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Abstract

Objectives. Integral equations have long been used in mathematical physics to demonstrate existence and
uniqueness theorems for solving boundary value problems for differential equations. However, despite integral
equations have a number of advantages in comparison with corresponding boundary value problems where boundary
conditions are present in the kernels of equations, they are rarely used for obtaining numerical solutions of problems
due to the presence of equations with dense matrices that arise that when discretizing integral equations, as opposed
to sparse matrices in the case of differential equations. Recently, due to the development of computer technology
and methods of computational mathematics, integral equations have been used for the numerical solution of specific
problems. In the present work, two methods for numerical solution of two-dimensional and three-dimensional integral
equations are proposed for describing several significant classes of problems in mathematical physics.

Methods. The method of collocation on non-uniform and uniform grids is used to discretize integral equations.
To obtain a numerical solution of the resulting systems of linear algebraic equations (SLAES), iterative methods are
used. In the case of a uniform grid, an efficient method for multiplying the SLAE matrix by vector is created.
Results. Corresponding SLAEs describing the considered classes of problems are set up. Efficient solution
algorithms using fast Fourier transforms are proposed for solving systems of equations obtained using a uniform
grid.

Conclusions. While SLAEs using a non-uniform grid can be used to describe complex domain configurations, there
are significant constraints on the dimensionality of described systems. When using a uniform grid, the dimensionality
of SLAEs can be several orders of magnitude higher; however, in this case, it may be difficult to describe the complex
configuration of the domain. Selection of the particular method depends on the specific problem and available
computational resources. Thus, SLAEs on a non-uniform grid may be preferable for many two-dimensional problems,
while systems on a uniform grid may be preferable for three-dimensional problems.
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Pe3iome

Uenun. VIHTerpanbHble ypaBHEHNSA ABHO U LLUMPOKO MCMNOJb3YIOTCH B MaTemMaTmnieckon puanke ang nokasaTenbcTea
TEOpeM CYLLECTBOBAHUSA N €AMHCTBEHHOCTU PELLIEHMS KpaeBbIX 3a4a4 aNns auddepeHumanbHbiX ypaBHeHUA. OgHa-
KO, HECMOTPS Ha TO YTO UHTErpasibHble YPaBHEHUS UMEIOT PR, NPENMYLLECTB MO CPABHEHMIO C COOTBETCTBYIOLLUMN
KpaeBbIMU 3aa4aMn — BCe KPaeBble YCOBUSA NPUCYTCTBYIOT B S4pax YPaBHEHWUM, OHU NPaKTUYECKM HE UCMONIb30-
BaJINCb /19 YNCIEHHOMO peLLeHns 3a4a4. OTO CBA3AHO C TEM, YTO MPU OUCKPETM3auUM UHTErPasbHbIX YPaBHEHNIA
BO3HMKAIOT CUCTEMbI YPABHEHUIM C MNAOTHLIMW MaTpuuamMu, B OTINYME OT Pa3pexeHHbIX MaTpul, B cnydae andoe-
peHuManbHbIX ypaBHEHW. B nocnegHee Bpemsi, B CBSA3U C PA3BUTUEM BbIHUCINTENBHON TEXHUKN U METOLOB BblYUC-
NNTENLHOM MaTeMaTunkun, MHTerpasbHble YypaBHEHNSA HavYaam MCNOMb30BaTLCS NPU YACIIEHHOM PEeLLUEHNU KOHKPET-
HbIX 3a4a4. B paboTe npennoxeHbl ABa METOAA YNCIEHHOMO PELLEHUS ABYXMEPHbIX U TPEXMEPHbIX MHTErpasibHbIX
YPaBHEHU, OMUCHIBAIOLLNX MHOTME BaXHbIE KI1aCCbl 3a4a4 MaTeMaTn4eCckom puamnkn.

MeToabl. [ng anckpeTnsaunm NHTerpanbHbiX ypaBHEHU MCNOJb30BasICA METOL KOIOKaLMN Ha HEPABHOMEPHOM
M PaBHOMEPHOW ceTkax. [ns YNCNeHHOro peLleHns NoJlyYMBLUUXCS CUCTEM JIMHENHBIX anrebpanyecknx ypaBHe-
HUI (CJTAY) MCnonb3yloTCa nTepauroHHble MeToapl. [Ans cnyyas paBHOMEPHOM CETKM NOCTPOEH 9D PEKTMBHbIN Me-
TOA, YMHOXeHusa matpuubl CJ1AY Ha BEKTOP.

PeaynbTaTbl. [locTpoeHbl cooTBeTCTRYOLWME CJIAY, onucbiBaloLLme paccMaTprBaeMsble knacchl 3aaad. ns pelle-
HUSI CUCTEM YPaBHEHUN, MOJIy4EHHbIX C MCNONb30BaHMEM PABHOMEPHOW CETKU, NpeanoXeHbl 9PdeKTMBHbIE anro-
PUTMbI peLleHmns, Ucnosbayoume ObicTpoe ANCcKpeTHoe npeobpasoBaHne Dypbe.

BbiBogbi. CJIAY C 1CN0J/Ib30BaHMEM HEPABHOMEPHO CETKU UMEIOT NPENMYLLIECTBO, CBA3AHHOE C XOPOLLUMM ONUCaHNEM
obnacTein CNoXHOM KOHPpUrypaLmm, Ho NpPu 3TOM ECTb CYLLIECTBEHHbIE OrpaHMYeHns Ha pasmepHocTb CJI1AY. Mpu ncnonb-
30BaHUN PABHOMEPHO CeTKM padMepHOCTb CJTAY MOXET ObITb Ha HECKOJILKO MOPSAKOB OO0JbLLUE, OOHAKO B 3TOM Clyvae
MOTYT BO3HMKATb TPYAHOCTU C OMUCAHMEM CIOXHOM KOHdUrypaumm obnactu. BeiGop TOro uim MHOro Metoaa 3aBuUCUT
OT KOHKPETHOM 331241 1 UMEIOLLMXCA BbIYUCTIUTESNbHBIX PECYPCOB. [1159 MHOMMX ABYXMEPHbIX 38424 MOXET ObITb Mpeanoy-
TuTenbHee CJ1AY Ha HepaBHOMEPHOW CETKE, a sl TPEXMEPHbIX 3aaa4 — NpeanodtutensHee CJ1AY Ha paBHOMEPHOW CeTke.

KnioueBble cnoBa: vHTerpasbHble ypaBHEeHUs!, MeTom Koiokauum, 6eicTpoe npeobpasoBaHne Pypbe

e Moctynuna: 14.12.2021 » flopa6oTaHa: 10.01.2022 ¢ MpuHaTa k ony6nukosaHuio: 15.09.2022

Ana umtnpoBaHusa: CamoxmH A.B. MeToabl  addEKTUBHBIE arOPUTMbI PELLEHNST MHOFOMEPHbIX MHTErpasbHbIX ypaB-
HeHwuin. Russ. Technol. J. 2022;10(6):70-77. https://doi.org/10.32362/2500-316X-2022-10-6-70-77

Mpo3payHocTb GUHAHCOBOW AeAaTeNbHOCTU: ABTOP HE UMeeT GMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEeACTaBNEH-
HbIX MaTepuanax uam meTogax.

ABTOp 3asBnseT 06 OTCYTCTBUM KOHMIMKTA UHTEPECOB.
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INTRODUCTION

Let the bounded domain Q be given in Euclidean
space E,, where n = 2, 3. This means that Q is a figure
on a plane (n = 2) or in space (n = 3). We shall consider
the following integral equation in domain Q:

1+ anCuo+ [ = nutrdy - "

=u%(x), xeQ, m<n.

Here, R=|x =y x = (X}, .0, X,); V= (Vs -os V)5
o, N, K, u® are known functions with K(x — y) being a
differentiable coordinate function; u is the unknown
function.

Equation (1) describes many practically significant
classes of problems. Below are some problems in
mathematical physics that may be reduced to equation (1):

e acoustic wave scattering on the inhomogeneous
transparent obstacle [1]. In this case, m <n, a =0
while other functions included in equation (1) are
scalar. Then the equation is the classical Fredholm
integral equation of the 2nd kind;

e scattering of electromagnetic waves on the
inhomogeneous, anisotropic in general, dielectric
body [2, 3]. In this case, m = n, and therefore the
integral operator in (1) is singular; « and «° are vector
functions; and n and K are tensor functions. Value
a determines the non-integral term of the singular
operator and depends on the shape of the singularity
and its center. For example, if the singularity is a
sphere (n = 3) or a circle (n =2), then a. = 1/n [4, 5].
Other classes of problems in math physics may also

be described using integral equations [6—8].

It is assumed that equation (1) has the only solution
in the corresponding function space. It is possible to use
only numerical methods for solution (1) when describing
real problems. Then equation (1) is approximated by
the system of linear algebraic equations (SLAE) with
dense matrix using the Galerkin method or collocation
method. In this case, the dimensionality N of resulting
systems is usually very high (N >> 1000) due to the
multidimensionality of the equation.

The main efficiency criteria of the numerical
algorithm are the number of arithmetic operations T
required for obtaining the original problem solution
and the amount of computer memory M required for
implementing the algorithm. When using the direct
Gaussian method for solving SLAE, it is necessary to
perform T ~ N3 arithmetic operations and store about
M ~ N? numbers in computer memory. It is clear that the
solution for the considered problems requires significant
computational resources. For iterative methods, the
specified characteristics of algorithms are estimated by
the following equations [9]:

T~LT,, M~M,, 2)

where T, is the number of arithmetic operations
required to multiply the SLAE matrix by vector; L is
the number of iterations required to obtain the solution
with a given accuracy; M, is the number of different
matrix elements.

COLLOCATION METHOD

The collocation method is used for approximating
integral equation (1) [3, 10, and 11]. Here, a significant
difference between multidimensional problems and
one-dimensional problems considered on interval [a, b]
should be noted. For such one-dimensional problems,
the numerical solution does not cause problems related
to describing the domain boundary. For two-dimensional
and three-dimensional problems, certain difficulties
arise in the discretization of integral equations defined
in domains of complex shape.

The domain Q is presented as a union of Ny cells
Q@),i=1,.., N Nodal points in these cells are selected
in their centers defined by the following equations [12]:

ledx
x¢ = £ ,1=1,....n, 3
! mes Q 3)

where dx = dx,dx, for two-dimensional problems,
dx = dxdx,dx, for three-dimensional problems, and
x¢ =(x7,...,X;;) is the center of the cell Q with mes Q
being its volume (n = 3) or area (n = 2).

If the differentiable function of its arguments f{x) is
defined in domain €, then the following approximation
is true:

[ F(o)dx = f(xymes Q. )
Q

Here, if f{x) is a linear function of arguments, then
expression (4) is exact equality.

Iftetrahedrons (n = 3) or arbitrary triangles (n =2) are
considered as cells, then many complex configurations
of domain Q may be described quite accurately. The
center of corresponding cells is defined by the following
simple equation:

n+l )
le
k=1

n+l

xj = ,[=1,..,n, &)

where (xfk),...,x,gk)) is Cartesian coordinates of the kth
vertex of the cell.
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We shall approximate integral equation (1) by SLAE
of dimension ~Ng with respect to the values of the
unknown function at node points of domain Q located in
centers x of cells Q(i), i =1, ..., NQ. The dimensions of
cells are selected to provide the desired function weakly
changing within a cell. Then corresponding SLAE may
be written in the following form [3, 13]:

Ng
y(Du@)+ Y. A, Hm(uf) =u’ (i),
Jj=1
i= l,..,NQ, v(0) =1+ a(i)n(),

ci
A= [ B gy s g agi=o,
() [ )

u(i) =u(x), u® (i) =u® (x), n(H) =n(x).  (6)

For vector problems, tensor a(7) is determined by the
shape of cell Q(7) and its center.

Approximation (5) or more accurate numerical
integration algorithms may be used for calculating
integrals in (6). It should be noted that since nodal points
are located in the center of cells, the approximation
accuracy of integral operators is ~h2, where 4 is the
maximum cell diameter (cell diameter is considered
as the maximum distance between border points).
For relatively small values N, < 10000, the system
of equations (6) may be solved by direct or iterative
methods. Efficient algorithms for solving the system
of equations (6) using iterative methods are discussed
below.

COLLOCATION METHOD
ON UNIFORM GRID

In the kernel of integral equation (1), the term
depending on the difference between the Cartesian
coordinates of points x and y presents itself. However,
this is not used in setting up SLAE (6). Below, we
shall create the efficient numerical method for solving
equation (1) using uniform grid and discrete Fourier
transform (DFT).

We shall write some auxiliary equations using
DFT first. Consider complex function f(n) of discrete
argument n =0, +1,£2, .... Here, it is assumed that f{n) is
a periodic function having period N, i.e., fin = N) = fin)
for any n.

The DTF of function f{n) is defined by the following
well-known equation:

N1 2n —_—
Fif1=/f=> exp(iﬁknjf(n), k=0,N -1, (7)
n=0

where, obviously, the Fourier transform ff(k) is also a
periodic function with period M.

If the Fourier transform ff(k) is known, then the
initial function fin) may be restored using inverse
DFT (IDFT), as follows:

FfF]=f(n) =
LS o[ 2| P ), =0 N
_NZexp zﬁnf(),n— , . (®)

k=0

Generally, the number of arithmetic operations
T(N) required for calculating DFT without calculating

2
functions of the form exp(iﬁnknj additionally can be

estimated by the following equation:

Te(N) ~ N2 )

When using fast Fourier transform (FFT) algorithms,
the number of required arithmetic operations is estimated
by the following equation [3]:

Te(N) ~ N LOG(N), (10)
where LOG(N) is integer logarithm, i.e., the sum of
all prime divisors of N. If N is a power of two, then
Tep(N) ~ N 1og2(N).

Let A(/) be a periodic function of a discrete argument
with period N. Consider sums of the following forms:

N-1
v(n) = Z A(n—m)u(m), n=0,N—1

m=0

an

Sums (11) arise from multiplying circular matrices
by vector. We shall apply DFT with period N to both
parts of (11). It is easy to show that

VE(k) = A¥ (kyu¥ (k), k=0,N-1. (12)

Using (12) and FFT algorithms, circular matrices
may be efficiently multiplied by vector. However, circular
matrices rarely appear in real problems. Although many
problems, particularly those discussed below, require the
calculation of sums of form (11) where the function A(/),
—(N—1) <1< (N - 1), is arbitrary within the specified
range. Such sums arise from multiplying Toeplitz
matrices by vector [14, 15]. The specified function A(/)
is defined at integer point (2N — 1). We shall predefine
the function 4(/) by zero at point /= N and extend it to all
integer values with period 2N. The function of discrete
argument u(m), m =0, ..., N— 1, is defined zero at points
m =N, ..., 2N — 1. We shall consider the sums of the
following form:
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2N-1 _
v(in)= Y. A(n—m)u(m), n=0,2N -1.

m=0

(13)

It follows from the above that function w(n)
from (13) coincides with values v(n) from (11) at
n=0, ..., N—1. The following equation may be used for
quickly calculating sums (13):

VE(k) = A¥ (k)uf (k), k=02N-1. (14)

In IDFT, components v(n), n=0,N-1, are of
significance only. Thus, it follows from (10) that the
number of arithmetic operations for calculating (11)
may be estimated by the following equation:

T, ~2NLOG(2N). (15)

In this case, the array with the number of the
following elements should be stored in computer
memory:

M, ~2N. (16)

Therefore, we shall discretize integral equation (1).
First, three-dimensional problems are considered. Let us
define parallelepiped P with domain Q being inside in
the Cartesian rectangular coordinate system. The edges
of the parallelepiped are parallel to the coordinate axes,
while the edge lengths are equal to Nh, [, = 1, 2, 3,
where A, are the grid steps in Cartesian coordinates.
Then parallelepiped P can be represented as the union of
cells (elementary parallelepipeds) P(p), p = (p}, p,, P3),
p;=0, ..., N,— 1. We shall define domain Q as the union
of N, cells which centers are located inside domain Q.
The nodal points at which function values are determined
can be defined in the centers of cells and denoted as x(p),
while the function values at these points are denoted
as f(p).

Integral equation (1) is approximated, similarly
to (6), using SLAE of the following form [5]:

Y(pu(p)+ Y, Alp—gn(@u(g)=u’(p), x(p)Q,
»(q)eQ

Ap-qy= [ BEDI gy g a0 =0,
M(q) [¥(P)~ ]|

v(p) =1+ a(p)n(p). amn

Since the nodal points are located in the center of
cells, the approximation accuracy of the integral operator

is~h2, h=\hE +h3 +hi.

It follows from (17) that the main computational
costs when multiplying the SLAE matrix by vector
(performing one iteration) are associated with calculating
sums of the following form:

W(p)= Y, Ap-9V(qg). x(p)eQ.
»(9)eQ

(18)

For calculating W(p) at nodal points x(p) € Q, it is
necessary to perform ~ Né arithmetic operations, where
N, is the number of nodal points in domain Q. However,
the number of arithmetical operations may be reduced
through using fast multiplication technique of Toeplitz
matrices by vector discussed above.

We shall complete the definition of function V(q)
by zero at points x(q) of parallelepiped P, which do not
belong to Q. The following sums are considered:

W(p1sP2aP3):
Ny-1 Ny—1 N3-1
=2 D D AP —a1.P, — 4203 — 43)V (41:45.95)-(19)
‘I1:0 q2:O 113:0

Obviously, values W(p) from (18) and (19) coincide at
x(p) € Q.In(19), the matrix function of discrete argument
A(p) is defined for values =(N, — 1) < p, < (N, — 1),
(N, =D <p, <(N, = 1), =(N; = 1) S p; < (N; - ).

Let us denote the parallelepiped with sides 2N, A,
2N,h,, and 2N;h, by P,. We extend the matrix function
of discrete argument A(p,, p,, p;) to all integer values
Dy» P,> and p, assuming it to be periodic for each variable
with periods 2N, 2N,, and 2N;, respectively. Here, we
shall complete the definition of function 4(p,, p,, p;) by
zero at points where it is undefined. Let us further define
the function of discrete argument V(p,, p,, p;) as zero at
all nodal points P, not belonging to P and extend it to all
integer values p|, p,, and p, assuming it to be periodic for
each variable with periods 2V,, 2N,, and 2N, respectively.

We shall consider the following equation:

W(P1»P2>P3):

2N;-1 2N,—1 2N5-1
= > > A -4, py 45 P53~ 43V (41.45.95). (20)

@=0 ¢,=0 ¢3=0

Given the above, it is clear that function W(p,, p,, p;)
from (20) coincides with values W(p,, p,, p;) from (18)
at x(p) € Q. Integer parallelepipeds with the number
of discrete arguments on each axis N, N,, and N; and
2N,, 2N,, and 2N, are denoted by P and P,, respectively.
Performing FDT on each variable from both parts
of (20), the following equation may be written:

WE (ki ky hy) = AY (ky ky kg VVE (Kyoky ky), k€ Py (21)
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Thus, since transformation of function 4(p,, p,, p;)
is performed once before the iteration procedure,
performing one iteration in solving SLAE (17) requires
direct Fourier transformation of function ¥V(p,, p,, p;) on
each variable and an inverse transformation of function
WF(kl, ky, ks). The number of arithmetic operations and
the amount of memory required for performing one
iteration is estimated by the following equations:

T, ~ 10N LOG(N), M, ~ 10N, N=N,N,N;. (22)

For solving two-dimensional problems in a
Cartesian coordinate system, domain Q is located inside
a defined rectangle. Further reasoning and calculations
with obvious modifications repeat the considered case.
The values M, and T, are evaluated by equations (22)
where Ny = 1.

When choosing grid steps and values N, N,, and N,
(three-dimensional ~ problems) or N,, N, (two-
dimensional problems), it is necessary to be guided by
the following criteria: first, the desired function varies

little within the cells; second, domain Q, consisting of
cells whose centers are inside Q, is sufficient for
describing Q.

When using FFT algorithms, values N comprising
multiples of a power of two are generally selected.
However, when discretizing integral equations, this
often results in significant additional computational
costs due to the rather high duty cycle of numbers of a
power of two. This may be examplified by the following.

Let N, =N, =N;=N,,i.e., Pisacube. It is assumed
that it would be sufficient to take value N, = 150 for
approximating the solution with the required accuracy.
The closest powers of two are numbers 128 and 256.
Since the value 128 does not satisfy the requirement
of approximating the solution, value N, = 256 should
be taken for using conventional FFT. Let T(N,) be the
number of arithmetic operations required to multiply the
SLAE matrix by vector depending on values of N,. Then
the following maybe derived from (22):

T(256) _256%log,(256) )
T(150) 150° LOG(150)

The amount of memory for storing the SLAE matrix
at N, = 256 is also several times larger than at N, = 150.
Thus, using FFT for N, = 150 is much more efficient
than using FFT with a power of two.

It should be noted that, for solving SLAE (17)
using the considered algorithm, only iterative methods
can be used. This is due to iterative algorithms being
based on multiplying the SLAE matrix by vector. The
number of arithmetic operations and the amount of
memory required for solving SLAE (17) are estimated
by equations (2) and (22). At the same time, the
number of iterations required for obtaining a solution is
typically much smaller than the SLAE dimensionality.
Thus, it may be possible to numerically solve integral
equation (1), which is reduced to high dimension SLAE
Ng > 10°.

CONCLUSIONS

The paper deals with two methods for obtaining
a numerical solution of two- and three-dimensional
integral equations describing many significant classes of
problems in mathematical physics. Here, the collocation
method on non-uniform and uniform grids is used for
discretizing equations. The corresponding SLAEs are
set up. SLAEs using non-uniform grid may have the
advantage of describing complex configuration domains
well. However, there are significant constraints on the
SLAE dimensionality. While the SLAE dimensionality
may be several orders of magnitude higher when using
a uniform grid, difficulties may arise when describing
the domain complex configuration. The selection of
one or another method depends on the specific problem
and available computational resources. In the author’s
opinion, SLAE on a non-uniform grid may be preferable
for many two-dimensional problems, while SLAE on a
uniform grid may be preferable for three-dimensional
problems.
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