Russian Technological Journal. 2022;10(5):16-27 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucrembl. Undopmaruka. [Ipodaembl nHPOPMALMOHHOMH 0€3011aCHOCTH

UDC 004.41
https.//doi.org/10.32362/2500-316X-2022-10-5-16-27 @)y |

RESEARCH ARTICLE

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin ©

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: i@dmitryilin.com

Abstract

Objectives. Ready-made information technology solutions used when developing software have various
characteristics depending on the objectives to be experimentally obtained. While the selection of appropriate
technologies and software tools used in experimental software engineering can be time-consuming, experimental
complexity can be reduced by providing the researcher with domain-specific tools. The aim of the study is to design
and develop a domain-specific software framework for experimental evaluation of the characteristics of information
technology solutions in a virtual environment.

Methods. To determine the required characteristics of the software framework, an analysis of software tools for
conducting experimental studies to evaluate the characteristics of information technology solutions in a virtual
environment was conducted. Methods of decomposition, structural design, and software development were applied
to design and develop the framework.

Results. A software framework for conducting experimental research has been developed. The design results, key
features of the framework and a description of the functionality are presented. The implementation of the framework
comprises commands for managing virtual machines and commands for scaffolding. A technique for conducting
experimental studies using the framework is proposed.

Conclusions. The developed domain-specific software framework addresses shortcomings of existing tools
to reduce labor costs when conducting experiments to evaluate information technology solutions. The developed
framework and proposed methodology allows the number of programming and markup languages required for
setting up a software experiment to be reduced from 3 to 1.

Keywords: software framework, virtual machines, experimental evaluation of software solutions, resource utilization

monitoring, scaffolding

e Submitted: 04.03.2022 Revised: 13.07.2022 ¢ Accepted: 05.09.2022

For citation: llin D. Framework for experimental evaluation of software solutions in a virtual environment. Russ. Technol. J.
2022;10(5):16-27. https://doi.org/10.32362/2500-316X-2022-10-5-16-27

Financial disclosure: The author has no a financial or property interest in any material or method mentioned.

The author declares no conflicts of interest.

© Dmitry llin, 2022

16

https://doi.org/10.32362/2500-316X-2022-10-5-16-27
mailto:i@dmitryilin.com
https://doi.org/10.32362/2500-316X-2022-10-5-16-27

Framework for experimental evaluation Dmitry llin
of software solutions in a virtual environment

HAYHYHAA CTATbA

IIporpaMmmHubIi (ppeiiMBOPK
I IKCIIEPUMEHTAIbHON OLIEHKH XapPaKTePUCTUK
UH(POPMAIUOHHO-TEXHOJIOTHYECKUX PelleHui
B BUPTYAJLHOH cpeae

A.10. Unbun @

MUP3A — Poccuiicknii TeExXHOIorm4ecknii yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp AN nepenvcku, e-mail: i@dmitryilin.com

Peslome

Lenb. MNpu pa3paboTke nporpaMmMHOro obecrnedyeHns, kak NpaBusio, NPUMEHSIIOTCS roTOBble MHMOPMALMOHHO-
TexHonormdyeckme petlerHuns. OHM obnagaloT PasfiMyHbIMU XapakTepUCTMKaMn, 0ObEKTUBHbIE AaHHbIE O KOTOPbIX
MO>XHO MOJYy4YUTb 3KCMEepMMeHTasNbHO. MoCTaHOBKA KOPPEKTHOro M BOCMPOU3BOAMMOIO 3KCNepuMeHTa TpebyeT
OT nccnegoBaTens NPUMEHEHNS LEeNoro psaa pa3po3HEHHbIX TEXHONOMMIA U NPOrPaMMHbIX MHCTPYMEHTOB, YTO
nenaet 3agady Tpynoemkon. CHU3UTb TPYO0EeMKOCTb MOCTAHOBKU 3KCMEepMMeHTa BO3MOXHO, NpenocTaBuB UC-
cnepnoBaTtenio NpegMeTHO-OPUEHTMPOBAHHbIN MHCTPYMeHTapuin. Llenb paboTbl — NpoekTupoBaHue 1 pa3paboTka
npeaMeTHO-OPUEHTMPOBAHHOIO NPOrpaMMHOro ¢GperMBopka A/ 3KCNEPUMEHTANIbHOM OLEHKN XapakTepuCTUK
MHOOPMALMOHHO-TEXHOIOMMYECKMX PELLEHNI B BUPTYabHOM Cpese.

MeTtopbl. [ns onpepeneHus TpebyeMblX XapakTepUCTMK MporpaMMHOro @perMBopKa MNpPOBEOEH aHanm3a
NPOrpaMMHbIX MHCTPYMEHTOB MPOBEAEHUS OKCNEPUMEHTaNIbHbIX WCCAEO0BaHMA MO OLEHKE XapakTepuCTUK
MHPOPMALIMOHHO-TEXHOJIOMMYECKMX PELLEeHNI B BUPTyasibHOM cpene. MNpu npoekTnposaHnn 1 pa3paboTke ppenm-
BOpKa NpUMeHeHbl METOObl AEKOMIMO3ULMN, CTPYKTYPHOIO NPOEKTMPOBaHus, pa3paboTkn nporpaMmmHoro obecne-
YeHus.

PesynbTatbl. CNpoekTnpoBaH 1 pa3paboTaH NporpaMmMHbIi GperiMBOpK A1 9KCNEePUMEHTaNTIbHOW OLEHKWN Xapak-
TEPUCTUK MHPOPMALIMOHHO-TEXHONOMMYECKNX PELLEHNI B BUPTYasibHOM cpene. NpencrasneHsl peadynbTaTbl Npo-
eKTMPOBaHMs, KJloYeBbIE 0COOEHHOCTN PPENMBOPKA 1 NPOrpaMMHbIE TEXHOJIOMMU, NMPUMEHEHHbIE AN1st pa3paboT-
ku. MNMpuBegeHo onucaHme QyHKLMOHaNbHbIX BO3MOXHOCTEN dpenmBopka. Peannsauna dperimBopka COaepXnT
12 komaHA, ons ynpaenieHus BUPTyaibHbIMU MallvHaMn 1 4 komaHabl ans ckaddonamHra. NpennoxeHa meToamka
npoBeaEHNS 9KCMEPUMEHTANbHbBIX UCCNEA0BaHUM C NPpUMEHEHNEM HPENMBOPKA.

BbiBOoAgbl. [MpoBeneHHOE nccnegoBaHne No3BOANN0 UAEHTUOULMPOBATbL HEAOCTATKM MPUMEHEHUS CYLLECTBYIO-
Lero MHCTpyMeHTapus, paspaboTtaTb NPeaMeTHO-OPMEHTMPOBAHHbIN NPOrpaMMHbIA GPENMBOPK N NPEASTIOXUTb
MEeTOANKY Er0 MCNOJSIb30BAHUS, HTO MOXET COKPaTUTb TPyAo3aTpaThl NPy NPOBEAEHUN 3KCMNEPUMEHTOB MO OLLEHKE
MHPOPMALIMOHHO-TEXHOJIOMMYECKMX PELLEeHNI B BUPTYyanbHOM cpene. @peiiMBOPK NO3BOMSIET COKPATUTb KOnnye-
CTBO $13bIKOB MPOrpamMMmUPOBaHUS 1 Pa3MeTKM, HeOOXOOUMbIX MCCNenoBaTento sl NOCTAHOBKM 3KCMEPUMEHTA,
c3po1.

KnioueBble cnoBa: nporpamMmMHbIn GperiMBOPK, BUPTYasibHble MaLUVHbI, SKCNEePUMEHTalIbHas OLeHKa XapakTepu-
CTUK NMPOrpaMMHOro o6ecrnevyeHusi, MOHUTOPUHI BbIYMCIINTENbHBLIX PECYPCOB, ckaddonanHr

* Moctynuna: 04.03.2022 » flopa6oTaHa: 13.07.2022 ¢ MpuHaTa k ony6nukoeaHuio: 05.09.2022

Ana uutnposaHua: WnonH [O.10. MNporpaMmmHbin GpenMBOpPK ONA 9KCMEPUMEHTANbHOM OLEHKM XapakKTepPUCTUK
MHOOPMALMOHHO-TEXHOIOMMYECKMX PELLEHNn B BUPTyanbHONM cpene. Russ. Technol. J. 2022;10(5):16-27. https://doi.
org/10.32362/2500-316X-2022-10-5-16-27

Mpo3payHocTb GUHAHCOBOW AeAaTeNbHOCTU: ABTOP HE MMeeT PMHAHCOBOM 3aMHTEPECOBAHHOCTM B NPeACTaBNEeH-
HbIX MaTepuanax uam meTogax.

ABTOp 3asBNseT 06 OTCYTCTBUM KOH(DNKTA MHTEPECOB.

Russian Technological Journal. 2022;10(5):16-27
17

mailto:i@dmitryilin.com
https://doi.org/10.32362/2500-316X-2022-10-5-16-27
https://doi.org/10.32362/2500-316X-2022-10-5-16-27

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

INTRODUCTION

Software development is largely based on the
integration of ready-made information technology
solutions including software libraries, frameworks,
database management systems or entire software
products.

Integrated solutions may have different quality
characteristics, including those evaluated under different
operating conditions [1-3]. The assessment of quality
characteristics such as performance [2—4] is especially
important when designing systems that serve a large
number of users. To do this, the considered information
technology solutions or the result of their integration are
tested experimentally [3—5]. As a rule, such experiments
are carried out on a cloud infrastructure, although this
is not always advisable. In some cases, the necessary
infrastructure can be organized at the workstations [6, 7]
of researchers. In both cases, the organization of
the infrastructure requires the preparation of virtual
machines or containers [8, 9], which allow information
technology solutions to be evaluated in an isolated
environment.

Researchers generally agree that the
results of experimental assessments should be
reproducible [7, 10—13]. However, there are different
approaches for ensuring reproducibility. In some works,
the importance of detailed infrastructure documentation
and experimental protocols [12] is noted; in others, tools
are proposed for recording software actions at the level
of system calls [10, 11]. In some cases, infrastructure
is not manually prepared but with organized using
widely used DevOps' technologies [14-17]. These
technologies have proven themselves, including for
research purposes [5, 18], as a means of ensuring the
reproducibility of experiments. In addition, they can be
used as part of pedagogical activities [19-21] to provide
participants in the educational process with an identical
working environment.

However, according to some studies, the
implementation of a reproducible experiment requires
the use of many software tools [10, 11], which requires
additional knowledge and skills from the researcher. It is
also noted that the use of such tools can increase labor
costs when setting up experiments.

The present work is devoted to the analysis of
tools used to implement infrastructure on researchers’
workstations and the development of a framework
for conducting experimental studies to evaluate the
characteristics of information technology solutions in a
virtual environment.

I DevOps is an acronym for development & operations—a set
of practices for automating the technological processes of build-
ing, configuring, and deploying software.

To achieve this goal, it is necessary to:

e analyze the tasks for the researcher when setting
up the experiment, as well as to determine the tools
used to solve them;

o based on the analysis, prepare architectural solutions
that define the key characteristics of the software
framework;

e develop a framework corresponding to the subject
area and architecture solutions, as well as present a
methodology for its application.

TOOLS FOR CARRYING OUT EXPERIMENTS
FOR ASSESSING INFORMATION TECHNOLOGY
SOLUTIONS

Before proceeding to the development of a software
framework, it is necessary to analyze the tasks for the
researcher when setting up a reproducible experiment,
as well as the tools used to solve them.

Although experimental studies for assessing the
characteristics of information technology solutions can
be conducted without using the software tools listed
below, the feasibility of their use is justified.

The use of virtual machines (for example, using
VirtualBox* [9, 22]) makes it possible to conduct
experiments using a smaller number of devices
including conducting an experiment on a single
physical device.

However, the virtual environment itself can
take up a significant amount of disk space, making
it difficult to transfer virtual machines between
researchers. Moreover, the virtual environment does
not provide tools for formally describing its own
configuration or that of any virtual machines used.
Thus, in post-factum descriptions of the experimental
bench, there is a possibility that documenting errors
will arise.

This can be compensated by using special tools
for creating and configuring a virtual environment
(for example, Vagrant® [9, 22]). If the virtual
machines are defined using the configuration tool,
a formal description of the characteristics of the
virtual bench can be determined even prior to its
operation. Cloud configuration tools (for example,
Ansible* [22, 23]) can be used to manage the
configuration of virtual machine software in a similar
way. This “infrastructure as code” approach [14, 23]
solves two identified problems: reducing the
volume of the experimental bench when transferring
between researchers and ensuring the reliability of
experimental documentation.

2 https://www.virtualbox.org/. Accessed February 18, 2022.
3 https://www.vagrantup.com/. Accessed February 18, 2022.
4 https://www.ansible.com/. Accessed February 18, 2022.

Russian Technological Journal. 2022;10(5):16-27

18

https://www.virtualbox.org/
https://www.vagrantup.com/
https://www.ansible.com/

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

However, such existing solutions to the described
problems are not always sufficient for conducting
experiments since the configuration of the virtual
experimental bench does not always remain unchanged
throughout the experiment. For example, restrictions on
the utilization of computing resources may be required
only at certain stages of the experiment. Since the
above-described tools describe a static configuration,
they cannot be used to change the characteristics of the
bench.

Aprogram-controlled experiment also requires a task
manager (for example, Gulp’) that executes commands
in a given order. Data collection tools are also important
for monitoring the utilization of computing resources
(for example, Atop®) and tools for preparing reports.

Summarizing the above, we can conclude that in
order to conduct a well-documented program-controlled
experiment in a virtual environment, it is necessary to
prepare a virtual bench to solve the following tasks:

1) design of the experimental study;

2) preparation of a formal description of virtual
machines;

3) preparation of a formal description of virtual
machine software configuration;

4) installation of monitoring tools for resource

utilization on each virtual machine (in addition to 3);

5) preparation of research materials (IT solution,
experimental data, etc.);

6) development and debugging of the program code for
managing the experiment;

7) ensuring correct restrictions on resource utilization
at various stages of the experiment;

8) export of monitoring data and generation of a
resource utilization report.

Fulfilling the above-mentioned conditions requires
a researcher to know a large number of technologies
and means of integrating them. The situation is also
complicated by the fact that different technologies
require knowledge of different programming languages
and data markup. Table 1 shows a list of the technologies,
as an example. It is important to note that knowledge of
the listed technologies becomes mandatory.

Due to the significant list of tasks facing before the
researcher, some of which are not solved by existing
tools, it is necessary to design and develop a tool for:

e describing the experiment in the form of software
configurations;

e using specific software configurations at specific
stages of the experiment;

e reducing the number of programming languages,
data markup and information technologies required
for the experiment.

3 https://gulpjs.com/. Accessed February 18, 2022.
6 https://www.atoptool.nl/. Accessed February 18, 2022.

Table 1. Example of a list of technologies required for
conducting experiments in a virtual environment

Language
Category Tool (programming, markup)
Conﬁgurm‘g virtual Vagrant Ruby’
machines
Configuring Virtual . 8
Machine Software Ansible YAML
; Gulp, Shell .
Experiment u P. 9e JavaScript!?, Bash!!
management script
Report generation Gulp + EJS'>+| JavaScript, HTML'4,
port g Plotlyjs'3 JSON'?
Export monitoring | Atop, Shell Bash
data script
FRAMEWORK DESIGN

In the process of designing the framework, an
analysis of software requirements was carried out
and a software architecture that meets the specified
requirements was formed.

Since the configuration of a virtual machine and its
software parameters are described statically, they can be
specified using semi-structured formats. Such a format
should be easy to read and edit, so it is suggested to
use the YAML markup language. This language is used
in the Ansible system for configuring virtual machine
software and is familiar to researchers. Instead of using
a general-purpose programming language, the algorithm
for executing automated tasks can also be specified
declaratively in YAML.

It is understood that the experimental framework will
compile YAML source files into target configurations
(for example, the configuration for the Vagrant tool in
Ruby), and will contain a built-in task automation tool.
Thus, the researcher, instead of using three different
languages to configure virtual machines, their software
and perform automated tasks, only needs the YAML
markup language, as shown in Fig. 1.

In order to ensure that the experiment is carried
out taking into account the configurations specific for
each stage, the following is proposed. The experiment

7 https://www.ruby-lang.org/. Accessed February 18, 2022
(in Russ.).

8 https://yaml.org/. Accessed February 18, 2022.

9 Shell script is a script written in Bash or a similar
language.

10 https://262.ecma-international.org/6.0/. Accessed February 18,
2022.

' http://www.gnu.org/software/bash/. Accessed February 18,
2022.

12 https://ejs.co/. Accessed February 18, 2022.

13 https://plotly.com/javascript/. Accessed February 18, 2022.

14 https://html.spec.whatwg.org/multipage/. Accessed February 18,
2022.

15 https://www.json.org/. Accessed February 18, 2022,

Russian Technological Journal. 2022;10(5):16-27

19

https://gulpjs.com/
https://www.atoptool.nl/
http://Plotly.js
https://www.ruby-lang.org/
https://yaml.org/
https://262.ecma-international.org/6.0/
http://www.gnu.org/software/bash/
https://ejs.co/
https://plotly.com/javascript/
https://html.spec.whatwg.org/multipage/
https://www.json.org/

Framework for experimental evaluation Dmitry llin
of software solutions in a virtual environment
Researcher
YAML
Researcher —T
\ 4
Framework
\ 4 v \ 4 \ 4
s N
JavaScript Ruby YAML Ruby YAML
A J
\ 4 \ 4 v \ 4 \ 4
Gulp Vagrant Ansible Vagrant Ansible
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4
e ™ e A ™ e e A ™
Task Configuring Software Task Configuring Software
automation virtual machines Configuration automation virtual machines Configuration
A J A J) A A J)

Virtual experimental bench

Virtual experimental bench

Fig. 1. Reducing the number of programming and data markup languages used by the researcher

is divided into stages, at each of which the compiled
configurations are applied to each virtual machine.
These consist of three components:

(1) a general configuration for the entire project;

(2) a configuration for a specific virtual machine;

(3) a configuration that addresses a specific stage of

the experiment.

After compiling the selected configurations, a
number of actions are performed to define the algorithm
of the experiment at a particular stage. These actions
can include any commands for virtual machines. The
diagram illustrating the process of the experiment is
shown in Fig. 2.

The file structure of the project for conducting an
experimental study is shown in Fig. 3. A typical project
consists of:

e configuration file;

e one or more virtual machines, for each of which
there is also a separate configuration file and a set
of provisioning files specific to the virtual machine;

e common provisioning files for all virtual machines;

o files with initial data (including the researched
information technology solution);

e directories with reports on the utilization of virtual
machine resources in the course of the experiments.
The experiment configuration file and virtual

machine configuration files are implemented in a semi-
structured YAML format. The structure of these files
is schematically shown in Fig. 4, where at the top (file
repex.yml) the configuration of the experiment is shown,
and at the bottom (file vm.yml) the configuration of one
of the virtual machines.

The content of the files is interconnected. The “path”
property in the experimental configuration specifies the
path to the vm.yml file. The experiment stage name
(stage) used in the experiment configuration file can
be used in the virtual machine configuration in order to
apply its settings other than the default settings. These
settings will be applied only at the specified stage of
the experiment; however, the features of the hypervisor

Russian Technological Journal. 2022;10(5):16-27

20

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

N

- Virtual

2 machines (VMs)
&

0

[Virtual

o machines (VMs)
©

17

Virtual
machines (VMs)

Stage 3

\/

— General VM configuration

Compiled VM configuration

VM configuration

VM configuration for
the current stage

Automated actions

— General VM configuration

Compiled VM configuration

VM configuration

VM configuration for
the current stage

Automated actions

— General VM configuration

Compiled VM configuration

VM configuration

VM configuration for
the current stage

Automated actions

Fig. 2. Block-diagram of the experiment

should be taken into account. So, most of the settings
will be applied only after rebooting the virtual machine.
Some settings, such as disk subsystem or network
bandwidth limits, are applied permanently, and you will
need to create another stage of the experiment to remove
the applied restrictions.

SOFTWARE IMPLEMENTATION
OF THE FRAMEWORK

Based on the obtained design results, the Repexlab
(reproducible experiment laboratory) software
framework!® was developed and published as an open

16 https://github.com/rnd-student-lab/repexlab. Accessed

February 18, 2022.

source software. Itis a tool with a command line interface
(command line interface, hereinafter referred to as
CLI), the main task of which is to support experimental
studies in order to evaluate the characteristics of IT
solutions. The framework sets the basic configuration
of the project, ensures that the settings of the virtual
environment are applied at various stages of the
experiment.

The software framework is based on a number of
existing tools:

VirtualBox is a virtualization system that allows you
to organize the work of one or more virtual machines,
including on a PC;

e Jagrant is a virtual environment creation and
configuration tool. As a rule, it is used to prepare

Russian Technological Journal. 2022;10(5):16-27

21

https://github.com/rnd-student-lab/repexlab

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

Project th;:_a :
Project » configuration co?f?;urlgt?on
(repex.yml) (vm.ymi)
Provision
configuration
Virtual (provision.yml)
o) > Virtual > .
> machine » . > Provision
» machine > :
(vms) d d | ",
' Additional
R materials
for provision
Provision
configuration
(provision.yml)
Seneral The default
» Prov ng » configuration .
configuration (common) .
(provision) ! Additional
e 2 materials
for provision
> Data for
the experiment
N Data .l
” (data) !
Y Software for
the experiment
--» CPU utilization
Reports r Timestamp > Virtual -
> (reports) § reports § machine T Lilbauen eyiribi
-
Legend
—> Contains one element I:l Directory
—_—>
———>» Contains 0 or more elements File(s
2 | Fies)
. Experiment input
------- M ntain an elemen
> ay contain an element and output data

Fig. 3. File structure of the project for the experimental study

a virtual working environment for developers. The
base version uses VirtualBox as a hypervisor;

e Ansible is a cloud configuration management tool.
Used by the framework as the main means of
provisioning virtual machines;

e Atop is a tool for monitoring processes in the
operating system. Used by the framework to collect
data on the utilization of the computing resources of
virtual machines;

e Node,js'7 and NPM'8 is a JavaScript code execution
platform and an accompanying package manager.
Since Repexlab is developed in JavaScript, they are
required to install and execute the framework code.
The main functions that distinguish the framework

from the totality of technologies used in it include:

17 https://modejs.org/. Accessed February 18, 2022.
18 https://www.npmjs.com/. Accessed February 18, 2022.

e creation of a basic project for conducting an
experimental study;

e scaffolding!® for managing virtual machines within
the experimental bench;

e control of the virtual bench from the command line;

e built-in tools for automating the tasks of interaction
with a virtual bench.

The developed tool has commands that can be used
both from the command line and with the help of built-in
tools for automating tasks. They are divided into two
categories: commands for interacting with virtual machines
within an experiment (Table 2) and commands for changing
the configuration of a virtual experimental bench (Table 3).

19 Qcaffolding is a programming method that involves
generating program code for solving typical tasks, such as, for
example, building a project file structure or creating classes for
accessing database tables.

Russian Technological Journal. 2022;10(5):16-27

22

http://Node.js
https://nodejs.org/
https://www.npmjs.com/

Framework for experimental evaluation Dmitry llin
of software solutions in a virtual environment

repex.ymi
Version Stages
VMs Stage Stage
Name = Name
VM]]
Actions Actions
Name) .
Action Action
Path
Command Command
"t VMs VMs
Options Options
VM p on nna p on
Description Description
Name
Path - -
Action Action
Command Command
VMs VMs
Options Options
Description Description
vm.yml
\ 2
Defaults Version |
Provider Box Stage
Box version \ 4
Provider <Stage ID (name)>
CPUs Provision])
Memory Defaultos (;?pggeuratlon
. verri
GUI Provision
Hostname Type
Directory -
Network File
Type <Stage ID (name)>
> .
IP
S Defaults configuration
rovision ;
Synced folder override
Type
Type - s
Directory
From
File
To
Mount options
Customize

Fig. 4. Links to the configuration files of the project for conducting an experimental study

Russian Technological Journal. 2022;10(5):16-27
23

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

Table 2. List of commands for interacting with virtual machines

Option ..
Command — Command description
Name Description
-n, --name Name of the virtual machine Compiles virtual machine settings from
vm compile] a semi-structured data format to the configuration
-8, --stage Experiment stage name formats used by the tools
-n, --name Name of the virtual machine
-s, --stage Experiment stage name
T T Copies a file or directory between the host system
vm co -d, --direction Copy direction . . .
14 by and the specified virtual machine
-f, --from Copy from
-t, --to Copy to
vm destroy -0, --name Name of the virtual machine Deletes all data associated with the virtual machine
-s, --stage Experiment stage name (not configuration)
-n, --name Name of the virtual machine
-S, --stage Experiment stage name . . .
vm exec ’ g P g Execute a command on the specified virtual machine
< Command to execute on a virtual machine
--command
-n, --name Name of the virtual machine Performs installation and configuration of virtual
vm provision . machine software in accordance with the provisioning
-s, --stage Experiment stage name configurations
-n, --name Name of the virtual machine
-8, --stage Experiment stage name
The start time of the period
--start for the report (or the name of the stage | Generates a report on the use of computing resources
vm report of the experiment) by virtual machines. In parentheses is the option
ond Report period end time in case of using automation
(or experiment stage name)
List of Atop labels to generate
-1, --labels P g
a report on them
-n, --name Name of the virtual machine) .
vm restart - Restarts the virtual machine
-S, --stage Experiment stage name
-n, --name Name of the virtual machine Adds the IP-Hostname bindings of each virtual
vm setupHosts . machine in the experiment to the /etc/hosts file
-s, --stage Experiment stage name of the virtual machines to simplify addressing
vm ssh -n, --name Name of the virtual machine Connecting to a virtual machine via SSH
-n, --name Name of the virtual machine .)
vm start - Starts the virtual machine
-s, --stage Experiment stage name
-n, --name Name of the virtual machine) . .
vm status - Displays the status of the virtual machine
-S, --stage Experiment stage name
-n, --name Name of the virtual machine .)
vm stop - Stops the virtual machine
-S, --stage Experiment stage name

Table 3. List of commands for interacting with the project

Command

Option

Name

Description

Command description

project init

None, interactive parameter entry
mode is used

Initializes the experiment project in the current directory
and creates a base file structure

project run

-S, --stage

Experiment stage name

Starts the run of a configured experiment sequence or
a specified experiment stage

project vm add

None, interactive parameter entry mode is

used

Adds a new virtual machine configuration

project vm remove

-n, --name IName of the virtual machine

Removes an existing virtual machine configuration

24

Russian Technological Journal. 2022;10(5):16-27

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

Since the commands from the Table 3 change the
structure of the experiment, their use is possible only
through the CLI. Most commands from the Table 2 are
applicable both using the CLI for testing and debugging
individual actions, as well as means of the built-in task
automation tool. The exceptions are the “vm status”
and “vm ssh” commands, which are only applicable via
the CLL

The application of the developed tool in practice is
expected according to the following methodology:

1) planning and design of the experimental study;

2) initialization of the experimental study project with
a given number of virtual machines;

3) preparation of a formal description of virtual
machines and their configurations in YAML
format;

4) development and debugging of the sequence of
actions in the experiment using CLI tools;

5) automation of the sequence of actions in the
experiment using tools for automating the execution
of tasks;

6) conducting the experiment in a program-controlled
mode;

7) analysis of exported data on the utilization of
computing resources and other data obtained during
the experiment.

CONCLUSIONS

In this work, tasks facing researchers when setting up
experiments to assess the characteristics of information
technology solutions have been analyzed along with the
various tools used. It is shown that experimental studies
require researchers who are knowledgeable and skillful
at working with a large number of separate tools. Three
key characteristics with which the framework must
comply are formulated.

A domain-specific framework comprising some
of the technologies used and providing the necessary
functionality for conducting experimental research
is presented. A scheme of interaction between the
framework and the corresponding software for the
experiment has been prepared. The general scheme of
experiments based on virtual machines is determined.
The formulated file structure of the experiment project
includes the structure of the main project files and
internal links between the project files.

A framework developed according to the results
of the study contains 12 commands for working
with virtual machines. Most commands can be
executed both in CLI mode and in task automation
mode. To simplify the process of preparing an
experiment project, 4 scaffolding commands were
implemented. The proposed methodology for using
the framework in practice is described along with

software technologies with which the framework is
to be implemented.

Further research can be aimed at solving specific
problems of evaluating information technology
solutions using the framework, as well as identifying
and eliminating the limitations of the framework,
in order to develop the methodological basis for
conducting experimental research using the proposed
tools.

ACKNOWLEDGMENTS

The work was supported by the RTU MIREA grant
“Innovations in the implementation of priority areas for
the development of science and technology,” Research
Part project No. 28/22.

REFERENCES

1. Barrett E., Bolz-Tereick C.F., Killick R., Mount S.,
Tratt L. Virtual machine warmup blows hot and cold. In:
Proc. ACM Program. Lang. 2017;1:52:1-52:27. https://
doi.org/10.1145/3133876

2. Eismann S., Bezemer C.-P., Shang W., Okanovi¢ D.,
van Hoorn A. Microservices: A performance tester’s
dream or nightmare? In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering,
Edmonton AB Canada: ACM; 2020. P. 138—149. https://
doi.org/10.1145/3358960.3379124

3. Curino C., Godwal N., Kroth B., Kuryata S., Lapinski G.,
Liu S., et al. MLOS: An infrastructure for automated
software performance engineering. In: Proceedings of
the Fourth International Workshop on Data Management
for End-to-End Machine Learning. 2020:1-5. https://doi.
org/10.1145/3399579.3399927

4. Jiang Z.M., Hassan A.E. A survey on load testing of
large-scale software systems. [EEE Transactions on
Software Engineering. 2015;41(11):1091-1118. https://
doi.org/10.1109/TSE.2015.2445340

5. Alankar B., Sharma G., Kaur H., Valverde R., Chang V.
Experimental setup for investigating the efficient
load balancing algorithms on virtual cloud. Sensors.
2020;20(24):7342. https://doi.org/10.3390/520247342

6. Spanaki P., Sklavos N. Cloud Computing: security
issues and establishing virtual cloud environment via
Vagrant to secure cloud hosts. In: Daimi K. (Ed.).
Computer and Network Security Essentials. Springer,
Cham; 2018. P. 539-553. https://doi.org/10.1007/978-
3-319-58424-9 31

7. Saingre D., Ledoux T., Menaud J.-M. BCTMark: a
framework for benchmarking blockchain technologies.
In: 2020 IEEE/ACS 17th International Conference on
Computer Systems and Applications (AICCSA). Antalya,
Turkey: IEEE; 2020. P. 1-8. https://doi.org/10.1109/
AICCSA50499.2020.9316536

8. Potdar A.M., Narayan D.G., Kengond S., Mulla M.M.
Performance evaluation of Docker container and virtual
machine. Procedia Computer Science. 2020;171:
1419-1428. https://doi.org/10.1016/j.procs.2020.04.152

Russian Technological Journal. 2022;10(5):16-27

25

https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3399579.3399927
https://doi.org/10.1145/3399579.3399927
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.3390/s20247342
https://doi.org/10.1007/978-3-319-58424-9_31
https://doi.org/10.1007/978-3-319-58424-9_31
https://doi.org/10.1109/AICCSA50499.2020.9316536
https://doi.org/10.1109/AICCSA50499.2020.9316536
https://doi.org/10.1016/j.procs.2020.04.152

Framework for experimental evaluation
of software solutions in a virtual environment

Dmitry llin

9.

10.

11.

12.

13.

14.

15.

16.

Kucek S., Leitner M. An empirical survey of functions
and configurations of open-source Capture the Flag (CTF)
environments.J. Network Comput. Appl. 2020;151:102470.
https://doi.org/10.1016/j.jnca.2019.102470

Chirigati F., Rampin R., Shasha D., Freire J. ReproZip:
Computational ~ reproducibility ~ with ease. In:
Proceedings of the 2016 International Conference on
Management of Data. New York, USA: Association for
Computing Machinery; 2016. P. 2085-2088. https://doi.
org/10.1145/2882903.2899401

Steeves V., Rampin R., Chirigati F. Using ReproZip for
reproducibility and library services. IASSIST Quarterly.
2018;42(1):14—14. https://doi.org/10.29173/iq18
Jimenez 1., Sevilla M., Watkins N., Maltzahn C.,
Lofstead J., Mohror K., et al. The Popper convention:
making reproducible systems evaluation practical.
In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2017.
P. 1561-1570. https://doi.org/10.1109/IPDPSW.2017.157
Papadopoulos A.V., Versluis L., Bauer A., Herbst N.,
von Kistowski J., Ali-Eldin A., et al. Methodological
principles for reproducible performance evaluation in
cloud computing. IEEE Trans. Software Eng. 2021;47(8):
1528-1543. https://doi.org/10.1109/TSE.2019.2927908
Arta¢ M., Borovssak T., Di Nitto E., Guerriero M.,
Tamburri D.A. DevOps: introducing infrastructure-as-
code. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). 2017.
P. 497-498. https://doi.org/10.1109/ICSE-C.2017.162
Marquardson J. Infrastructure tools for efficient
cybersecurity exercises. Inform. Systems Education. J.
2018;16(6):23-30.

Simec A., Drzani¢ B., Lozi¢ D. Isolated environment
tools for software development. In: 2018 International
Conference on Applied Mathematics Computer Science
(ICAMCS). 2018. P. 48-484. https://doi.org/10.1109/
ICAMCS46079.2018.00016

About the author

17.

18.

19.

20.

21.

22.

23.

Stillwell M., Coutinho J.G.F. A DevOps approach to
integration of software components in an EU research
project. In: Proceedings of the 1st International Workshop
on Quality-Aware DevOps. New York, USA: Association
for Computing Machinery; 2015. P. 1-6. https:/doi.
org/10.1145/2804371.2804372

Magomedov S., Ilin D., Nikulchev E. Resource analysis
of the log files storage based on simulation models in a
virtual environment. Appl. Sci. 2021;11(11):4718. https://
doi.org/10.3390/app11114718

Staubitz T., Brehm M., Jasper J., Werkmeister T.,
Teusner R., Willems C., et al. Vagrant virtual machines
for hands-on exercises in massive open online courses.
In: Uskov V.L., Howlett R.J., Jain L.C. (Eds.). Smart
Education and e-Learning 2016. Springer, Cham; 2016.
P. 363-373. https://doi.org/10.1007/978-3-319-39690-3 32
Berger O., Gibson J.P., Lecocq C., Bac C. Designing
a virtual laboratory for a relational database
MOOC. In: Proceedings of the 7th International
Conference on Computer Supported Education.
Lisbon, Portugal: SCITEPRESS — Science and and
Technology Publications; 2015. P. 260-268. https://doi.
org/10.5220/0005439702600268

Hobeck R., Weber 1., Bass L., Yasar H. Teaching DevOps:
a tale of two universities. In: Proceedings of the 2021
ACM SIGPLAN International Symposium on SPLASH-E,
New York, USA: Association for Computing Machinery;
2021.P.26-31. https://doi.org/10.1145/3484272.3484962
Shah J., Dubaria D., Widhalm J. A survey of DevOps tools
for networking. In: 2018 9th IEEE Annual Ubiquitous
Computing, Electronics ~ Mobile ~ Communication
Conference (UEMCON). 2018. P. 185-188. https://doi.
org/10.1109/UEMCON.2018.8796814

Sandobalin J., Insfran E., Abrahdo S. On the effectiveness
of tools to support infrastructure as code: Model-driven
versus code-centric. /EEE Access. 2020;8:17734-17761.
https://doi.org/10.1109/ACCESS.2020.2966597

Dmitry llin, Cand. Sci. (Eng.), Associate Professor, Department of Data Processing Digital Technologies, Institute
of Cybersecurity and Digital Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: i@dmitryilin.com. ResearcherID J-7668-2017, Scopus Author ID 57203848706, https://
orcid.org/0000-0002-0241-27383, https://www.researchgate.net/profile/Dmitry-llin-2

26

Russian Technological Journal. 2022;10(5):16-27

https://doi.org/10.1016/j.jnca.2019.102470
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.29173/iq18
https://doi.org/10.1109/IPDPSW.2017.157
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICAMCS46079.2018.00016
https://doi.org/10.1109/ICAMCS46079.2018.00016
https://doi.org/10.1145/2804371.2804372
https://doi.org/10.1145/2804371.2804372
https://doi.org/10.3390/app11114718
https://doi.org/10.3390/app11114718
https://doi.org/10.1007/978-3-319-39690-3_32
https://doi.org/10.5220/0005439702600268
https://doi.org/10.5220/0005439702600268
https://doi.org/10.1145/3484272.3484962
https://doi.org/10.1109/UEMCON.2018.8796814
https://doi.org/10.1109/UEMCON.2018.8796814
https://doi.org/10.1109/ACCESS.2020.2966597
mailto:i@dmitryilin.com
https://orcid.org/0000-0002-0241-2733
https://orcid.org/0000-0002-0241-2733
https://www.researchgate.net/profile/Dmitry-Ilin-2

Framework for experimental evaluation Dmitry llin

of software solutions in a virtual environment

06 aBTOpE

UnbuH OMmutpuii FOpbeBuY, K.T.H., A0UEHT, kadenpa «Lindposbie TexHoNornm o6paboTkm AaHHbIX» MIHCTUTYTa
Knbep6e30nacHoOCTN 1 LMPPOBbLIX TexHonornii @reQy BO «MUP3A — POCCUNCKNIA TEXHONIOTMYECKNIA YHUBEPCUTET»
(119454, Poccus, Mocksa, np-T BepHaackoro, a. 78). E-mail: i@dmitryilin.com. ResearcherID J-7668-2017, Scopus
Author ID 57203848706, https://orcid.org/0000-0002-0241-2733, https://www.researchgate.net/profile/Dmitry-
llin-2

Translated from Russian into English by Evgenii I. Shklovskii

Edited for English language and spelling by Thomas A. Beavitt

Russian Technological Journal. 2022;10(5):16-27

27

mailto:i@dmitryilin.com
https://orcid.org/0000-0002-0241-2733
https://www.researchgate.net/profile/Dmitry-Ilin-2
https://www.researchgate.net/profile/Dmitry-Ilin-2

	RTZ_2022-05_eng - final
	РТЖ_обложка_5_2022_ENG_4

