )� �2 1

1� � rb  or 
taking into account (16)

� � �( ) ( ) , ( ) ( ) ( ).� � � �2 0 2 0
0 1 0 1� � � � � �r r L L r rb b b b

	� � �( ) ( ) , ( ) ( ) ( ).� � � �2 0 2 0
0 1 0 1� � � � � �r r L L r rb b b b � (18)

As a result, by analogy, there is a p-contour of the 
path W2 generating p in the form

( ), ( ) ( ) .r r r r r rx
b b

x
b b� � � � �0 1 0 1 0� �

Thus, at any Nth step calculations, the non-fulfillment 
of the equality condition

	 r r r r rb
x

b b bN N� � � � � �0 1 1... � (19)

leads to the next step. However, since the number of 
steps is limited, therefore, at a certain step, equality (19) 
will be maintained (i.e., rbN  will be an elementary 
p-contour). This means that the p-contour rx of the path 
W0 will be described by the system G = (R0, V) at the 
(N – 1) level.

The limited number of steps is confirmed by the 
following considerations. Firstly, the incident arc chosen 
at any step belongs to the path Wx; secondly, as noted 
above, the section vertex is located to the left of that 
chosen at the previous step. Since the number of arcs of 
the path Wx is limited, the number of steps in the main 
reasoning is also limited.

Since the p-contour rx was chosen arbitrarily, the 
theorem can be considered to have been proved.

To validate the second statement, we introduce into 
consideration the vector Qj = [α(r1j), α(r2j), …, α(r(k+1−j)j)], 
whose elements are the values of p-contours that make 
up the set R when the algorithm works at the stage of 
determining the path Wj (the number of the path 
determines the second subscript in the designation of 
these p-contours). Recall that the elements of the vector 
Qj form a non-decreasing sequence.

We also introduce a vector W = [α(rk1), α(r(k−1)2), …, α(r1k)] 
(here, the semantic meaning of the indices corresponds 
to the vector Qj), whose elements α(r(k+1−j)j) are the 
values of p-contours that are at the last place in the set 
R  at the stage of determining the path Wj.

Theorem 2. The elements of the vector W form a 
non-increasing sequence.

Proof. Consider an arbitrarily chosen jth element 
of the vector W, i.e., α(r(k+1−j)j), which is also the last 
element of the vector Qj. We are interested in the process 
of transition during the operation of the algorithm from 
the vector Qj to the vector Qj+1 looking to the appearance 
of a new element α(r(k−j)(j+1)) of the vector W. It consists 
of the following stages:

•	 the first element of the vector Qj is excluded;
•	 new elements are added to the remaining elements, 

corresponding to the lower level p-contours included 
in the consideration;

•	 ordering of the resulting set;
•	 exclusion from further consideration of extra 

p-contours.
Exclusion of the first element of the vector Qj cannot 

affect the choice of the element α(r(k−j)(j+1)).
The result of the procedures that should follow will 

not change if they are performed in a slightly different 
order. To the remaining elements of the vector Qj (their 
number now corresponds to the required number of 
elements of the vector Qj+1), we will add one element of 
the new set of p-contour values. After each such addition, 
we will arrange the set R  and eliminate the extra 
element.

The elements of the vector Qj+1 before adding new 
elements are determined as follows: α(r1(j+1)) = α(r2j), 
α(r2(j+1)) = α(r3j), ..., α(r(k−j)(j+1)) = α(r(k+1−j)j). For the 
added element a(ry), there are two possible cases: either 
α(ry) ≥ α(r(k+1−j)j), or α(r(t+1)j) ≥ α(ry) ≥ α(rtj), t ∈ [2, k−j]. 
In the first case, it is the element a(ry) that is excluded 
from further consideration, which will not change the 
ordered position of the remaining elements of the vector 
Qj. In the second case, following ordering, the element 
a(ry) will take the place of the element α(r(t+1)j), the 
element α(r(t+1)j) will replace element α(r(t+2)j), etc.

Ultimately, the element α(r(k−j)j) will take the place 
of the element α(r(k+1−j)j) that will be removed. But, 
since α(r(k−j)j) ≤ α(r(k+1−j)j) (due to the definition of the 
vector  Qj), then in this case there will be no increase 
in the value of the last element either, i.e., the element 
α(r(k−j)(j+1)) cannot be greater than the element α(r(k+1−j)j).

Since an arbitrary element of the vector W was 
chosen as the jth element, the theorem can be considered 
to have been proved.

Using Theorem 2, it is easy to prove that there are 
no losses in the final solution during the operation of the 
algorithm. Indeed, losses can occur only in the procedure 
of excluding p-contours from further consideration after 
they are ordered at each step7. However, at any step of 

7   The exclusion of the contour that is the first does not lead 
to losses, since on the one hand it is used to obtain a solution, and 
on the other hand, all lower-level contours generated by it fall into 
consideration.
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the algorithm, the values of the eliminated p-contours 
are not less than the element α(r(k+1−j)j) of the vector Qj. 
Based on Theorem 2, we can conclude that these values 
are also certainly not less than the subsequent elements of 
the vector W: α(r(k−j)(j+1)), α(r(k−j−1)(j+2)), …, α(r1k), i.e., 
they should not be considered at the remaining steps of 
the algorithm and cannot be included in the final decision.

To validate the last statement, we introduce into 
consideration a vector consisting of the first elements of 
the vectors Qj, j ∈ [1, k]: W � [ ( ), ( ), ..., ( )],� � �r r r k11 12 1  
participating in the formation of the final solution 
through relations (11). Then the validity of condition 
(12) is affirmed by the following theorem.

Theorem 3. Vector elements W  form a non-
decreasing sequence.

Proof. Consider an arbitrarily chosen jth element 
α(r1j) of the vector W . This element is also the first 
element of the vector Qj. In the process of transition 
from the vector Qj to the vector Qj+1, the added new set 
of p-contours is characterized by their values certainly 
being not less than α(r1j); this is because they are at the 
next level after the p-contour and are determined by this 
p-contour through relations (13).	

After ordering the set R, the element α(r1(j+1))  
will be replaced by the element α(r2j) or by the smallest 
from the added set αmin(radd), i.e., α(r1(j+1))  = 
=  min{α(r2j), αmin(radd)}. But since α(r2j)  ≥  α(r1j), 
αmin(radd) ≥ α(r1j), then α(r1(j+1)) ≥ α(r1j).

Since an arbitrary element of the vector W  was chosen 
as the jth one, the last inequality proves the theorem.

The performance of the algorithm was evaluated in 
comparison with the “double sweep” algorithm, according 
to which its author conducted serious computational 
experiments [35]. Moreover, the analytical performance 
assessment for algorithms of this category is far from 
real results, since the computation time strongly depends 
on the configuration of the networks used; moreover, the 
generalized operations performed during the execution 
of the algorithm cannot be unambiguously mapped into 
elementary operations of addition and comparison. Thus, 
for the mentioned algorithm, which belongs to the class 
of the most productive algorithms of this category, the 
analytical estimated computation time is of the order of 
O(kN3) [19, 20], while computational experiments show 
other results [35]; instead of a linear one, a polynomial 
dependence is observed of computation time t on the 
number of shortest paths k: 

t = 0.8457 + 0.1616 k + 0.0260 k2.

At the same time, it should be noted that studies [35] 
were carried out not on network- but directed graphs, 
whose vertices formed a lattice structure with contours. 
The dimension of the graphs was taken into account 
through the dimensions and configuration of the lattice 

formed by the vertices. The weights of the arcs were 
generated by random integers in the range up to 100. In 
addition, the value of k was significantly limited.

Therefore, in connection with the search for 
subcritical paths on network graphs, a series of 
computational experiments was carried out on an Intel 
microprocessor with a clock frequency of 1.7 GHz in 
order to compare the algorithm obtained in this work 
with the Double sweep algorithm. The results of the 
dependence of the computation time (t) on the number of 
subcritical paths (k) and the dimensional characteristic 
of the network graphs (z) are shown in Fig.  4. The 
dimensional characteristic z is the product of the total 
number of graph arcs and the number of arcs in the path 
of maximum length connecting the input and output 
vertices of the network.
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2) lg(τ) = 0.8221lg(z) + 2.8379, R2 = 0.9999
1) lg(τ) = 0.0333lg(z) – 1.4262, R2 = 0.7356

(b)

Fig. 4. Comparative analysis of algorithms: 
(a) z = 1600; (b) k = 40. 

1 – Algorithm used in this work; 2 – Double sweep 
algorithm

The higher performance of the algorithm presented 
in the paper is explained by its special orientation to 
the considered class of network graphs, while other 
algorithms, including the Double sweep one, are more 
universal in relation to computed graphs.

CONCLUSIONS

The presented algorithm implements the search 
for k-shortest paths without contourless directed 
graphs having a strict order relation used as models 
(so-called network graphs) in network planning and 
project management problems. This can be used to find 
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subcritical paths on these models in order to align and 
optimize the resources used in a project.

The above-described features of the graphs were 
instrumental in building a multilevel structure of relations 
between specially introduced abstractions (p-contours) 
that display the structural elements of graphs. This 
served as the basis for the development of the algorithm, 
which was numerically implemented by the dynamic 
programming method and extended through the use of 
an additional functional relation.

The narrow focus of the algorithm on graphs used in 
project management determined its high performance, 
which was confirmed by a series of comparative 
computational experiments. The efficiency of the 
algorithm is stable relative to the size of the computed 
graphs and the number of subcritical paths. For this 
reason, it can be recommended for practical use in 
project management information systems.
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