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Abstract

Objectives. The selection of a method for solving multi-objective optimization problems has many practical
applications in diverse fields. The present work compares the results of applying different methods to the selected
classes of problems by solution quality, time consumption, and various other criteria.

Methods. Five problems related to the multi-objective optimization of analog and digital filters, as well as multistep
impedance-matching microwave transformers, are considered. One of the compared algorithms comprises the
Third Evolution Step of Generalized Differential Evolution (GDE3) population-based algorithm for searching the
full approximation of the Pareto set simultaneously, while the other three algorithms minimize the scalar objective
function to find only one element of the Pareto set in a single search cycle: these comprise Multistart Pattern Search
(MSPS), Multistart Sequential Quadratic Programming (MSSQP) method and Particle Swarm Optimization (PSO)
algorithms.

Results. The computer experiments demonstrated the capability of GDE3 to solve all considered problems. MSPS and
PSO showed significantly inferior results than to GDE3 for two problems. In one problem, MSSQP could not be used
to reach acceptable decisions. In the other problems, MSPS, MSSQP, and PSO reached decisions comparable with
GDES3. The time consumption of the MSPS and PSO algorithms was much greater than that of GDE3 and MSSQP.
Conclusions. The GDE3 algorithm may be recommended as a basic method for solving the considered problems.
Algorithms minimizing scalar objective function may be used to obtain several elements of the Pareto set. It is
necessary to investigate the impact of landscape features of individual quality indices and scalar objective functions
on the extreme search process.
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Pe3iome

Llenu. Bonpoc o BbIGope MeToAa peLLEHMs 3a4a4M MHOTOKpUTEPUabHOM ONTUMU3aUMM N3 MHOXECTBA N3BECTHbIX
MEeTOO0B aKkTyasieH As1I1 MHOTMX MpakTudeckux obnactei. Lienb nccnenoBaHms — CpaBHUTL Pe3ynbTaThl MPUMEHEHMS
pasHbIX METOLOB Ha BbIOPAHHbIX Kilaccax 3agad no Ka4eCTBY PeLLEHWIA, 3aTpaTtaM BPEMEHN 1 APYTUM KPUTEPUSM.
MeTopbl. B paboTe cpaBHMBAOTCA pe3yfbTaTbl MPUMEHEHUS PA3/IMYHbBIX aITOPUTMOB MPU PELLEHMN NATU 3aaad
MHOIOKPUTEPUANLHOM ONTUMU3ALIMN XapakTEPUCTUK aHANIOroBbIX 1 LMPPOBbLIX GUNBTPOB Y MHOFOCTYMNEH4YaTbIX CO-
rnacyowmx CBY-TpaHcdopmaTopoB. MccnemoBannck NonynsuyoHHbIn anropntM GDES, ocyLecTBASOWMIN NOUCK
O HOBPEMEHHO BCeM annpokcnumMaumm MHOXeCTBa NapeTo-onTrMasibHbIX PELUEeHUI, U TPU airopnuTMa, OCHOBaHHbIE
Ha ckanapusaumm Lenesor yHKLNK, KOTOPbIE B OAHOM LIMKJIIE MOUCKA HAXOAAT OAMNH 3/IEMEHT YKa3aHHOrO MHOXe-
CTBa. TO MHOIOKPaTHbIM 3anyck MOKOOPANHATHOrO noncka MSPS, MHOrokpaTtHbI 3anyck anropuTMa rnocnenosa-
TEeNbHOr0 KBaApaTnU4HOro nporpammMmmpoBanna MSSQP v anroputm pos yactuu, PSO.

PesynbTarthl. [poBeaeHHOE NCCneaoBaHNe Nokasasno, YTo NonynsaLUMOHHbIA anroputv GDE3 no3BonseT ycnewwHo Haxo-
[UTb MHOXECTBA PEeLLEeHUI A BCEX PACCMOTPEHHbIX 3a4a4. B AByx 3apadax ua natv anropmutmbl MSPS n PSO cyliecTeh-
Ho ycTynunm GDES kak no ka4ecTBy PeLLeHWIA, Tak 1 Mo 3aTpaTaM BPEMEHM Ha NMOVCK OOHOrO peLleHus. B ogHom n3 3apay
anroputm MSSQP oka3zancs HepaboTocnocoOHbIM. B Apyrix 3aaadax anroputMbl, OCHOBaHHbIE HA CKanspusaumm, Ha-
XOOWNN PELLEHUNS, HE TOMBbKO HE YCTYMatoLLMeE, @ B HEKOTOPbIX Clydasx 1 npesocxoasiuve pesynstatel GDES. Mpu aTOoM
3aTpaThl BPEMEHM Ha MOVCK OAHOMO peLLeHns y MSPS 1 PSO okazanuck 3HaunTenbHo 6onblummi, yem y GDE3 1 MSSQP.
BbiBoabl. Anroputm GDE3 MOXHO pekoMeHaoBaTh kak 6a30BbI AN pelleHns NoaobHbIX 3aaa4. ANropuTMbl, OC-
HOBaHHbIE Ha CKanapu3aumn, LenecoobpasHo NPUMEHSTbL MPY NOUCKE HEGOMBLLOIO YMCa 31IEMEHTOB MHOXECTBA
MapeTo-onTuManbHbIX pelleHnii. HeobxoaMmMo nccnenoBaTth BAVSHUE 0COOEHHOCTEN penbed OB OTAENbHbLIX MNOKa-
3aTenen Ka4eCcTBa 1 CKaNsPHbIX LLenieBbiX PYHKLMM Ha MPOLLECC NOMCKa PeLLEHUS.

KnioueBble cnoBa: MHOrokputepuanbHasa ontummndaumd, Naperto-ontumManbHoe pelwenne, GpoHT NapeTo, noka-

3aTeslb Ka4eCTBa, cKanapmsaums Lenesom GyHKUMY, NoNynAaLMOHHbIN airOpUTM

* Moctynuna: 02.05.2022 » fopa6oTaHa: 20.05.2022 ¢ MpuHgaTa k onyonukoeaHuio: 15.09.2022

OnauutupoBanus: CmupHoB A.B. CpaBHeHMe anropuTMOB MHOFOKpPUTEPUabHOM ONTUMM3ALUN XapaKTEPUCTUK Paamo-
TEXHUYeCKUX yCTPONCTB. Russ. Technol. J. 2022;10(6):42-51. https://doi.org/10.32362/2500-316X-2022-10-6-42-51

Mpo3payHocTb GUHAHCOBOW AeATEeNIbHOCTU: ABTOP HE UMeEeT PMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEACTABNEH-

HbIX MaTepunanax nin Mmetogax.

ABTOp 3asaBnseT 00 OTCYTCTBUA KOH¢)J1VIKTa NHTEpPEeCOB.

INTRODUCTION

Multi-objective optimization (MOO) problems are
of considerable interest in radio engineering and other
fields of research [1]. Multicriteria optimization is aimed
at finding an approximation of the set of Pareto-optimal
solutions (POS) [2], which cannot be improved by one
of the quality indices (QI) without deteriorating at least
one of the other QIs.

Methods for solving MOO problems can be divided
into two main classes [3, 4]. The first is based on solving
the problem of minimizing the scalar objective function
(OF) written in the generalized form [5]:

M . -0.
f(x)=> W; - max @szf’),o . (D)
J=1 Qj I
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where Qj(x) and th are the current and target values of
the jth QI; W, is the weighting factor of the jth QI.

The exponent 4 = 1 provided that normalizing
the QI deviation from the target value for bringing the
summands in (1) to the same range of values is required.
The exponent g, = 0 provided that such normalization is
not required. Equality (1) covers different scalarization
techniques for MOO problem. Taking all th = 0 and
considering the denominators equal to one, the problem
of minimizing the QI weighted sum arises. Another
technique is to set target values th, aswellas W, =1 and
Wj >>1,wherej=1, ..., M, j#k. In this case, the problem
of minimizing QI Q, while fixing other QI near the target
values arises. Methods based on scalarization allow one
POS to be found in a search cycle.

The methods grouped in the second class (MOO
population-based algorithms) permit the computation
of several elements of approximation of the POS set
in a single search cycle using agent population. The
classification and description of algorithms of this type
are given in [3, 4].

The sets of test functions [6] and quality criteria
for approximating the POS set [3] are used to compare
different methods for solving the MOO problem.
Generally, the results of applying MOO population-
based algorithms are evaluated using test functions,
e.g., as in [7, 8]. Here, no comparison with the results
of scalarization-based methods is performed. This can
be justified in the case of test functions whose properties
are all known; the quality of found approximations of
the POS set can be evaluated objectively. In terms of
practical applications, however, where nothing generally
is known in advance about functions describing
QI, it becomes necessary to solve the “Black Box
Optimization” problem for collecting information on QI
values while finding.

A determination of which algorithm would give the
best approximation may be achieved only by comparing
the results of different methods, including both
population-based and scalarization-based approaches.
Such comparison for a specific class of problems is
performed in [9] to support a conclusion about the
superiority of population-based algorithms in terms
of the quality of obtained solutions. Nevertheless,
a different result may be obtained for other types of
problems. In [10], the possibility of applying population-
based algorithms from the PlatEMO open source [11]
running in the MATLAB environment to solve the MOO
problem of the frequency response of analog electrical
filters is investigated. Here, the authors conclude that, in
the case of optimization by two QIs, population-based
methods provide better solutions than scalarization-
based approaches. While, in the case of optimization by
three QIs, the opposite result is obtained, this conclusion
is reached when not using the most effective algorithm

for finding an extremum of the scalar OF in experiments.
Different scalarization-based algorithms are compared
in [12], albeit without considering population-based
approaches.

The present work aims to compare the results
of applying MOO algorithms of different classes
on examples of several problems of optimizing the
characteristics of radio engineering devices. Among the
indicators characterizing the compared methods, the
highest priority is given to obtaining the best results.
In case these criteria are equal, a comparison may be
performed in terms of search duration per one POS
along with other indices.

PROBLEM FORMULATION AND SELECTION OF
OPTIMIZATION ALGORITHMS

Problem 1. MOO of frequency response of analog
filters. The QI definitions and methods for calculating
them are given in [13] and other works by the author.
Below is a list of QlIs:

e uneven gain-frequency response

DHp, dB;

e minimum attenuation in stopband Hs, dB;

e cxceeding gain-frequency response of a given level
in transition band DHt;

e uneven delay-frequency response

DTd, %.

Frequency response is calculated on a dimensionless
frequency scale normalized to the upper bound
frequency of the low pass filter (LPF) passband. Here,
it is necessary to minimize DHp and DTd together while
fulfilling the constraints DHt <0, Hs > Hst.

Problem 2. MOO of simultaneous frequency
and time responses of analog filters. The QI
definitions and methods for calculating them are
given in [13]. In addition to the frequency domain QI
mentioned above, the following time domain QIs are
introduced:

e maximum voltage (overshoot) of the transient
process Um normalized to the steady-state value;

e transient rising (front) duration 7f7;

e transient-process duration 75s.

The last two QIs are calculated on a dimensionless
time scale referenced to the normalized frequency
scale. Here, it is necessary to jointly minimize 7ss and
maximize Hs under the constraints DHt <0, Um < Umt,
and Tfr < Tfrt.

Problem 3. MOO of frequency responses of digital
filters. The QI definitions and methods for calculating
them are given in [5]. The QI list and formulation of
optimization problem is the same as for Problem 1.

Problem 4. MOO of frequency responses of
matching multistep microwave transformers
(transitions). The following QIs are defined:

in passband

in passband
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e maximum KPmax and minimum KPmin power
transfer coefficients in the matching band;
e uneven power transfer coefficient in matching band

DKP = KPmax — KPmin.

The method for calculating these QIs is not given
here due to the limited scope of the paper and will be
published separately. It is necessary to jointly minimize
DKP and maximize KPmin at a given value of the
matching bandwidth DFM.

Problem 5. Another MOOQO problem of frequency
response of matching multistep microwave
transformers. In addition to QI defined for Problem 4,
the relative unevenness of the delay-frequency response
in matching band DTd, %, is introduced. It is necessary
to minimize DKP and DTd at given values of matching
bandwidth DFM and maximum power transfer
coefficient KPt.

We shall now consider the algorithms used for
solving the above problems.

The population-based algorithm is implemented
using the PlatEMO library mentioned above. The
algorithm GDE3 (The Third Evolution Step of
Generalized Differential Evolution) showing the best
response values according to [10] is selected from
71 algorithms presented in the library. The specified
parameters are the size of population Npop and the
number of calculations of the QI set Neval. These
values are found experimentally for each problem.
For this purpose, search iterations with increasing
Npop and Neval values were performed until the found
approximation of the POS set is improved.

Below are the algorithms for finding extrema of
scalar OFs.

Multistart Pattern Search (MSPS), which describes
the repeated start of stepwise search, is implemented
by SOFTD [13] in Problems 1 and 2 and by HODF in
Problem 3 [5]. Both programs are written in C++. In
Problems 4 and 5, the algorithm is implemented in the
MATLAB environment.

Particle Swarm Optimization (PSO) is the particle
swarm algorithm [3, 4] implemented in MATLAB
by the particleswarm(..) function from the Global
Optimization Toolbox module. According to the
results presented in [12], this algorithm demonstrates
its capacity to find global extrema of scalar OFs with
complex landscape.

Multistart  Sequential Quadratic Programming
(MSSQP) is the repeated start of sequential quadratic
programming algorithm implemented in MATLAB by
the fmincon(..) function from Optimization Toolbox
module. Unlike MSPS and PSO algorithms searching
for minima of scalar OF of the type (1), the constraints
on QI are not considered in MSSQP as penalty terms
but are included in the Lagrange function that may be
written in the following form:

M-l
L(x,h) =0, (x)+ z %8 (%), 2)
i=I

g (x)= Q(X)-Qj,i=L..M~-1 j=1...M,j=*k,

where A, are Lagrange multipliers; O ), are quality indices;
Qﬂ are their target values.

In the strict sense, the algorithm is not intended
for finding global extrema of OFs having a complex
landscape containing many local extrema. However, as
shown in [12], it obtains a good approximation to the
global minimum of OF from most starting points evenly
distributed in the search space for some problems. At
the same time, the search duration turns out to be much
shorter than for other algorithms.

The number of starts, N7, of the scalarization-
based algorithms for finding one POS is selected in
each problem so as to find a solution that could not be
significantly improved by further N7 increasing. Other
parameters are set equal to default values.

PROBLEM SOLUTIONS

Problem 1. We shall consider experimental results
for the analog LPF whose transfer function (TF)
contains NP = 6 poles and NZ = 0 zeros. The lower
bound frequency of the stopband on the frequency
scale normalized to the upper bound frequency of the
passband is Fs = 2. The results obtained using the
GDE3 algorithm are shown in Fig. 1 in the form of
Pareto front approximation graphs for Hsz = 30 dB and
Hst = 40 dB. In the first case, Neval = 1 - 10°, while in
the second case, Neval = 0.5 - 10°. The search duration
is 4 and 2 min, respectively. In both cases, Npop = 50.

The solutions obtained using algorithms based on
scalarizing OFs are also presented in Fig. 1. Finding one
solution takes an average of 2 min by MSPS algorithm,
10 s by MSSQP algorithm, and 5 min when using the
PSO algorithm. The number of MSPS starts is 3000,
while the number of PSO starts is 40; the number of
MSSQP starts is 20. From the start results, the best
one is selected. Here, it should be noted that about
half of MSSQP starts gives the same best result when
searching for each POS, with the remainder resulting
in unacceptable solution. The results of the other two
algorithms are distributed over a wide range of values in
most experiments.

The comparison of QI solutions obtained by
different algorithms shows that only MSSQP provides
benefits for solution quality as compared to GDE3 at
DHp small values. The other two algorithms based on
scalarizing OFs show at best results similar to GDE3,
being at a disadvantage to it at small values of DHp. In
addition, they require significantly more time for finding
solutions.
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Fig. 1. Problem 1 solution

Problem 2. We shall consider experimental results
for the same LPF as in Problem 1. The results obtained
using the compared algorithms are shown in Fig. 2. The
constraints are set to 7fr <0.5, Um < 1.1, and DHt <0 for
the first series of experiments, while the constraint on
Tfr is excluded in the second series.

First, it should be noted that the MSSQP algorithm
cannot find admissible solutions, i.e., those satisfying all
the restrictions, under the constraint on 7f7 at all. In the
absence of this constraint, the ability of MSSQP to find

valid solutions appeared to be noticeably worse than that
for GDE3 and PSO. The number of valid solutions in
series of NT = 200 starts taking 40—60 s is measured in
units. In both series of experiments, the MSPS algorithm
also shows results significantly inferior to the GDE3 and
PSO solutions.

In both series of experiments, the GDE3 and PSO
algorithms show similar results in terms of QI. The
GDE3 parameters are Npop = 50 and Neval = 200000,
respectively, while finding an approximation of the POS
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Fig. 2. Problem 2 solution
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set takes about 7 min. For PSO, the number of starts is
NT=40; the duration of finding one solution is 810 min.

The Pareto front turns out to be discontinuous in the
presence of a constraint on 7fr. To explain the reasons
for this effect, the 7fr values obtained with no constraint
imposed on this QI are plotted on the graph also
shown in Fig. 2. As long as Tfr is less than constraint
Tfr = 0.5, approximations of Pareto fronts obtained in
the presence and absence of this constraint coincide.
The constraint on Tfr is not active and does not affect
search results. However, if 7fr value should exceed the
specified threshold, the constraint becomes active, and
the transition process becomes oscillatory in order to
fulfill it. In this case, the Pareto front discontinuity is
due to transitions of the moment when the condition of
the transient process completion [5] from one wave to
another is satisfied.

Problem 3. Experimental results for LPF with
NP = 4 for pole and NZ = 4 for zero are shown in Fig. 3.
The upper bound frequency of the passband on the
frequency scale normalized to the sampling frequency is
Fp = 0.1; the lower bound frequency of the stopband is
Fs =0.2. Using the GDE3 population-based algorithm,
approximations of the Pareto front for problems of
minimizing QI DHp and DTd at Npop = 50, under
constraints Hst = 30 dB and Hst = 40 dB. The numbers
of QI calculations are Neval = 10° and Neval = 1.5 - 10°,
the duration is 6 and 9 min, respectively.

Next, points of these approximations are obtained
using algorithms based on scalarizing OFs. The MSPS
algorithm gives the best results, since the solutions
found by it cover the ranges of solutions obtained using
GDE3 completely, not only equalling, but even slightly

70.0

exceeding them in QI terms. In case of Hst =30 dB, the
set of MSPS solutions has the least low bound in terms
of DHp parameters. In all experiments, the number of
search starts is N7'=2000. The execution time per search
ranges from 5 to 8.5 min.

The PSO algorithm for Problem 3 turns out to be
worse than MSPS; here, the solutions found are within
narrower ranges of QI values taking approximately the
same time required for one search.

The MSSQP algorithm also loses to GDE3 and
MSPS by the value of the lower bound of the DHp
range. However, at HSt = 30 dB, the algorithm finds
solutions within the DHp value range of 0.2-0.8 dB with
lower DTd values compared to other algorithms. These
solutions are located in the area of the search space into
which other algorithms have not fallen. At the same time,
the phase-frequency response of the solutions obtained
using MSSQP differ from the phase-frequency response
of the other algorithm solutions (Fig. 4) significantly,
although the gain-frequency response is similar. At the
same time, MSSQP results are close to those obtained by
other methods at Hst =40 dB.

Problem 4. We shall consider an example of the
problem solution at matching the lines with the ratio of
wave impedances Z ,/Z , = 10, frequency matching
bandwidth DFM = 1.2, and the number of transformer
stages Nst =4 and Nst =5 (Fig. 5).

The search by GDE3 algorithm for both values of
Nst is performed at Npop = 100 and Neval = 1 - 106,
taking approximately 2 minutes. Since the results
only insignificantly deteriorate with the number of
QI calculations, the search duration is decreased by
10 times.

60.0

500 f-t + GDE3 Hst = 30 dB
= GDE3 Hst = 40 dB
A ﬂo l' —
o 40.0 - A MSPS Hst =30 dB
5 ﬁ’oﬁ.’ .'l A MSPS Hst = 40 dB
3 *oas, B O MSSQP Hst = 30 dB
30.0 R B MSSQP Hst = 40 dB
+
l.“ -t. ® PSO Hst =30 dB
20.0 . e C ® PSO Hst = 40 dB

0.0

i
O o Oog ‘-.
10.0 -
* n

0.01 0.10
DHp, dB

1.00 10.00

Fig. 3. Problem 3 solution
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All three algorithms based on scalarizing OFs show
the same results. Therefore, only the solutions obtained
with MSSQP falling on Pareto front approximations
found by GDE3 algorithm are shown in Fig. 5. However,
the methods differ significantly in terms of search
duration for a single solution. While MSPS and PSO
require 40-50 s, MSSQP requires only 3—4 s. It should
be noted that the rightmost points of the series obtained
using MSSQP coincide with the results for Chebyshev
approximations, while the points of GDE3 series located
to their right are not POS.

Problem 5. The problem is solved under conditions
ZolZyy = 12, DFM = 1, and KPt = 1 for the number
of stages Nst = 3, 4, and 5. Approximations of Pareto
fronts obtained by the compared algorithms are shown
in Fig. 6.

For GDE3 algorithm, parameters Npop = 100 and
Neval = 1-10° are set. No further increase in these
parameters has any positive effect. With increasing
number of steps Nstz, the search duration increases
within the range from 55 to 71 s. The upper bound of
DKP values is set to 0.1. At Nst = 5, the Pareto front
approximation turns out to be discontinuous within the
range DKP > 0.04. This is due to the D7d value varying
insignificantly within this range, thus making it difficult
to estimate the solution dominances.

For the MSPS algorithm, N7 = 200. The average
search duration per solution for three Nst values is
7, 14, and 20 s. In all cases, the found solutions are
significantly worse than those obtained using GDE3;

moreover, increasing the number of N7 starts yields no
improvement. Since the PSO algorithm gives solutions
coincident with MSPS solutions at close durations, its
results are not included in Fig. 6.

The MSSQP algorithm demonstrates high efficiency
in solving this problem. If N7 = 10, then 60-100% of
starts yield the same result matching GDE3 solutions
over the entire range of values. The other starts result
in unacceptable solutions with constraint violations.
The average search duration for three Nst¢ values is 1.6,
5.2, and 7.5 s. At the same time, the algorithm also finds
solutions with the given DKP values in the area wherein
the Pareto front approximation obtained using GDE3 has
turned out to be discontinuous.

CONCLUSIONS

The study demonstrates that the GDE3 MOO
population-based algorithm can be used to find a solution
for all of the considered problems and can therefore be
recommended for use in solving of such types of MOO
problems to obtain an approximation of the POS set
across a wide range of QIs. Thus, it is reasonable to check
the applicability of the MSSQP algorithm to a particular
problem, as well as the possibility of obtaining solutions
superior in quality to those obtained by GDE3. However,
due to the lack of answers to questions why MSSQP
algorithm is effective for some problems and unsuitable
for others, as well as how it finds solutions for Problem 3
inaccessible to other algorithms, further experimental
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Fig. 6. Problem 5 solution

Russian Technological Journal. 2022;10(6):42-51

49




Comparison of algorithms for multi-objective optimization
of radio technical device characteristics

Alexander V. Smirnov

verification is required. For this it will be necessary to
analyze the impact of landscape features of individual QI
in MOO problems on the solution finding process. Despite
active investigations in recent years, including the use of
intelligent technologies [14, 15], in the field continues to
be characterized by a lack of sufficiently general results.
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