Russian Technological Journal. 2022;10(6):7-19 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMsbl. Uudopmaruka. [Ipodiaembl nHGopManMOHHONH 0€3011aCHOCTH

UDC 004.4°2 +004.51
https.//doi.org/10.32362/2500-316X-2022-10-6-7-19 (@)Y |

RESEARCH ARTICLE

Computational complexity when constructing
rational plans for program execution
in a given field of parallel computers

Valery M. Bakanov @

MIREA - Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: e881e@mail.ru

Abstract

Objectives. The construction of rational plans (schedules) for parallel program execution (PPE) represents
a challenging problem due to its ambiguity. The aim of this work is to create methods for developing such plans
and specialized software for implementing these methods, which are based on the internal properties of algorithms,
primarily on the property of internal (hidden) parallelism.

Methods. The main method for developing PPE plans was the construction, analysis, and purposeful transformation
of the stacked-parallel form (SPF) of information graphs of algorithms (IGA). The SPF was transformed by transferring
operators from tier to tier of the SPF (this event was taken as an elementary step in determining the computational
complexity of scenario execution). As a transformation tool, a method for developing transformation scenarios
in the scripting programming language Lua was used. Scenarios were created by a heuristic approach using a set
of Application Programming Interface (API) functions of the developed software system. These functions formed
the basis for a comprehensive study of the parameters of the IGA and its SPF representation for the subsequent
construction of a PPE plan applying to a given field of parallel computers.

Results. Features of the internal properties of the algorithms that affect the efficiency of SPF transformations were
identified during the course of computational experiments. Comparative indices of the computational complexity
of obtaining PPE plans and other parameters (including code density, etc.) were obtained for various SPF
transformation scenarios. An iterative approach to improving heuristic methods favors developing optimal schemes
for solving the objective problem.

Conclusions. The developed software system confirmed its efficiency for studying the parameters of hidden
parallelism in arbitrary algorithms and rational use in data processing. The approach of using a scripting language
to develop heuristic methods (scenarios) for the purposeful transformation of IGA forms showed great flexibility
and transparency for the researcher. The target consumers of the developed methods for generating schedules
for parallel execution of programs are, first of all, developers of translators and virtual machines, and researchers
of the properties of algorithms (for identifying and exploiting the potential of their hidden parallelism). The developed
software and methods have been successfully used for a number of years for increasing student competence in data
processing parallelization at Russian universities.

Keywords: algorithm graph, fine information structure of program, stacked-parallel form of graph, rational execution
parameters of parallel program, execution plan of parallel program

© V.M. Bakanov, 2022

https://doi.org/10.32362/2500-316X-2022-10-6-7-19
mailto:e881e@mail.ru

Computational complexity when constructing rational plans Valery M. Bakanov
for program execution in a given field of parallel computers

e Submitted: 30.01.2022 » Revised: 29.03.2022 ¢ Accepted: 05.09.2022

For citation: Bakanov V.M. Computational complexity when constructing rational plans for program execution in a given
field of parallel computers. Russ. Technol. J. 2022;10(6):7-19. https://doi.org/10.32362/2500-316X-2022-10-6-7-19

Financial disclosure: The author has no a financial or property interest in any material or method mentioned.

The author declares no conflicts of interest.

HAYYHAA CTATbA

BeruuciaureabHas CJI0KHOCTD IHOCTPOCHMUSA
PAllHOHAJBbHBLIX IIJIAHOB BBIIIOJHCHUA IMIPOIrpaMMm
Ha 3aJaHHOM I10JI€C ITAapa/JlJIC/JIbHbIX BBIYHCJINTEIEH

B.M. BakaHos ©

MUP3A — Poccuiickunii TexHosiorn4deckuii yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp Ans nepenvcku, e-mail: e881e@mail.ru

Pe3iome

Llenu. NocTpoeHne paumoHanbHbIX NIAHOB (PacnucaHnii) BbINOAHEHWS NapannenbHbix nporpavmm (BIMM), scnea-
CTBME HEOOHO3HAYHOCTU, SBNSIETCS CIIOXHOW 3azadvelt. Llenb paboTbl — co3paHne MeToamk paspaboTku Takux
NnjaHoB 1 CneunanManpoBaHHOrO NPOrpaMMHOro obecnedyeHns ons peannsaumm aTUX METOAMK, NonaratLLmMXcs
Ha BHYTPEHHWE CBOICTBA airOPMTMOB, B MEPBYIO O4epeab Ha CBONCTBO BHYTPEHHENO (CKPbITOro) napannenmama.
MeToabl. OCHOBHbIMUM MeTOAaMM Npu padpaboTke nnaHoB BT sBns0TCS NOCTPOEHME, aHaNM3 1 LeNleHanpaBeH-
Hoe npeobpasoBaHne SpycHo-napannensHon dopmbl (AMNP) nHdpopmaumoHHbix rpados anroputmos (UIFA). Mpe-
obpaszoaHue AMNdD ocyulecTBnsSeTCS NyTeM rnepeHoca onepaTtopoB ¢ spyca Ha apyc AMNd (MmeHHo 3To cobbiTre
M MPUHSATO 32 9NeMEHTaPHbIN War Npy onpeaeneHn BblYNCANTENbHON CAOXHOCTU BbINOAHEHUS cueHapus). B ka-
4eCcTBE MHCTPYMEHTa Npeobpa3oBaHNs NPUMEHEH METOL, pa3paboTku cueHapreB NpeobpasoBaHst Ha CKPUMTOBOM
A3blke NporpaMmmupoBaHus Lua. CueHapum co3naoTcs Ha OCHOBE 9BPUCTUYECKOro NoaxoAa U UCMosib3ytoT Habop
API-dyHkumin (APl — Application Programming Interface) paspaboTtaHHOM NpOrpamMMHOl CUCTEMBbI, MO3BOJISOLLMX
BCECTOPOHHE M3yunTb napameTpbl UIFA u ero AMN®-npencrasneHns ons nocnenyoLwero noctpoeHus nnaxa BIM
Ha 3a4aHHOM MoJie napasieNbHbIX BblYUCAUTENEN.

PesynbTatbl. Pe3ynbtathl BbIYUCANTESNBbHBLIX 9KCMNEPUMEHTOB BbISIBUIM OCOOEHHOCTU BHYTPEHHMX CBOWCTB anro-
PUTMOB, BANSIIOLLMX Ha 9D DEKTUBHOCTbL NpeobpazoBaHunii ANd. MNMonyyeHsbl cpaBHUTESNbHbIE NOKA3aTENM BbIMUCN-
TENbHOW CMOXHOCTM nonyydeHus nnaHoB Bl n nHeix napameTpoB (Bko4Yas NAOTHOCTb KOAa 1 Ap.) Npy NpUMeHe-
HUW Pa3nnYHbIX cueHapreB NpeobpazoBaHus AND. VITepalMOHHbI NOAX0[, K YYHLLIEHMIO 3BPUCTUYECKUX METOAOB
NO3BOSIUT NPUBAN3NTLCS K ONTUMaSIbHBIM CXEMaM PELLEHMS LIENEBOV 3aa4u.

BoeiBoAbl. B Lienom pa3paboTaHHbIi MporpaMmMHbIA KOMMAeKC noaTeepann 9ddEKTUBHOCTb B UCCEL0BaHMN Na-
pamMeTpoB CKPbLITOro napasnfienn3ma B Npon3BOJibHbIX afropuTtMax 1 paumoHanbHOro ero UCnonb30BaHus npu 06-
paboTke AaHHbIX. [oaxon NpUMEHEHNS CKPUMTOBOIO A3blka A5 pa3paboTky 9BPUCTUYECKNX METOA0B (CLEHApUEB)
LesieHanpasneHHoro npeobpasoBaHus popm UIFA nokasan 6onbLuyio rmbKOCTb U MPO3PAYHOCTL 418 UCClenoBa-
Tens. LlenesbiMy noTpebutensamm paspaboTaHHbIX METOA0B reHepaL M pacnmcaHuii napannesibHoOro BbINOJHEHNUS
nporpaMm B NEPBYIO O4YepPeb SBASIOTCS Pa3paboTumKky TPaHCASTOPOB M BMPTYaslbHbIX MALUWH, UCCnenoBaTenu
CBOWCTB afirOPMTMOB (B HaNpaB/EHUN HAXOXAEHUSA U MCNOAb30BAaHUS MOTEHLMAana CKPbITOro Ux napannensma).
PaspaboTtaHHoe nporpaMmHoe o6ecrneyeHne N MeTOANKN HECKOJIbKO JIET MPUMEHSIIOTCS NPy 00y4YEHM CTYAEHTOB
B YHMBepcuTeTax Poccuu, 4To No3BOSIUIIO MNOBLICUTL KOMMAETEHUMN yyalmxcst B o6nacty napannennsauum obpa-
OOTKWN AaHHBbIX.

KnioueBble cnoga: rpad anroputMa, TOHKas MHGOPMaLMOHHAs CTPYKTypa NporpamMmbl, SpyCHO-napaniesbHas
dopma rpada, paumoHasbHble NapameTpbl BbINMOJHEHWS NapaniesibHOi NporpaMMsbl, NJiaH BbINOJHEHUS NapaniesbHOn
nporpamMmbl

Russian Technological Journal. 2022;10(6):7-19

mailto:e881e@mail.ru
https://doi.org/10.32362/2500-316X-2022-10-6-7-19

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

e Moctynuna: 30.01.2022 ¢ Jopa6oTaHa: 29.03.2022 ¢ MpuHaTa k ony6nukoBaHuio: 05.09.2022

Ana uutnpoBaHusa: BakaHoB B.M. BbluncnutenbHas CIHOXHOCTb MOCTPOEHUSA paLMOHalbHbIX MJIAHOB BbIMOJIHE-
HVS NpOorpaMm Ha 3aJaHHOM Mofie napasnenbHbiX Bbluncnutenen. Russ. Technol. J. 2022;10(6):7-19. https://doi.

org/10.32362/2500-316X-2022-10-6-7-19

npOSpa'-IHOCTb ¢|/||-|ch030|‘& AedaTesibHOCTU: ABTOp HEe nMmeet q)l/lHaHCOBOI7I 3anHTEepPeCcoBaHHOCTW B nNpencTaBJieH-

HbIX MaTepunanax nnm Metogax.

ABTOp 3asBnseT 06 OTCYTCTBUM KOH(DINKTA MHTEPECOB.

INTRODUCTION

A currently popular method for reducing
computation time is parallelization, involving the
simultaneous processing of data in parts on a set of
multiple computers with subsequent combination of
the obtained results. While the possibility of using extra
hardware to overcome existing fundamental and purely
technological limitations of increasing performance
is intuitively apparent, the possibility of identifying
analogous parallelism potentials in algorithms is less
so [1].

A separate and nontrivial problem when organizing
parallel computing involves the construction of a plan
(schedule) for the execution of parallel programs (PPE).
Here, almost every sequential program (algorithms
forming the basic components of any program
conventionally represented in sequential form) can
be represented in a parallel form using methods that
preserve the set of operations and causal relationships
between them to support different execution efficiencies
on parallel computers of a given architecture. According
to this formulation of the problem, it is the algorithms
themselves, comprising the real building blocks
of programs, whose internal properties become an
increasingly important area of study.

Each of the considered PPE plans is associated with
certain program execution quality parameters (time,
required computational resources, memory load, etc.).
The formulation of the objective function and solution to
the multi-parameter optimization problem is dependent
on the stated problem.

Despite the differences in the architecture and systems
of machine instructions of various parallel computing
systems and parallel programming technologies, there
are scientifically substantiated general approaches to the
construction of enlarged plans (schedules) for program
execution. Abstracting from the specifics of parallel
programming technologies, it is logical to refer to such
plans in terms of a framework for the execution of a
parallel program.

I'Voevodin V., Dongarra J. (Eds.). AlgoWiki: Open
Encyclopedia of Parallel Algorithmic Features. http://algowiki-
project.org. Accessed October 20, 2022 (in Russ.).

This paper proposed methods and their
implementation (in the form of problem-solving program
scenarios) for developing rational PPE plans on a given
(possibly heterogeneous) field of parallel computers.
The developed scenarios are intended for embedding
as parallelizing blocks in newly developed systems
for creating executable program code. In this case, the
emphasis is on achieving maximum computational
speed, since program debugging requires multiple
translations with complex optimization while ensuring
required quality.

METHODS

The problem of finding methods for constructing
rational PPE plans was solved by creating a specialized
software system of the instrumental level, whose
generalized flow diagram and information flow diagram
are shown in Fig. 1.

*.cls, *.ops
*.lua .
*.mvr, *.med Result in the form
LoV S— I of screen t_ext,_bar
chart, or disk file
. SPF@home Y
.set>—| D-F -

.gv l

Fig. 1. Instrumental software complex for constructing
PPE plans [2]

The input of the software system (Fig. 1) receives a
description of an algorithm to be analyzed in the form
of a conventional sequential program in an imperative
style or its formal description in the form of a directed
acyclic information graph of the algorithm (IGA), i.e.,
an ‘operators — operands’ dependence. In this case, the
graph vertices are associated with operators (groups of
operators) of the program; and the graph edges, with
data transmission lines. In Fig. 1, the files of types *.set
and *.gv are the program and information graph files of
the analyzed program, respectively; *.mvr and *.med,
the files of the metrics of vertices and edges of the graph
of the algorithm, respectively; *.cls and *.ops, the files
of parameters of computers and program operators,
respectively; and *.lua, the Lua text file containing scripts

Russian Technological Journal. 2022;10(6):7-19

https://doi.org/10.32362/2500-316X-2022-10-6-7-19
https://doi.org/10.32362/2500-316X-2022-10-6-7-19
http://algowiki-project.org
http://algowiki-project.org

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

for PPE plans. When the results of the development are
used as an algorithmic basis for the functioning of the
components of parallelizing translators, the IGA is built
on the basis of the results of parsing the source code
by a translator (and the library functions are processed
separately). When the application is implemented as a
separate Code Morphing Software component, the IGA is
built on the basis of the generated sequential executable
code. A useful feature of using the representation of
programs as IGA is that the graph can be processed in
separate blocks (on the level of subroutines and files)
with subsequent assembly of the graph of the complete
application.

The internal logical parallelism in algorithms is
identified and analyzed by simulating an actor model
(D-F (Data Flow) module) and constructing special
sections of the IGA in the stacked-parallel form
(SPF) [3] (SPF@home module) [4, 5]. Both modules,
which are developed in the C/C++ language in a GUI
style for Win’32 model (a command line mode was
additionally implemented for massive computations), are
completely open-source and can be downloaded for free
use (installation file format).? The D-F module builds
an PPE plan for the operator execution asynchronism
model; schedules in the SPF@home module style are
designed for synchronous calling of groups of operators.

The D-F module is a universal computer of the
Symmetric MultiProcessing (SMP) architecture (shared-
memory systems) [6], whose input receives a sequential
program in an imperative assembler-like language
(3-character command mnemonics and a 3-address
system with the AT & T operand order). The program is
executed in a simulator of a computer of the Data-Flow
static architecture; here, the order of execution of
processor instructions is determined not by the order
in which they appear in the machine code, but by the
readiness of the operands [7, 8].

The inverse problem of optimizing the parameters of
a computer from the characteristics of the computation
process can be solved by varying the number of parallel
computers and the rules for fetching instructions from
the buffer [4]. Export of IGA to third-party programs in
DOT format is provided along with a detailed simulation
protocol.

Conditional execution is implemented by the
predicate method [9, 10], with cycles being implemented
using a system of macros, which unfold cyclic
structures. The convenience of visualizing the solution is
contributed by the output of the program execution data
as a function of the computation intensity (the number of

2 http://vbakanov.ru/dataflow/content/install_df.exe.
Accessed October 24, 2022 (in Russ.); http://vbakanov.ru/
spf@home/content/install_spf.exe. Accessed October 24, 2022
(in Russ.).

simultaneously executed operators as a function of time)
and Gantt charts.

The SPF@home module [5] is designed to model
and select the best (in a given sense) scenarios for
transforming the SPF as a plan for the parallel execution
of operators on a computational system of a given
architecture. A significant advantage of using the SPF
is the satisfactory temporal computational complexity
of its derivation, which is quadratic polynomial with
respect to the number of graph vertices. The SPF can
initially be constructed in “upper” or “lower” form
(where all the operators are located on the tiers of
the SPF as close as possible to the beginning or end
of the program execution, respectively). An important
user advantage of the SPF is its improved visualization
of the representation of the identified parallelism in
the algorithm: even the initially obtained SPF of the
algorithm is already a certain initial (usually far from
optimal) PPE plan.

Groups (bundles) of operators located on the tiers
of the SPF are executed in parallel within each tier,
while bundles of operators on each tier are executed
sequentially, beginning with the initial tier. The minimum
possible height of the SPF (the number of tiers), which
is determined by the length of the critical path in the
IGA [11, 12], determines the shortest execution time of
the algorithm. In the SPF@home module, the obtained
SPF is visualized in text and graphical forms (the bar
diagram of the SPF widths is an easy representation of
the height distribution function of the SPF widths). The
mechanism for setting operator execution metrics is
used to set parameters for operators (for example, their
execution time or required resources for a heterogeneous
field of computers), computers (types of operators that
can be executed on a given computer), as well as data
transmission lines (transmission time, data sizes). The
practice of using the metrics mechanism is described in
detail in the subsection that presents PPE scheduling on
a given heterogeneous field of computers.

Additionally, the SPF@home module provides the
ability to obtain information on the data lifetime required
to execute a given algorithm. These data, which exist as
a consequence of the execution of individual operators,
serve as input operands for other operators of the
algorithm. This information (in fact, an estimate of the
local capacitive complexity of the program execution)
is important for determining the required parameters
of the internal registers of the processor and/or solving
questions about the optimal placement of data between
the processor registers and RAM.

The main method of transforming the SPF is the
purposeful movement of operators between the tiers
of the SPF while maintaining information links in
the IGA. In general, this is an NP-complete problem,
which belongs to the class of constrained scheduling

Russian Technological Journal. 2022;10(6):7-19

10

http://vbakanov.ru/dataflow/content/install_df.exe
mailto:http://vbakanov.ru/spf@home/content/install_spf.exe
mailto:http://vbakanov.ru/spf@home/content/install_spf.exe

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

problems [13] and can be used in the construction of
rational (iteratively tending to optimal) PPE plans.
In the present work, a heuristic approach was used
to obtain a solution whose scenarios (in this case,
SPF transformations in the required direction) are
implemented using the Lua scripting language [14].
Lua was chosen because it is completely open-source,
close in syntax to common programming languages
(C/C++ style), and compact when embedded in a parent
application.

Each Lua function call is actually a wrapper
over the corresponding Application Programming
Interface (API) call of the parent program. The set of
APIs of the SPF@home system, which covers almost
all foreseeable actions on the IGA, can be used to
analyze a graph of any complexity (limited by the
resources of the computing device). In this sense,
the use of the SPF graph is only one of the possible
solution methods. A total of three types of calls can be
distinguished:

e Information calls—serve to obtain information on
the IGA and its SPF, on the basis of which data
the specific IGA processing method is selected for
solving the problem. Examples include determining
the total number of tiers of the SPF, the number
of operators in a given tier, the range of possible
locations of a given operator in the tiers of
the SPF, etc.

e Action calls—serve to implement specific methods
for solving the problem of constructing an PPE
schedule. Examples are to build the upper or lower
form of the SPF, add an empty tier under the data,
move an operator from tier to tier, etc.

o Auxiliary calls—serve to output the computed data
in text and graphical forms for data exchange with
other applications, work with the file system, etc.
The information graph of the algorithm in the SPF

form can formally be represented by a 2D list of identifier
elements (e.g., unique numbers) of operators [al.j],
where i = 1...W is the number of a row; the quantity W
or SPF height is determined by the length of the critical

path in the IGA; and j=1...;/" is the number of
operators in row i. The quantity H =max(l...j"**) is
i

referred to as the SPF width. In a real IGA, the position
of each operator on the tiers is limited by the presence
of information links in the algorithm and by the range
fmin < < maxywhere /MM and {M2* are the admissible
numbers of tiers of placement of a given operator in the
SPF; the range /™" < j <™ can be logically described
in terms of the variability of positions on the tiers of the
ith operator. The SPF is actually the (initial, naive) PPE
plan (schedule). For a given description, the direction
of the unit vector of time coincides with the increase in
the number of a tier of the SPF.

In general, the proposed approach is fully consistent
with the Explicitly Parallel Instruction Computing (EPIC)
style [15] intended for software implementation of
parallelizing translator blocks. At the same time, for
the Very Long Instruction Word (VLIW) computing
architecture [10], the term operator should be understood
as a machine instruction in order to fully adhere to the
Instruction-Level Parallelism (ILP) concept [4]. For
multithreaded systems on multicore processors, it is
logical to correlate the “operator” with a parallelism
granule of a much larger size, e.g., on the level of
an operator/operators or procedures of a high-level
programming language [16]. The latter fits well with
the concept of interpreters. In both cases, the presented
general methodology for constructing a rational PPE
plan remains unchanged.

The internal implementation of the data, which does
not have to be provided for the explicit construction
of the SPF in the form of a 2D array, can be in any
format convenient for computer implementation. For
example, in the naive case, it can be that establishing
a one-to-one correspondence between the IGA in the
form of a set of directed edges {k, /} (adjacency matrix)
identified by pairs of vertex numbers i;, j, and i, j,
where 7 and j are the numbers of a row and a column
in the SPF.

The examples for the study comprised popular data
processing algorithms (linear algebra, statistics, array
operations, etc.). Additional, artificial (not corresponding
to any of the applied algorithms, but generated in
accordance with the specified parameters) IGAs were
prepared. A disadvantage of the experimental material
was the relatively small dimensions of the processed
data due to the considerable difficulty of manual
programming. However, the performed experiments
developed an increase in the identified trends including
an increase in the dimension of the processed data
throughout the studied dimension range.

The computational complexity of executing
scenarios of SPF transformations was determined using
an analog (applied in array sorting operations) of the
classical method of estimating the target parameter,
namely, determination of the number of elementary
steps (permutations of two elements of an array being
sorted) that is required to complete the operation. In
our case, it is logical to define the elementary step as a
permutation of an operator from tier to tier of the SPF.
This approach has all the advantages and disadvantages
of the classical method, including the failure to take into
account the complexity of analyzing the situation and
making decisions about taking a specific elementary
step.

In this study, the estimated code density characterizes
the resource use of a parallel computing system (number
of computers) when executing this algorithm (formally,

Russian Technological Journal. 2022;10(6):7-19

11

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

the deviation of the widths of the tiers of the transformed
JPF from a given value). When computing resources
are not fully used, the translator has to insert NOP
instructions into empty places in bundles of parallel-
executed instructions, leading to decreased code
efficiency.

The following series of experiments was carried out
using the SPF@home module as offering the greatest
flexibility in transforming the SPF of algorithm graphs;
IGAs were generated by the D-F module based on the
program code. During the computational experiments,
the SPF@home module saves the most detailed
simulation protocol for subsequent analysis. For this
work, the following parameters obtained in the course
of the target transformation of the SPF are of particular
interest:

e The height A and width W of the obtained SPF
(width constraints were set as a parameter that
ensures the execution of the algorithm on a given
number of parallel computers).

e The uniformity of the tier width distribution (code
density) in this SPF was estimated by the coefficient

1 W —W)? _
of variation Csz,/Z:(—), where W is
w H-1

the arithmetic mean of the tier widths over the SPF.
e The computational complexity of the performed

SPF transformation (in units of the number of

permutations of operators from tier to tier of

the SPF).

The efficiencies of SPF transformations were
compared by using two heuristic methods (scenarios),
which were represented in the form of Lua scripts
and based on different general approaches to SPF
transformations. The first (Strategy 01) used a
dichotomy-based approach of massive transfer of
operators from tier to tier of the SPF, whereas the second
(Strategy 02) uses a gradual transfer of operators from
“more loaded” tiers to “less loaded” ones. In both
cases, if necessary, additional (initially empty) tiers are
created in necessary places to ensure the execution of
the algorithm on a given number of parallel computers.

RESULTS

Scheduling of program execution on a fixed
number of parallel computers with the possibility
of increasing the program execution time

This subsection considers the most general case
corresponding to the condition W >> P, where P is
the number of parallel computers. It is in this case that
the SPF height (program execution time) has to be
increased.

The effectiveness of the above heuristic methods
was tested by successively applying them to the SPF

of the studied algorithms in the range of the numbers
P of parallel computers from W, (the width of the
initial SPF) to 1 (fully sequential execution of the
algorithm).

Figures 2—5 show the change in the target quantities,
specifically, (a) computational complexity, (b) SPF
height, and (c) coefficient of variation of the widths
of the SPF tiers (ordinate axis) as functions of a given
number P of parallel computers (abscissa axis). The SPF
transformations of the corresponding algorithms were
carried out according to the scenarios Strategy 01 and
Strategy 02 (curves 1 and 2, respectively).

As can be seen from the data in Figs. 2-5, the
application of both methods to the studied algorithms
gives similar results: the Strategy 02 scenario is
faster than its rival (panels (a)), whereas the algorithm
execution times differ little (panels (b)). In code density
(panels (c)), both scenarios show similar tendencies
toward minimizing the objective function using a small
(much smaller than the SPF width) number of parallel
computers. The bizarre shapes of the curves are a
consequence of the complexity of the scripts used and
the processing of integer values, while the curves using
the Strategy 02 script are visually more monotonic.

Quantitatively, the Strategy (2 scenario has a lower
(by a factor of approximately 2—4 in the studied range
of processed data sizes) computational complexity than
Strategy 01, although the converse was expected at
first glance. However, the Strategy 02 script has more
complex internal logic compared to Strategy 01 (in
the latter case, it is primitive), which cannot be taken
into account by the accepted computational complexity
estimation system. In view of the above, it may be more
logical to use the Strategy 01 script in the components
of parallelizing systems for fast, but rather rough
construction of PPE plans, while the Strategy (02 method
should be used for constructing these plans in the
optimization mode.

Scheduling of program execution
on the minimum number of parallel computers
with the possibility of increasing
the program execution time

In the case W = P (the arithmetic mean of the
widths of the initial SPF is comparable to the number
of parallel computers), the problem arises of PPE
scheduling with the maximum code density without
increasing the SPF height (“balancing” of operators over
the tiers of the SPF). The developed empirical methods
for balancing the SPF gave contradictory results: in
some cases, it was possible to achieve almost 100%
code density, whereas some algorithms were virtually
unmodifiable (due to restrictions on moving operators
between the tiers because of the need to preserve the
information dependences in the algorithm).

Russian Technological Journal. 2022;10(6):7-19

12

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

Computational complexity Computational complexity Computational complexity

Computational complexity

8000

6000

4000

2000

0
0

\
N

=i

——

200 400 600 800

1000

Set number of parallel computers

2400

2000

1600

1200

800

400

0
0

(a)

Height of the transformed SPF

1600 -
82
o=

1200 €2
85

800 § a
S0
SRS
400 =
1
\2_
0

0 200 400 600 800
Set number of parallel computers

()

1000

-
[e)]

2/
. /
// 1
y/
08 /
0.4 //4
:m
ol
0 200 400 600 800 1000

Set number of parallel computers

(c)

Fig. 2. Algorithm for multiplying 10th-order square matrices by the classical method

,
PR

\§

—)

20 40

60

80 100

Set number of parallel computers

28000

20000

12000

4000

0

(a)

Height of the transformed SPF

800

600

400

\

200

Variation coefficient

N

2

0

0 20 40

60

80

100

Set number of parallel computers

(b)

of SPF tier widths

1.8

1.6

2 | ——

/~/1

_ a4
o N b

o o
o ™

\\

/

4

V4
/

e 2
o N A

0 20

|

40

60

80 100

Set number of parallel computers

(c)

Fig. 3. Algorithm for solving systems of linear algebraic equations (SLAE)
of the 10th order by the direct (non-iterative) Gauss method

\1

2\\\

N

TN

—

0 20 40

60

80 100

Set number of parallel computers

2400

2000

1600

1200

(a)

Height of the transformed SPF

10000

6000

2000 \

Variation coefficient

N

0
0 20

40

60

80

100

Set number of parallel computers

(b)

of SPF tier widths

0.7
//\>
2
0.5 // //
/ pd
/ —T 1

0.3 A

/L"'/

/
o1 tf
ol

0 20 40 60 80 100

Set number of parallel computers

Fig. 4. Artificially generated algorithm e19039_09853 t199

N

800 \V 1
400 2 \\
0
0 4 8 12 16 20

Set number of parallel computers

(a)

Height of the transformed SPF

1400

1200

1000

\
\
\

800
600

400

200 2

P~

Variation coefficient
of SPF tier widths

—

0
0 4

8

12 16

20

Set number of parallel computers

(b)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 4 8

(c)

//
V4R

12

16 20

Set number of parallel computers

Fig. 5. Artificially generated algorithm e2367_01397_t137

(c)

Russian Technological Journal. 2022;10(6):7-19

13

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

The SPF@home software module can also be used
for solving an inverse problem, e.g., the determination
of the parameters of the parallel computing system from
the performance—cost balance of the system itself.

Promising PPE scheduling methods

In all the above experiments, the SPF was initially
computed in the upper form (all the operators were
located as high as possible in the tiers of the SPF). In this
case, the operators are moved between the tiers mainly
from top to bottom: from the initial tiers to the final ones
(this does not, of course, prohibit multiple movements
with repeated changes in the direction of movement of
operators between the tiers).

The described sequence of actions is logically
justified by the characteristic shape of the computation
intensity curves under the conditions of unlimited
parallelism, in which a sharp increase in the initial part
is followed by a peak and a smooth decrease by the end
of the program execution. Such a curve shape, which
occurs at significant amounts of input data, once again
confirms that the execution of operators on a field of
parallel computers belongs to one of the varieties of
multichannel queuing systems. In this case, since the
variability of the operators located in the region of
the peak of the computation intensity function is high,
the efficiency of obtaining a satisfactory PPE plan by
moving down the SPF operators is also significant. We
will refer to the algorithms whose initial (unmodified)
form of width distribution in the upper SPF corresponds
to the one described above as belonging to the IT class.?

As a matter of discussion, it was of interest to
consider the lower form of the initial SPF (in this case, all
the operators are moved as far as possible toward the end
of the program execution). Such an SPF can be obtained
from the upper form by moving the operators through the
tiers as low as possible or, more easily, by constructing
the SPF in the direction from the end of the program
to its beginning (in the latter case, the computational
complexity of obtaining the SPF remains the same as
when obtaining the upper SPF). The distributions of
the widths of the SPF in the upper and lower forms are
compared below.

Figure 6 shows the bar diagram of the distribution of
the SPF widths at given sizes of processed data (indicated
in the captions) that was obtained by the SPF@home
module. Each of the four columns of a row presents two
diagrams: the one on the left is for the upper form of

3 We will refer to the IT class such algorithms that are
characterized by the distribution of the tier widths in the SPF of
the information graph in the upper form (when all operators are as
close as possible to the beginning of execution) with the presence
of a pronounced maximum at the beginning and of a gentle
decrease at the end.

the SPF of this algorithm and the one on the right is for
its lower SPF. Here, H, W, and W are the height, width,
and arithmetic mean width of the SPF (the last is shown
in Fig. 6 by the dotted line; the forward slash symbol
separates the parameters for the upper and lower SPF).

The data in Fig. 6 are interesting because of the
possibility of significant balancing of the SPF without
using complex heuristic algorithms for its reorganization.
In fact, all the possible solutions for the reorganization
of the SPF are within the range between the upper and
lower forms; however, when choosing the lower form
as the initial form, the priority movement of operators
is upward.

The last statement raises the question of whether
or not there are states that are balanced still better than
the two boundary (upper and lower) forms. To answer
this question, an experiment was carried out to study the
stepwise transformation of the SPF from the upper to the
lower form (in Fig. 7, the numbers on the abscissa axis
are the numbers of movements of operators from tier
to tier), in which along with the CV index (solid lines,
left-hand ordinate axis), the irregularity of the widths of
the SPF tiers was estimated by the ratio of the width of
the widest tier to that of the narrowest one (dashed line,
right-hand ordinate axis).

Despite the entire set of SPF states not being
completely covered in these experiments (possible
movements of operators along the SPF tiers were
downward to the maximum variability), it can be argued
with a high degree of probability that the target values
do not increase in the range of existence and that it is in
the region of the lower SPF that they are minimal.

When determining rational PPE plans in the case
of obtaining easily determined conditions where the
algorithm belongs to the II class, significant savings in
computations are possible: instead of implementing the
above rather complex scenarios, it is enough to construct
the lower SPF. The previously used quantitative
characteristics of the irregularity of the tier widths do not
provide information on the shape of the curve with this
irregularity. As an additional estimate of the irregularity
of the distribution of operators over the SPF tiers, the
well-known graphic-analytical method can be used
to determine the income inequality, which consists in
calculating the numerical parameters of the stratification
(Lorenz curve and Gini coefficient)*, despite the mirror-
opposite shape of the analyzed curves.

The example shows the importance of studying the
properties (including classification) of algorithms from
the side of their essential facet that consists in their
internal parallelism in order to make the best practical
use of these properties.

4 Gini coefficient: Are everyone equal? Open Journal, an in-
vestment and finance medium. https://journal.open-broker.ru/econ-
omy/koefficient-dzhini/. Accessed March 31, 2022 (in Russ.).

Russian Technological Journal. 2022;10(6):7-19

14

https://journal.open-broker.ru/economy/koefficient-dzhini/
https://journal.open-broker.ru/economy/koefficient-dzhini/

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

N=3 N=5
H=3,W=6 H=5,W=45
W=27/18 W=125/50
CVv=0.69/0.35 CVv=0.99/0.25

N=7 N=10
H=7,W=91 H=10, W=190
W=349/98 W=1000/200
Cv=1.22/0.2 Cv=1.5/0.17

Fig. 6. Algorithm for multiplying square matrices by the classical method (Abscissa axis is the tier width for N =3, 5,7, 10
orders of the matrices). The light- and dark-gray areas contain tiers of maximum and minimum widths, respectively

2.0

—_
o

1.6

v
/|
[ee]

~
-
-~
\ N
\
N

/
2
I
o1y

’
o

N

\
0.8
S\ ‘\‘, N sl
\ \ S
0.4 e

\\: N|= 7 ~

widths

’
l/
/

IN

’
/
Ratio of the width
of the widest SPF tier

to the narrowest one

N

Changing of the variation
coefficients of the SPF tier

0 N=10 0
0 100 200 300 400 500 600 700 800

Number of operator movements
from tier to tier

Fig. 7. Irregularity of the distribution of the widths of
the SPF tiers for the algorithm of matrix multiplication
by the classical method (N is the order of the multiplied
matrices)

PPE scheduling on a given number
of heterogeneous computers

Modern multicore processors are more and more
often developed with computing cores of various
capabilities. Therefore, it is practically useful to be
able to schedule the PPE for such systems (with a
heterogeneous field of parallel computers).

The SPF@home module supports this feature
by comparing information from two metrics files
for operators and computers (*.ops and *.cls,
respectively, Fig. 1). It is possible to set a match on
a set of freely assignable attributes for any range of
operators/computers. The condition for the feasibility
of a given operator on a given computer is the relation
minVal i < Val i < maxVal i at the same i, where
Val i, minVal i, and maxVal i are the numerical values
of this parameter for the operator and the computer,
respectively.

Since PPE scheduling on a heterogeneous field of
parallel computers is a more complex procedure than
those described above, the emphasis here is on Lua
programming. Since one SFP tier may contain operators
the execution of which require different computers, it
can be useful to apply a metaphor for splitting the SFP
tiers into families of subtiers, each of which corresponds
to a block of computers with certain capabilities. All
the operators on a given tier have the same execution
capabilities, the sequence of processing them within
a tier/subtier is, to a first approximation, arbitrary.
Figure 8a illustrates the splitting of operators on one of
the tiers of the SPF in the case of 11 parallel computers of

Russian Technological Journal. 2022;10(6):7-19

15

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

- Tier N
=e=e-—— e
I =
—_— —
Computer Computer Computer
type | type ll type lll

(a)

Type |
computers
1 21 31415

Typelll Type Ill
computers computers

.
ers 6171819110 1]

I

©|00| N[O O B[WO N —|

-
o

=
©|00

N (N
~ |

|
N

(b)

Fig. 8. (a) Splitting of the SPF tiers into families of subtiers in solving the problem of scheduling for a heterogeneous
field of parallel computers and (b) the result of computing the schedule for the execution of a real parallel program

three types, and Fig. 8b presents the result of computing
the real PPE plan on a heterogeneous field of parallel
computers (three types of computers, 5, 3 and 4 units;
the numbers of executable operators are hidden).

In this case, the total time 7 of solving the problem is
determined by the sum over all the tiers of the maximum
values of the execution times of operators on the subtiers
of this tier:

T=2 mathik ,
FANETA

where j is the number of tiers, 7 is the number of subtiers
on a given tier, kj are the types of computers on the jth
tier, and 7, is the execution time of an operator of type i
on a computer of type 4.

If the goal is to achieve maximum performance, the
optima number of computers of a particular type can
be determined by minimizing the parameter 7 (e.g., by
solving the inverse optimization problem to determine
the ratio between the numbers of computing g devices
of different types). The problem of minimizing the
total solution time 7' becomes more complicated if each
operator can be executed on several computers because
of the ambiguity of the parameter ¢, in the above
expression; here, additional balancing over substages is
needed.

DISCUSSION

This study confirmed the possibility of gradual
iterative improvement (in a given direction) of heuristic
scenarios for transforming the initial SPF of various
algorithms. By and large, it is possible to develop faster
scenarios with a slightly inferior quality for an intended
purpose and relatively slower scenarios with a higher
quality (in fact, on the level of optimization).

Although this work is focused on the computational
complexity of scenarios for obtaining PPE plans
(schedules) for the PPE, the presented software
system should also show its efficiency in solving
multidimensional optimization problems using the
known algorithms (this software system in this case is a
mathematical model of the subject of optimization). To
implement this case of the use, the discussed computer
system permits working in command line mode.

Despite the low computational complexity of
obtaining the SPF from the IGA, the method of using
the SPF as the basis for constructing PPE plans has the
disadvantage that it is impossible to easily take into
account the execution time of operations, as a result of
which the execution time of a bundle of operators on
one tier of the SPF has to be considered equal to the
execution time of the slowest of them. By taking an
approach consisting in the purposeful movement of
operators through the tiers of the SPF, operators can be

Russian Technological Journal. 2022;10(6):7-19

16

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

sorted on each tier according to the closest possible time
for their execution.

The experiments detected a significant dispersion
of the properties of the algorithms represented by
information graphs in the possibility of forming PPE
plans with the maximum code density. Different
algorithms require different methods for their efficient
transformation. It seems important to a priori (even
before the reorganization of the SPF, at the time of its
receipt) define scenarios for its effective purposeful
modification with a given goal. The tool here should
be the creation of a system for classifying algorithms
according to some parameters that determine effective
methods for their transformation. A promising approach
to solving this problem involves formal methods of
artificial intelligence.

All the performed experiments showed that the
identified trends increase with increasing dimension of
the processed data. This provides confidence that the
trends determined by modeling are preserved when
scaling by the volume of data being processed.

In accordance with the iterative principle (inherent
in the heuristic approach) of gradually approaching the
best solution of the problem under consideration, we
may have confidence in the possibility of quantitative
improvement (with respect to the above parameters) in
methods for scheduling of program execution on a field
of parallel computers, which is given or determined by
the solution of the optimization problem.

An important productive property of the developed
software system is the possibility of solving inverse
problems of determining the parameters of a computing
system in accordance with the specified requirements
for the very process of program execution, e.g., for
execution time.

CONCLUSIONS

In general, the developed software system
confirmed its efficiency in studying the parameters
of hidden parallelism in arbitrary algorithms and its
rational use in data processing. The approach using
a scripting language for the development of heuristic
methods (scenarios) for purposeful transformation
of the forms of the information graph of algorithms
showed greater flexibility and transparency for the
researcher. The necessary flexibility is achieved
by using an interpreted scripting language, while
the processing speed is achieved according to the
capabilities of the executable code of the compiled
language of the parent application.

The target consumers of the developed methods
for generating PPE schedules are, in the first place,
developers of translators and virtual machines, as
well as researchers into the properties of algorithms
in order to identify and exploit the potential of their
hidden parallelism. A practical application of the
proposed methodology has to take into account a
number of applied implementation issues, including
known problems of using pointers, conflicts of
memory operations in Load/Store instruction bundles,
etc., which do not fundamentally change the proposed
methodology.

The developed software, comprising methods for
detecting hidden parallelism and its parameters in
arbitrary algorithms, as well as constructing rational
plans (schedules) for the PPE on a given field of
computers, has been used for several years teaching
students at Russian universities in order to improve
their competences in data processing parallelization
processes.

Russian Technological Journal. 2022;10(6):7-19

17

Computational complexity when constructing rational plans
for program execution in a given field of parallel computers

Valery M. Bakanov

10.

11.

12.

13.

14.

15.

16.

. McNairy C,,

REFERENCES

. Voevodin V.V., Voevodin V1.V. Parallel 'nye vychisleniya

(Parallel computing). St. Petersburg: BHV-Petersburg;
2004. 608 p. (in Russ.).

. Bakanov V. Research and selection of rational methods for

obtaining framework of schedules for the parallel programs
execution. In: Silhavy R., Silhavy P., Prokopova Z. (Eds.).
Data Science and Intelligent Systems. CoMeSySo 2021.
Lecture Notes in Networks and Systems. V. 231. Springer,
Cham. https://doi.org/10.1007/978-3-030-90321-3 22

. Fedotov LE. Parallel’noe programmirovanie. Modeli i

priemy (Parallel programming. Models and techniques).
Moscow: SOLON-Press; 2018. 390 p. (in Russ.). ISBN
978-5-91359-222-4

. Bakanov V.M. Dynamics control computing in the

processors data flow architecture for different types
of algorithms. Programmnaya inzheneriya = Software
Engineering. 2015;9:20-24 (in Russ.).

. Bakanov V.M. Software complex for modeling and

optimization of program implementation on parallel
calculation systems. Open Comput. Sci. 2018;8(1):
228-234. https://doi.org/10.1515/comp-2018-0019

. Padua D. (Ed.). Encyclopedia of parallel computing. NY:

Springer; 2012. 2195 p. https://doi.org/10.1007/978-0-
387-09766-4

. Dennis J.B., Misunas D.P. A preliminary architecture for a

basic data-flow processor. In: Proc. Second Annual Symp.
Computer Architecture (ISCA 75). 1975. P. 126-132.
https://doi.org/10.1145/642089.642111

. Kukunas J. Power and performance: Software analysis and

optimization. Morgan Kaufman, Elsevier Inc.; 2015. 300 p.
Soltis D. TItanium 2 processor
microarchitecture. [EEE Micro. 2003;23(2):44-55.
https://doi.org/10.1109/MM.2003.1196114

Tanenbaum E., Ostin T. Arkhitektura komp 'yutera
(Computer architecture). Transl. from Eng. St. Petersburg:
Piter; 2019. 816 p. (in Russ.). ISBN 978-5-4461-1103-9
Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.
Introduction to algorithms. 3rd ed. London: MIT Press;
2009. 1292 p.

McConnell J.J. Analysis of algorithms: An active learning
approach. Jones & Bartlett Publishers; 2008. 451 p.
Garey M., Johnson D. VWychislitel’'nye mashiny i
trudnoreshaemye zadachi (Computing machines and
difficult tasks). Transl. from Eng. Moscow: Kniga po
trebovaniyu; 2012. 420 p. (in Russ.). ISBN 978-5-458-
26100-5

[Garey M., Johnson D. Computers and intractability.
San Francisco; 1979. 338 p.]

lerusalimschy R. Programming in Lua. 3rd ed. PUC-Rio,
Brasil, Rio de Janeiro; 2013. 348 p.

FisherJ.A. Very long instruction word architectures and the
ELI-512. In: Proceedings of the 10th Annual International
Symposium on Computer Architecture (ISCA '83). 1983.
P. 140-150. https://doi.org/10.1145/800046.801649
Babb R.I. Parallel processing with large-grain data flow
techniques. Computer. 1984;17(7):55-61. https://doi.
org/10.1109/MC.1984.1659186

10.

11.

12.

13.

14.

15.

16.

. McNairy C.,

CMUCOK JINTEPATYPbI

. Boesonun B.B., Boesonun Bn.B. Ilapannenvuvie viuuc-

nenus. CII6.: BXB-IletepOypr; 2004. 608 c.

. Bakanov V. Research and selection of rational methods

for obtaining framework of schedules for the parallel
programs execution. In: Silhavy R., Silhavy P,
Prokopova Z. (Eds.). Data Science and Intelligent
Systems. CoMeSySo 2021. Lecture Notes in Networks
and Systems. V. 231. Springer, Cham. https://doi.
org/10.1007/978-3-030-90321-3 22

. ®enoroB U.E. llapannenvnoe npocpammuposanue. Mo-

oenu u npuemst. M.: COJIOH-IIpecc; 2018. 390 c. ISBN
978-5-91359-222-4

. bakanoB B.M. VmpaBnenue AMHAMHUKON BBIYUCICHUN

B IPOLECCOPAaX MOTOKOBOM apXUTEKTypbl AT pa3indy-
HBIX THUIIOB QJITOPUTMOB. [Ipoepammuas uHdiceHepus.
2015;9:20-24.

. Bakanov V.M. Software complex for modeling and

optimization of program implementation on parallel
calculation systems. Open Comput. Sci. 2018:;8(1):
228-234. https://doi.org/10.1515/comp-2018-0019

. Padua D. (Ed.). Encyclopedia of parallel computing. NY:

Springer; 2012. 2195 p. https://doi.org/10.1007/978-0-
387-09766-4

. Dennis J.B., Misunas D.P. A preliminary architecture for a

basic data-flow processor. In: Proc. Second Annual Symp.
Computer Architecture (ISCA 75). 1975. P. 126-132.
https://doi.org/10.1145/642089.642111

. Kukunas J. Power and performance: Software analysis

and optimization. Morgan Kaufman, Elsevier Inc.; 2015.
300 p.

Soltis D. Itanium 2 processor
microarchitecture. [EEE Micro. 2003;23(2):44-55.
https://doi.org/10.1109/MM.2003.1196114

Tanenbaym 3., Octun T. Apxumexmypa xomnviomepa:
niep ¢ anr1. CII6.: ITurep; 2019. 816 c. ISBN 978-5-4461-
1103-9

Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.
Introduction to algorithms. 3rd ed. London: MIT Press;
2009. 1292 p.

McConnell J.J. Analysis of algorithms: An active learning
approach. Jones & Bartlett Publishers; 2008. 451 p.
I'spu M., Jlxoncon [l. Bwiuucaumenvnvle mawiunsl u
mpyonopewaemvie 3adaqu: nep. ¢ aunl. M.: Kaura no
TpeboBanuto; 2012. 420 c. ISBN 978-5-458-26100-5
Ierusalimschy R. Programming in Lua. 3rd ed. PUC-Rio,
Brasil, Rio de Janeiro; 2013. 348 p.

FisherJ.A. Very long instruction word architectures and the
ELI-512. In: Proceedings of the 10th Annual International
Symposium on Computer Architecture (ISCA "83). 1983.
P. 140-150. https://doi.org/10.1145/800046.801649
Babb R.I. Parallel processing with large-grain data flow
techniques. Computer. 1984;17(7):55-61. https://doi.
org/10.1109/MC.1984.1659186

18

Russian Technological Journal. 2022;10(6):7-19

https://doi.org/10.1007/978-3-030-90321-3_22
https://doi.org/10.1515/comp-2018-0019
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1145/642089.642111
https://doi.org/10.1109/MM.2003.1196114
https://doi.org/10.1145/800046.801649
https://doi.org/10.1109/MC.1984.1659186
https://doi.org/10.1109/MC.1984.1659186
https://doi.org/10.1007/978-3-030-90321-3_22
https://doi.org/10.1007/978-3-030-90321-3_22
https://doi.org/10.1515/comp-2018-0019
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1145/642089.642111
https://doi.org/10.1109/MM.2003.1196114
https://doi.org/10.1145/800046.801649
https://doi.org/10.1109/MC.1984.1659186
https://doi.org/10.1109/MC.1984.1659186

Computational complexity when constructing rational plans Valery M. Bakanov
for program execution in a given field of parallel computers

About the author

Valery M. Bakanov, Dr. Sci. (Eng.), Professor, Department of Hardware, Software and Mathematical Support of
Computing Systems, Institute of Cybersecurity and Digital Technologies, MIREA — Russian Technological University
(78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: e881e@mail.ru. Scopus Author ID 6505511355, ResearcherlD
L-1314-2015, RSCI SPIN-code 8868-4594, https://orcid.org/0000-0002-1650-038X

006 aBTOpE

BakaHoB Banepuiht MuxannoBuy, 4.7.H., npodeccop, npodpeccop kadpenpsl Kb-5 «AnnapatHoe, nporpaMmmMmHoe
1 MaTemMaTmnyeckoe obecrneyeHme BblYNCIUTENbHbBIX CUCTEM» MIHCTUTYTa Knbep6e30onacHOCTU U UMPPOBLIX TEXHOJIO-
rnin ®reQy BO «MUP3A — Poccuincknii TexHonorndeckuii yHnsepcutet» (119454, Poccusa, Mocksa, np-T BepHaa-
ckoro, A. 78). E-mail: e881e@mail.ru. Scopus Author ID 6505511355, ResearcherID L-1314-2015, SPIN-koa PUHL],
8868-4594, https://orcid.org/0000-0002-1650-038X

Translated from Russian into English by Vladislav V. Glyanchenko
Edited for English language and spelling by Thomas A. Beavitt

Russian Technological Journal. 2022;10(6):7-19
19

mailto:e881e@mail.ru
https://orcid.org/0000-0002-1650-038X
mailto:e881e@mail.ru
https://orcid.org/0000-0002-1650-038X

