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Abstract
Objectives. The selection of a method for solving multi-objective optimization problems has many practical 
applications in diverse fields. The present work compares the results of applying different methods to the selected 
classes of problems by solution quality, time consumption, and various other criteria.
Methods. Five problems related to the multi-objective optimization of analog and digital filters, as well as multistep 
impedance-matching microwave transformers, are considered. One of the compared algorithms comprises the 
Third Evolution Step of Generalized Differential Evolution (GDE3) population-based algorithm for searching the 
full approximation of the Pareto set simultaneously, while the other three algorithms minimize the scalar objective 
function to find only one element of the Pareto set in a single search cycle: these comprise Multistart Pattern Search 
(MSPS), Multistart Sequential Quadratic Programming (MSSQP) method and Particle Swarm Optimization (PSO) 
algorithms.
Results. The computer experiments demonstrated the capability of GDE3 to solve all considered problems. MSPS and 
PSO showed significantly inferior results than to GDE3 for two problems. In one problem, MSSQP could not be used 
to reach acceptable decisions. In the other problems, MSPS, MSSQP, and PSO reached decisions comparable with 
GDE3. The time consumption of the MSPS and PSO algorithms was much greater than that of GDE3 and MSSQP.
Conclusions. The GDE3 algorithm may be recommended as a basic method for solving the considered problems. 
Algorithms minimizing scalar objective function may be used to obtain several elements of the Pareto set. It is 
necessary to investigate the impact of landscape features of individual quality indices and scalar objective functions 
on the extreme search process.

Keywords: multi-objective optimization, Pareto optimality, Pareto front, quality index, scalarizing objective function, 
population-based algorithm

https://doi.org/10.32362/2500-316X-2022-10-6-42-51
https://doi.org/10.32362/2500-316X-2022-10-6-42-51
mailto:av_smirnov@mirea.ru


43

Russian Technological Journal. 2022;10(6):42–51

Alexander V. SmirnovComparison of algorithms for multi-objective optimization  
of radio technical device characteristics

• Поступила: 02.05.2022 • Доработана: 20.05.2022 • Принята к опубликованию: 15.09.2022

Для цитирования: Смирнов А.В. Сравнение алгоритмов многокритериальной оптимизации характеристик радио-
технических устройств. Russ. Technol. J. 2022;10(6):42−51. https://doi.org/10.32362/2500-316X-2022-10-6-42-51

Прозрачность финансовой деятельности: Автор не имеет финансовой заинтересованности в представлен-
ных материалах или методах.

Автор заявляет об отсутствии конфликта интересов.

НАУЧНАЯ СТАТЬЯ

Сравнение алгоритмов 
многокритериальной оптимизации 

характеристик радиотехнических устройств

А.В. Смирнов @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: av_smirnov@mirea.ru 

Резюме
Цели. Вопрос о выборе метода решения задачи многокритериальной оптимизации из множества известных 
методов актуален для многих практических областей. Цель исследования – сравнить результаты применения 
разных методов на выбранных классах задач по качеству решений, затратам времени и другим критериям.
Методы. В работе сравниваются результаты применения различных алгоритмов при решении пяти задач 
многокритериальной оптимизации характеристик аналоговых и цифровых фильтров и многоступенчатых со-
гласующих СВЧ-трансформаторов. Исследовались популяционный алгоритм GDE3, осуществляющий поиск 
одновременно всей аппроксимации множества Парето-оптимальных решений, и три алгоритма, основанные 
на скаляризации целевой функции, которые в одном цикле поиска находят один элемент указанного множе-
ства. Это многократный запуск покоординатного поиска MSPS, многократный запуск алгоритма последова-
тельного квадратичного программирования MSSQP и алгоритм роя частиц PSO.
Результаты. Проведенное исследование показало, что популяционный алгоритм GDE3 позволяет успешно нахо-
дить множества решений для всех рассмотренных задач. В двух задачах из пяти алгоритмы MSPS и PSO существен-
но уступили GDE3 как по качеству решений, так и по затратам времени на поиск одного решения. В одной из задач 
алгоритм MSSQP оказался неработоспособным. В других задачах алгоритмы, основанные на скаляризации, на-
ходили решения, не только не уступающие, а в некоторых случаях и превосходящие результаты GDE3. При этом 
затраты времени на поиск одного решения у MSPS и PSO оказались значительно бо́льшими, чем у GDE3 и MSSQP.
Выводы. Алгоритм GDE3 можно рекомендовать как базовый для решения подобных задач. Алгоритмы, ос-
нованные на скаляризации, целесообразно применять при поиске небольшого числа элементов множества 
Парето-оптимальных решений. Необходимо исследовать влияние особенностей рельефов отдельных пока-
зателей качества и скалярных целевых функций на процесс поиска решения.

Ключевые слова: многокритериальная оптимизация, Парето-оптимальное решение, фронт Парето, пока-
затель качества, скаляризация целевой функции, популяционный алгоритм

INTRODUCTION

Multi-objective optimization (MOO) problems are 
of considerable interest in radio engineering and other 
fields of research [1]. Multicriteria optimization is aimed 
at finding an approximation of the set of Pareto-optimal 
solutions (POS) [2], which cannot be improved by one 
of the quality indices (QI) without deteriorating at least 
one of the other QIs.

Methods for solving MOO problems can be divided 
into two main classes [3, 4]. The first is based on solving 
the problem of minimizing the scalar objective function 
(OF) written in the generalized form [5]:
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where Qj(x) and Qjt are the current and target values of 
the jth QI; Wj is the weighting factor of the jth QI. 

The exponent qj = 1 provided that normalizing 
the QI deviation from the target value for bringing the 
summands in (1) to the same range of values is required. 
The exponent qk = 0 provided that such normalization is 
not required. Equality (1) covers different scalarization 
techniques for MOO problem. Taking all Qjt = 0 and 
considering the denominators equal to one, the problem 
of minimizing the QI weighted sum arises. Another 
technique is to set target values Qjt, as well as Wk = 1 and 
Wj >> 1, where j = 1, ..., M, j ≠ k. In this case, the problem 
of minimizing QI Qk while fixing other QI near the target 
values arises. Methods based on scalarization allow one 
POS to be found in a search cycle.

The methods grouped in the second class (MOO 
population-based algorithms) permit the computation 
of several elements of approximation of the POS set 
in a single search cycle using agent population. The 
classification and description of algorithms of this type 
are given in [3, 4].

The sets of test functions [6] and quality criteria 
for approximating the POS set [3] are used to compare 
different methods for solving the MOO problem. 
Generally, the results of applying MOO population-
based algorithms are evaluated using test functions, 
e.g., as in [7, 8]. Here, no comparison with the results 
of scalarization-based methods is performed. This can 
be justified in the case of test functions whose properties 
are all known; the quality of found approximations of 
the POS set can be evaluated objectively. In terms of 
practical applications, however, where nothing generally 
is known in advance about functions describing 
QI, it becomes necessary to solve the “Black Box 
Optimization” problem for collecting information on QI 
values while finding. 

A determination of which algorithm would give the 
best approximation may be achieved only by comparing 
the results of different methods, including both 
population-based and scalarization-based approaches. 
Such comparison for a specific class of problems is 
performed in [9] to support a conclusion about the 
superiority of population-based algorithms in terms 
of the quality of obtained solutions. Nevertheless, 
a different result may be obtained for other types of 
problems. In [10], the possibility of applying population-
based algorithms from the PlatEMO open source [11] 
running in the MATLAB environment to solve the MOO 
problem of the frequency response of analog electrical 
filters is investigated. Here, the authors conclude that, in 
the case of optimization by two QIs, population-based 
methods provide better solutions than scalarization-
based approaches. While, in the case of optimization by 
three QIs, the opposite result is obtained, this conclusion 
is reached when not using the most effective algorithm 

for finding an extremum of the scalar OF in experiments. 
Different scalarization-based algorithms are compared 
in [12], albeit without considering population-based 
approaches.

The present work aims to compare the results 
of applying MOO algorithms of different classes 
on examples of several problems of optimizing the 
characteristics of radio engineering devices. Among the 
indicators characterizing the compared methods, the 
highest priority is given to obtaining the best results. 
In case these criteria are equal, a comparison may be 
performed in terms of search duration per one POS 
along with other indices.

PROBLEM FORMULATION AND SELECTION OF 
OPTIMIZATION ALGORITHMS

Problem 1. MOO of frequency response of analog 
filters. The QI definitions and methods for calculating 
them are given in [13] and other works by the author. 
Below is a list of QIs:

• uneven gain-frequency response in passband  
DHp, dB;

• minimum attenuation in stopband Hs, dB;
• exceeding gain-frequency response of a given level 

in transition band DHt;
• uneven delay-frequency response in passband  

DTd, %.
Frequency response is calculated on a dimensionless 

frequency scale normalized to the upper bound 
frequency of the low pass filter (LPF) passband. Here, 
it is necessary to minimize DHp and DTd together while 
fulfilling the constraints DHt ≤ 0, Hs ≥ Hst.

Problem 2. MOO of simultaneous frequency 
and time responses of analog filters. The QI 
definitions and methods for calculating them are 
given in [13]. In addition to the frequency domain QI 
mentioned above, the following time domain QIs are 
introduced:

• maximum voltage (overshoot) of the transient 
process Um normalized to the steady-state value;

• transient rising (front) duration Tfr;
• transient-process duration Tss. 

The last two QIs are calculated on a dimensionless 
time scale referenced to the normalized frequency 
scale. Here, it is necessary to jointly minimize Tss and 
maximize Hs under the constraints DHt ≤ 0, Um ≤ Umt, 
and Tfr ≤ Tfrt.

Problem 3. MOO of frequency responses of digital 
filters. The QI definitions and methods for calculating 
them are given in [5]. The QI list and formulation of 
optimization problem is the same as for Problem 1.

Problem 4. MOO of frequency responses of 
matching multistep microwave transformers 
(transitions). The following QIs are defined:
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• maximum KPmax and minimum KPmin power 
transfer coefficients in the matching band;

• uneven power transfer coefficient in matching band 
DKP = KPmax – KPmin.
The method for calculating these QIs is not given 

here due to the limited scope of the paper and will be 
published separately. It is necessary to jointly minimize 
DKP and maximize KPmin at a given value of the 
matching bandwidth DFM.

Problem 5. Another MOO problem of frequency 
response of matching multistep microwave 
transformers. In addition to QI defined for Problem 4, 
the relative unevenness of the delay-frequency response 
in matching band DTd, %, is introduced. It is necessary 
to minimize DKP and DTd at given values of matching 
bandwidth DFM and maximum power transfer 
coefficient KPt.

We shall now consider the algorithms used for 
solving the above problems. 

The population-based algorithm is implemented 
using the PlatEMO library mentioned above. The 
algorithm GDE3 (The Third Evolution Step of 
Generalized Differential Evolution) showing the best 
response values according to [10] is selected from 
71 algorithms presented in the library. The specified 
parameters are the size of population Npop and the 
number of calculations of the QI set Neval. These 
values are found experimentally for each problem. 
For this purpose, search iterations with increasing 
Npop and Neval values were performed until the found 
approximation of the POS set is improved.

Below are the algorithms for finding extrema of 
scalar OFs.

Multistart Pattern Search (MSPS), which describes 
the repeated start of stepwise search, is implemented 
by SOFTD [13] in Problems 1 and 2 and by HODF in 
Problem 3 [5]. Both programs are written in C++. In 
Problems 4 and 5, the algorithm is implemented in the 
MATLAB environment.

Particle Swarm Optimization (PSO) is the particle 
swarm algorithm [3, 4] implemented in MATLAB 
by the particleswarm(..) function from the Global 
Optimization Toolbox module. According to the 
results presented in [12], this algorithm demonstrates 
its capacity to find global extrema of scalar OFs with 
complex landscape. 

Multistart Sequential Quadratic Programming 
(MSSQP) is the repeated start of sequential quadratic 
programming algorithm implemented in MATLAB by 
the fmincon(..) function from Optimization Toolbox 
module. Unlike MSPS and PSO algorithms searching 
for minima of scalar OF of the type (1), the constraints 
on QI are not considered in MSSQP as penalty terms 
but are included in the Lagrange function that may be 
written in the following form: 

L Q g
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where λi are Lagrange multipliers; Qj are quality indices; 
Qjt are their target values. 

In the strict sense, the algorithm is not intended 
for finding global extrema of OFs having a complex 
landscape containing many local extrema. However, as 
shown in [12], it obtains a good approximation to the 
global minimum of OF from most starting points evenly 
distributed in the search space for some problems. At 
the same time, the search duration turns out to be much 
shorter than for other algorithms.

The number of starts, NT, of the scalarization-
based algorithms for finding one POS is selected in 
each problem so as to find a solution that could not be 
significantly improved by further NT increasing. Other 
parameters are set equal to default values.

PROBLEM SOLUTIONS

Problem 1. We shall consider experimental results 
for the analog LPF whose transfer function (TF) 
contains NP = 6 poles and NZ = 0 zeros. The lower 
bound frequency of the stopband on the frequency 
scale normalized to the upper bound frequency of the 
passband is Fs = 2. The results obtained using the 
GDE3 algorithm are shown in Fig. 1 in the form of 
Pareto front approximation graphs for Hst = 30 dB and 
Hst = 40 dB. In the first case, Neval = 1 · 106, while in 
the second case, Neval = 0.5 · 106. The search duration 
is 4 and 2 min, respectively. In both cases, Npop = 50. 

The solutions obtained using algorithms based on 
scalarizing OFs are also presented in Fig. 1. Finding one 
solution takes an average of 2 min by MSPS algorithm, 
10 s by MSSQP algorithm, and 5 min when using the 
PSO algorithm. The number of MSPS starts is 3000, 
while the number of PSO starts is 40; the number of 
MSSQP starts is 20. From the start results, the best 
one is selected. Here, it should be noted that about 
half of MSSQP starts gives the same best result when 
searching for each POS, with the remainder resulting 
in unacceptable solution. The results of the other two 
algorithms are distributed over a wide range of values in 
most experiments.

The comparison of QI solutions obtained by 
different algorithms shows that only MSSQP provides 
benefits for solution quality as compared to GDE3 at 
DHp small values. The other two algorithms based on 
scalarizing OFs show at best results similar to GDE3, 
being at a disadvantage to it at small values of DHp. In 
addition, they require significantly more time for finding 
solutions.
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Problem 2. We shall consider experimental results 
for the same LPF as in Problem 1. The results obtained 
using the compared algorithms are shown in Fig. 2. The 
constraints are set to Tfr ≤ 0.5, Um ≤ 1.1, and DHt ≤ 0 for 
the first series of experiments, while the constraint on 
Tfr is excluded in the second series.

First, it should be noted that the MSSQP algorithm 
cannot find admissible solutions, i.e., those satisfying all 
the restrictions, under the constraint on Tfr at all. In the 
absence of this constraint, the ability of MSSQP to find 

valid solutions appeared to be noticeably worse than that 
for GDE3 and PSO. The number of valid solutions in 
series of NT = 200 starts taking 40–60 s is measured in 
units. In both series of experiments, the MSPS algorithm 
also shows results significantly inferior to the GDE3 and 
PSO solutions. 

In both series of experiments, the GDE3 and PSO 
algorithms show similar results in terms of QI. The 
GDE3 parameters are Npop = 50 and Neval = 200000, 
respectively, while finding an approximation of the POS 
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set takes about 7 min. For PSO, the number of starts is 
NT = 40; the duration of finding one solution is 8–10 min.

The Pareto front turns out to be discontinuous in the 
presence of a constraint on Tfr. To explain the reasons 
for this effect, the Tfr values obtained with no constraint 
imposed on this QI are plotted on the graph also 
shown in Fig. 2. As long as Tfr is less than constraint 
Tfr = 0.5, approximations of Pareto fronts obtained in 
the presence and absence of this constraint coincide. 
The constraint on Tfr is not active and does not affect 
search results. However, if Tfr value should exceed the 
specified threshold, the constraint becomes active, and 
the transition process becomes oscillatory in order to 
fulfill it. In this case, the Pareto front discontinuity is 
due to transitions of the moment when the condition of 
the transient process completion [5] from one wave to 
another is satisfied.

Problem 3. Experimental results for LPF with 
NP = 4 for pole and NZ = 4 for zero are shown in Fig. 3. 
The upper bound frequency of the passband on the 
frequency scale normalized to the sampling frequency is 
Fp = 0.1; the lower bound frequency of the stopband is 
Fs = 0.2. Using the GDE3 population-based algorithm, 
approximations of the Pareto front for problems of 
minimizing QI DHp and DTd at Npop = 50, under 
constraints Hst = 30 dB and Hst = 40 dB. The numbers 
of QI calculations are Neval = 106 and Neval = 1.5 · 106, 
the duration is 6 and 9 min, respectively. 

Next, points of these approximations are obtained 
using algorithms based on scalarizing OFs. The MSPS 
algorithm gives the best results, since the solutions 
found by it cover the ranges of solutions obtained using 
GDE3 completely, not only equalling, but even slightly 

exceeding them in QI terms. In case of Hst = 30 dB, the 
set of MSPS solutions has the least low bound in terms 
of DHp parameters. In all experiments, the number of 
search starts is NT = 2000. The execution time per search 
ranges from 5 to 8.5 min.

The PSO algorithm for Problem 3 turns out to be 
worse than MSPS; here, the solutions found are within 
narrower ranges of QI values taking approximately the 
same time required for one search.

The MSSQP algorithm also loses to GDE3 and 
MSPS by the value of the lower bound of the DHp 
range. However, at HSt = 30 dB, the algorithm finds 
solutions within the DHp value range of 0.2–0.8 dB with 
lower DTd values compared to other algorithms. These 
solutions are located in the area of the search space into 
which other algorithms have not fallen. At the same time, 
the phase-frequency response of the solutions obtained 
using MSSQP differ from the phase-frequency response 
of the other algorithm solutions (Fig. 4) significantly, 
although the gain-frequency response is similar. At the 
same time, MSSQP results are close to those obtained by 
other methods at Hst = 40 dB.

Problem 4. We shall consider an example of the 
problem solution at matching the lines with the ratio of 
wave impedances Zw2/Zw1 = 10, frequency matching 
bandwidth DFM = 1.2, and the number of transformer 
stages Nst = 4 and Nst = 5 (Fig. 5). 

The search by GDE3 algorithm for both values of 
Nst is performed at Npop = 100 and Neval = 1 · 106, 
taking approximately 2 minutes. Since the results 
only insignificantly deteriorate with the number of 
QI calculations, the search duration is decreased by 
10 times.
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All three algorithms based on scalarizing OFs show 
the same results. Therefore, only the solutions obtained 
with MSSQP falling on Pareto front approximations 
found by GDE3 algorithm are shown in Fig. 5. However, 
the methods differ significantly in terms of search 
duration for a single solution. While MSPS and PSO 
require 40–50 s, MSSQP requires only 3–4 s. It should 
be noted that the rightmost points of the series obtained 
using MSSQP coincide with the results for Chebyshev 
approximations, while the points of GDE3 series located 
to their right are not POS.

Problem 5. The problem is solved under conditions 
Zw2/Zw1 = 12, DFM = 1, and KPt = 1 for the number 
of stages Nst = 3, 4, and 5. Approximations of Pareto 
fronts obtained by the compared algorithms are shown 
in Fig. 6.

For GDE3 algorithm, parameters Npop = 100 and 
Neval = 1·105 are set. No further increase in these 
parameters has any positive effect. With increasing 
number of steps Nst, the search duration increases 
within the range from 55 to 71 s. The upper bound of 
DKP values is set to 0.1. At Nst = 5, the Pareto front 
approximation turns out to be discontinuous within the 
range DKP > 0.04. This is due to the DTd value varying 
insignificantly within this range, thus making it difficult 
to estimate the solution dominances.

For the MSPS algorithm, NT = 200. The average 
search duration per solution for three Nst values is 
7, 14, and 20 s. In all cases, the found solutions are 
significantly worse than those obtained using GDE3; 

moreover, increasing the number of NT starts yields no 
improvement. Since the PSO algorithm gives solutions 
coincident with MSPS solutions at close durations, its 
results are not included in Fig. 6.

The MSSQP algorithm demonstrates high efficiency 
in solving this problem. If NT = 10, then 60–100% of 
starts yield the same result matching GDE3 solutions 
over the entire range of values. The other starts result 
in unacceptable solutions with constraint violations. 
The average search duration for three Nst values is 1.6, 
5.2, and 7.5 s. At the same time, the algorithm also finds 
solutions with the given DKP values in the area wherein 
the Pareto front approximation obtained using GDE3 has 
turned out to be discontinuous.

CONCLUSIONS

The study demonstrates that the GDE3 MOO 
population-based algorithm can be used to find a solution 
for all of the considered problems and can therefore be 
recommended for use in solving of such types of MOO 
problems to obtain an approximation of the POS set 
across a wide range of QIs. Thus, it is reasonable to check 
the applicability of the MSSQP algorithm to a particular 
problem, as well as the possibility of obtaining solutions 
superior in quality to those obtained by GDE3. However, 
due to the lack of answers to questions why MSSQP 
algorithm is effective for some problems and unsuitable 
for others, as well as how it finds solutions for Problem 3 
inaccessible to other algorithms, further experimental 
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verification is required. For this it will be necessary to 
analyze the impact of landscape features of individual QI 
in MOO problems on the solution finding process. Despite 
active investigations in recent years, including the use of 
intelligent technologies [14, 15], in the field continues to 
be characterized by a lack of sufficiently general results.

The MSSQP algorithm (or, in case it cannot find 
suitable solutions, other algorithms based on scalarizing 
OFs) can be recommended for use in cases where it is 
necessary to find a small number of POS or to provide 
accurate values for part of QI, which is difficult when 
using population-based MOO algorithms.
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