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Abstract

Objectives. A frequently used method for obtaining Pareto-optimal solutions is to minimize a selected quality index
under restrictions of the other quality indices, whose values are thus preset. For a scalar objective function, the global
minimum is sought that contains the restricted indices as penalty terms. However, the landscape of such a function
has steep-ascent areas, which significantly complicate the search for the global minimum. This work compared the
results of various heuristic algorithms in solving problems of this type. In addition, the possibility of solving such
problems using the sequential quadratic programming (SQP) method, in which the restrictions are not imposed as
the penalty terms, but included into the Lagrange function, was investigated.

Methods. The experiments were conducted using two analytically defined objective functions and two objective
functions that are encountered in problems of multi-objective optimization of characteristics of analog filters. The
corresponding algorithms were realized in the MATLAB environment.

Results. The only heuristic algorithm shown to obtain the optimal solutions for all the functions is the particle
swarm optimization algorithm. The sequential quadratic programming (SQP) algorithm was applicable to one of the
analytically defined objective functions and one of the filter optimization objective functions, as well as appearing to
be significantly superior to heuristic algorithms in speed and accuracy of solutions search. However, for the other two
functions, this method was found to be incapable of finding correct solutions.

Conclusions. Atopical problem is the estimation of the applicability of the considered methods to obtaining Pareto-
optimal solutions based on preliminary analysis of properties of functions that determine the quality indices.
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Pesiome

Llenun. Yacto npuMeHsieMblii MeTOZ, Noncka onTMMasbHbIX Mo MapeTo pelueHnii COCTOUT B MUHUMU3ALIMN BbliOpaH-
HOro nokasaTtesisi KauecTBa Npu 3aaHNM OrpaHNYEeHNIn Ha OCTallbHbIe NnokasaTesnv, 3Ha4YeHUs1 KOTOPbIX, Takum obpa-
30M, 0Ka3bIBAOTCS 3apaHee onpeaeneHHbIMU. Mpu 3TOM BbINOHAETCS MOUCK FNo6afbHOr0 MUHUMYMa CKaNsipHOM
uenesor GyHKUMK, B KOTOPYKO OrpaHn4yMBaEeMble NokasaTenu BXOOAT B BuAe WTpadHbiX cnaraemolx. Pensed takom
DYHKUMN COAEPXKUT yHacTKM ObICTPOro pocTa, 3Ha4YMTENbHO 3aTPYAHSOLME NoVCK rnodanbHoro MmHuMyma. B pabo-
Te CPaBHMBAIOTCS PE3YNbTaTbl PA3/INYHbIX 9BPUCTUHECKUX aTTOPUTMOB MNPU peLLeHnn 3aga4 aToro tuna. Kpome Toro,
ncenenyeTcs BOSMOXHOCTb MCMOb30BaHUS anroputMa nociiefoBaTe/lbHOro KBaapaTtMyHOro nporpamMmMupoBaHms
(SQP), B KOTOPOM OrpaHNYeHUsT yHUTLIBAIOTCA He Yepes WTpadHble cnaraeMsble, a BKovaloTcs B GyHKUMIO JlarpaHxa.
MeToabl. B akcneprMeHTax MCNoib30BasNCb ABE aHANUTUYECKN 3a[aHHble LeneBsble GYHKUUM U OBE LeneBble
dYHKUMN, BCTPEYaoLLMeCH B 3a4a4aX MHOMOKPUTEPMAIbHON ONTUMN3ALMN XapaKTEPUCTUK aHANIOrOBbIX GUIbTPOB.
Mccnenyemble anropmutmbl Obiv peanrM3oBaHbl porpaMmmMamu B cpene MATLAB.

Pe3ynbTaTbl. YCTAHOBNEHO, YTO €OMHCTBEHHbBIM 3BPUCTUHECKUM afifOPUTMOM, KOTOPbIM HaLLen ONTUMalbHbIE pe-
LweHns ana Bcex GyHKUMM, okasancs anroputMm pos vyactuu. AnroputM SQP okasancs npuMeHum ans ogHon u3
aHaINTNYECKN onpeaeneHHbIX GYHKUMA 1 A5 OOHON U3 LeneBblX GyHKLNI oNTUMm3aumn GunbTpoB, CYLLECTBEHHO
NpPeB30iasa NPy 9TOM 9BPUCTUHECKME aITOPUTMbI MO TOYHOCTU M CKOPOCTM noucka pelweHnsa. Ho ona aByx opyrmux
DYHKLUMIA AaHHbIN aNropyuTM 0Ka3ascst HECNOCOOHbIM HAXOOUTb NPaBUIIbHbIE PELUEHUS.

BbiBOoAbl. AKTyanbHOW SIBASETCS 33a4adva OLEHKM NPUMEHMMOCTW PacCMOTPEHHbIX METO4OB Ans noucka [lapeto-
OMNTUMaJIbHbIX PELLEHNIA HA OCHOBE NPEABAPUTENIBHOMO aHaIM3a CBONCTB (PYHKLNIKA, ONPEAENSIOLLMX MOKa3aTeNn Ka4ecTsa.

Kniouesble cnoBa: MHOrokputepumansHas ontuMusaums, onTMManbHOCTb Mo NapeTo, nokasartesb KayecTsa, Lene-

Bas QyHKUMA, penbed ueneson GyHKUNU, 3BPUCTUYECKUT allfrOPUTM, KBaZAPaTUYHOE NPOrpamMMmpoBaHme

e Moctynuna: 15.12.2021 » Aopa6oTaHa: 13.05.2022 ¢ MpuHaTa kK ony6nukoBaHuio: 27.06.2022

Ansg uutupoBaHua: CmupHoB A.B. CBoIMCTBA LieNeBbIX GYHKLMIA U anropuTMOB Noucka B 3aga4ax MHOrOKpUTEPUASTbHOM
ontummusaumun. Russ. Technol. J. 2022;10(4):75-85. https://doi.org/10.32362/2500-316X-2022-10-4-75-85

Mpo3payHocTb GUHAHCOBOW AEATENIbHOCTU: ABTOP HE MMeeT GMHAHCOBOWM 3anHTEPECOBAHHOCTM B NPEACTaB/IEH-

HbIX MaTepuanax nin Mmetogax.

ABTOp 3asaBnseT 00 OTCYTCTBUA KOHq)J'II/IKTa NHTEepeCOoB.

INTRODUCTION

The global extrema of multimodal objective functions
(OFs) having many local extrema can be obtained using
heuristic algorithms [1, 2]. Unlike classical optimization
methods, heuristic algorithms have not yet been
subjected to comprehensive theoretical analysis [2—4].
Their characteristics can be evaluated and compared
experimentally using sets of test functions [5, 6]. Different
algorithms show the best characteristics on different test
functions, which leads to the problem of choosing the most
appropriate algorithm for an OF with certain properties.

Methods have recently been developed for automatic
analysis of the properties of the OF relief (exploratory
landscape analysis, ELA) and machine learning to select
an algorithm and/or adjust its parameters according to the
results of such an analysis [7, 8]. However, the complete
solution of this problem is still far away.

In radio engineering and other sciences, of
considerable interest are multi-objective optimization
problems [9]. As arule, it is impossible to simultaneously
optimize all quality indices (QI) because improvement
of some of the QIs leads to impairment of others.
Therefore, the goal of multi-objective optimization is to
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find a set of Pareto-optimal solutions [1, 10]. A widely
used way to search for them is to solve the problem

X = arg ;reliDq(Qk (x)),

’ . . (1)
D = {x €D|Q; (x)< Qi=L..M; j= k},
where x is the coordinate vector in the search space, D is
the set (defined by inequality and/or equality restrictions)
of allowable values of x in the search space, Qj(x) are
functions that describe the Qls, M is the number of QIs,
and X" is the coordinate vector of the optimal solution.
Without loss of generality, the problem of minimizing all
the QIs was considered here.

In problem (1), all the QIs, except O,, are restricted
from above, while Q, is minimized. If the QIs are
competing, then the minimum of Q, is at the point x"at
which the other QIs reach the restrictions th imposed on
them. This makes it possible to obtain solutions in which
all the coordinates in the space of QlIs, except the kth, are
fixed at the objective values of Q. It is known that this
method can find any Pareto-optimal solution [10].

One of the methods to solve problem (1) is based on
minimizing a scalar OF of the form

M . —-0.
r(x)=Y, W, - max (Q’L‘rgﬂ),o . Q)
j=1 Qj /

where Qj(x) and th are the current and objective values
of the jth QI, respectively; and Wj is the weighting factor
of the jth QI [2, 10]. If it is necessary to normalize the
deviation of a QI from the objective value to reduce the
terms in (2) to the same range of values, the exponent
q;= 1. If such a normalization is unnecessary, then the
exponent ¢, = 0. At x > 0, max(x, 0) = x; otherwise,
max(x, 0) = 0.

The objective value Q,, of the QI being minimized is
given sufficiently low, e.g., equal to its minimum possible
value, and the weighting factor is taken to be ¥, = 1. The
terms containing the other QlIs are penalties for violation
of restrictions imposed on them. The weighting factors
at them should meet the conditions Wj >> 1 for such QI
to be fixed near the objective values.

Problems of multi-objective optimization of the
characteristics of analog and digital filters by the scalar
OF method were considered earlier [11, 12].

The relief of OF (2) can be complex. If the objective
values of the QIs to be fixed are exceeded, the OF value
rapidly increases; for this reason, the relief has areas
hereinafter referred to as “walls.” In the available works
aimed at analyzing the properties of OFs and selecting
optimization algorithms, such OF properties were not
studied. In view of the importance of multi-objective
optimization, this gap needs to be addressed.

Another approach to solving problem (1) is based on
nonlinear programming methods, in which restrictions
on QIs are not imposed as penalty terms, but included
in the Lagrange function; as applied to problem (1), this
function has the form

M-1
Lx,M)=0,(x0)+ Y Ag;(x),
i=1

gi(x):Qj(x)—Qﬂ, i=1l..,M-1,j=1,..M,j#k (3)
xe>D,

where A, are the Lagrange multipliers. The minimum
of function (3) is found, in particular, using sequential
quadratic programming (SQP) algorithm [3], provided
that the Lagrange function L(x, A) has continuous second
derivatives.

Population algorithms, which comprise an
alternative to the scalar OF method, can give an
approximation of the Pareto set containing a given
number of elements within one search cycle [1]. The
main advantage of these methods is their significantly
accelerated search. However, there are difficulties in
obtaining solutions with given values of some of the
QIs. Moreover, with increasing number of Qls, the
quality of the found approximations of the Pareto set
may decrease. For example, by comparing the results
of solving the problem of multi-objective optimization
of the characteristics of electric filters using population
algorithms and the scalar OF method, it was shown that,
at the number of QIs M = 2, population algorithms are
advantageous not only in terms of search speed, but also
in quality of the solutions obtained. At the same time, at
M = 3, they are inferior in quality to the approximation
of the Pareto set to the scalar function method [13]. The
prospects for the use of population algorithms for multi-
objective optimization require further research and will
not be considered here.

The purpose of the present work was to study the
characteristics of various optimization algorithms of
searching for the global minimum of scalar OF of
type (2) whose relief has walls, as well as to develop
recommendations for choosing algorithms for solving
such problems. In addition, we studied the possibilities
of applying methods for solving problem (1) that do not
use penalty terms.

METHODS OF INVESTIGATION

First of all, let us define OFs with necessary
properties, i.e., with walls. The first two OFs are defined
analytically:

ND ND
fl(x)zle.+Wl'max{2xl.2—al,0], 4)
i=1 i=l
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ND
=Y x+
i=1

ND

+W, -max{ND+ Z(xiZ —COSZTCXI-)—CZZ, 0). %)
i=1

In these expressions, ND is the dimension of the
search space. In both functions, the QI being minimized
is calculated as the sum of the coordinates of the vector x.
In function £, (x), the QI being fixed is defined as the sum
of the squares of the coordinates; while in function £,(x),
it is represented by the known Rastrigin test function [5].
The parameters a, and a, are the objective values of the
QI being fixed, while the parameters W, and W, are the
weighting factors of the penalty terms.

Figure 1 presents the graphs of the OFs f(x) and
H(x)atND=2,a,=1,a,=2,W,=W,=100,-2<x,<2,
and i =1, 2. In the graphs, the values of the functions are
bounded from above at the levels f|(x) = 1 and f,(x) = 2.
The reliefs of both functions contain pronounced
walls. The number of local extrema of f,(x) increases
exponentially with increasing dimension ND.

Let us further define two OFs that are encountered
in the problems of multi-objective optimization of the
characteristics of analog electric filter [11]. The first of
them has the form

DTd(x)- DTd,

A
t

DHP( ) DHp, OJ

+ WHp - max
DHp,

HS, - Hs(x)
+ WHs -max| ————,0 |+
Hst

(6)

+ WHt - max (DHt (x) — DHt,, 0).

1.0~
0.5\- |
o “-
X
- L
-0.5
-1.0
-1
i ! 2.0
X4 2 -15-1.0-05 0 0.5 1.0 1.5 =

X2

(a)

Fig. 1. Graphs of the test functions (a) f;(x) and (b) f.

Here, DHp is the passband attenuation ripple (dB),
Hs is the stopband attenuation (dB), DHt is the excess of
the frequency response over the permissible level in the
transition band between the passband and the stopband
(dimensionless), and DTd is the relative passband delay
time ripple (%). The coordinate vector x consists of the
real and imaginary coordinates of the poles and zeros
of the transfer function (one each from the complex
conjugate pair). Methods to calculate the listed QIs were
described in the literature [11, 14].

OF f5(x) (6) is obtained in the problem of minimizing
the DTd QI under restrictions on the other three QIs. Since
the Hs value should be maximized, this QI is subtracted
from its objective value. In the experiments below, the
values of the following quantities were given: the number
of filter poles, NP = 6; the number of zeros, NZ = 0; the
objective values of QI, DHp, = 0.5, Hs,= 40, DHt,= 1, and
DTd,=10; and the weighting factors, WHp =20, WHs =500,

and WHt = 1000. The search space in all the coordinates
was bounded by the inequalities —3 <x; <—0.01.
The last OF has the form
Tss (x) —Tss,
X)=———F+
/4 ( ) Tss,
T - Tfr,
Tf

+ WUm - max

HS Hs
+ WHs - max +
+ WHt - max(DHt — DH1,,0).

Here, Tss is the transient-process time; Tfi is the
rise time of the transient front; and Um is the maximum

»(x) at the dimension ND = 2
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value (surge) of the transient voltage. The time intervals
and the voltage are measured on normalized scales and
are expressed in dimensionless quantities. The other QIs
are defined above.

OF f,(x) (7) is obtained in the problem of minimizing
the transition-process time 7s under restrictions on
the front rise time 7fr, the maximum transient voltage
Um, the stopband attenuation Hs, and the excess of
the frequency response in the transition band DHt. In
the experiments, the values of the following quantities
were given: number of poles, NP = 6; number of zeros,
NZ = 0; objective values of Qls, Tss, = 0.1, Ifr, = 0.5,
Um,= 1.1, Hs,= 40, and DHt,= 0; the weighting factors,
WTfr =100, WUm = 10, WHs = 100, and WHt = 1000.
The boundaries of the search space are the same as
for f3(x). Information on the methods to calculate the
QIs is available in the literature [11, 14].

The graphs of these OFs are not presented here since
solving the problems of optimizing OFs (6) and (7) at
ND = 2, i.e., for filters of the second order, is of no
interest; moreover, at higher dimensions, the graphical
representation is complicated.

Letus further list the studied optimization algorithms.
All of them were implemented in the MATLAB software
environment!. For each algorithm, an abbreviated
notation is introduced, as presented below:

e SS (Step Search)—a simple coordinate search
algorithm with the step size bound from above [2, 3].

o PS—patternsearch(..) function from the Global
Optimization Toolbox in MATLAB. An improved
coordinate search with the possibility of transition
between the domains of attraction of local
extrema [2].

o MS—fminsearch(..) function from the Optimization
Toolbox. A search for a minimum of an OF using the
Nelder—Mead simplex algorithm [2].

o SA—simulannealbnd(..) function from the Global
Optimization Toolbox. A search for the global
minimum of an OF using the simulated annealing
algorithm [1, 2].

o GA—ga(..) function from the Global Optimization
Toolbox. A search for the global minimum of an OF
using a genetic algorithm [1, 2].

e PSO—particleswarm(..)  function from the
Global Optimization Toolbox. A search for the
global minimum of an OF by the particle swarm
optimization algorithm [1, 2].

e CS—a function realizing the cuckoo search
algorithm for searching for the global minimum
of an OF [1]. The function is not included in the
MATLAB toolboxes and is written based on a
published example [15].

o MCl—fmincon(..) function that is included in
the Optimization Toolbox and realizes the SQP

! http://www.mathworks.com. Accessed December 14, 2021.

algorithm. In this case, an OF is minimized with

penalties (4)—(7), and restrictions are imposed only

on the coordinates of the search space.

o MC2—fmincon(..) function from the Optimization
Toolbox, too. But in this case, a selected QI is
minimized, and functions used to calculate the fixed
QIs are introduced in the arguments of finincon(..) as
inequality restrictions.

Each algorithm was run N7 = 100 times for the
functions f|(x) and f,(x) and NT = 40 times for f;(x) and
J4(x). The starting points in the search space for each
run of the non-population algorithms were given using
the lhsdesign(NT, ND) function, which returns a Latin
hypercube sample matrix; random starting positions of
agents of the population algorithms GA, PSO, and CS
were given by their realizing functions. The algorithms
included in the MATLAB toolbox were set by default.
The end condition of the search was the absence of
changes in the function being minimized that exceeded
the DGF,; level, which was one of the settings and, as
noted above, was set by default. For the CS algorithm,
the population size Npop = 20 and the number of
generations maxgenN = 400 were given. The search was
ended after all the generations had been sought.

RESULTS AND DISCUSSION

Table 1 presents the results of the experiments
with the OF f(x). The first and second subcolumns of
each column show the minimum and maximum values,
respectively, of the found solutions over 100 search
cycles at the dimensions ND = 2, 4, and 8. The third
subcolumns present the numbers Neval of calculations
of the OF in the course of the search. The top row
shows the analytically found exact values of the global
minimum.

Additional information on the operation of the
algorithms is provided by the maps of the positions of the
starting points of the search cycles, which are connected
by straight line segments to the corresponding end
points; examples are given in Fig. 2. For the population
algorithms, in particular, for PSO, only the positions of
the found optimal solutions are shown, since each agent
in the population has its own starting position.

The non-population algorithms SS, PS, MS, and
MC1 move toward a point of minimum until they
reach a wall. Their results over the search cycles have a
significant scatter. The population algorithms PSO and
CS turned out to be significantly better. Since most of the
solutions they found are in the immediate vicinity of the
global minimum, it does not take many iterations of the
search to get a good result. The best results were shown
by the MC2 algorithm. This is understandable because
/1(x) has no local minima. In this case, both the QI to be
minimized and the restricted QI are described by twice
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Table 1. Results of the experiments with the OF f,(x)

ND =2, min(f)) = —1.414 ND = 4, min(f) = —2.000 ND = 8, min(f}) = —2.828
Algorithm min(f)) max(f)) Neval min(f)) max(f)) Neval min(f)) max(f)) Neval
SS -1.414 -1.017 84844 —=2.000 -1.396 320100 =2.717 -2.327 1280948
PS -1.414 —1.126 14503 —1.998 —1.540 30330 —2.780 —1.833 70876
MS —1.414 —-1.052 23623 —2.000 0.053 60650 —2.806 1.010 147627
SA —1.414 —1.386 192039 -1.998 -1.873 381223 —2.782 —2.340 752386
GA —1.414 -1.372 631387 —=2.000 —1.946 1456566 -2.827 -2.821 5748740
PSO -1.414 -1.412 187060 —2.000 -1.996 541760 —2.828 —2.821 1508800
CS -1.414 -1.413 1677900 —2.000 —1.984 1677900 —2.825 -2.793 1677900
MCI1 —1.414 —-0.756 29340 -1.999 —0.542 72418 -2.828 —0.440 100494
MC2 -1.414 -1.414 3465 —=2.000 =2.000 7201 —2.828 -2.828 16211
PS PSO MC2
20 . 2.0 2.0 ;
15 il 1] 1.5 1.5
1.0 / Z 10 1.0
0.5 g 05 05|
0 0 0
-0.5 -0.5 -0.5
A Y
-1.0 - 1.0 1.0} ==
-15 -1.5 -15 ' S

.0 - : — 2.0 -2.0
-2.0-1.5-1.0-05 0 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-05 0 0.5 1.0 1.5 20 -2.0-1.5-1.0-0.5 0 0.5 1.0 1.5 2.0

Fig. 2. Starting points of search and the positions of solutions (blue) for f,(x) at ND = 2

differentiable functions. Under such conditions, the
SQP algorithm quickly and accurately finds the optimal
solution in each run at all the dimensions of the search
space.

Table 2 presents the results of the experiments
with the OF f,(x). The estimated values of the global
minimum in the top row were obtained by an additional
search within the restricted neighborhoods of the best of
the found solutions. Figure 3 gives the examples of the
position maps of the starting and end points of search.
Figure 4 presents the examples of the histograms of the
found optimal solutions at ND = 8.

The algorithms SS, MS, and MCI1 end the search at
the local minimum closest to the starting point (Fig. 3).
To obtain the global minimum or at least a minimum
close to it, a significant number of search cycles should
be performed. At the same time, the algorithms SA, GA,
PSO, and CS end all the search cycles either at the global
minimum or at two local minimums closest to it. This
was to be expected, since these algorithms are intended
for global optimization.

At the dimension ND = 8, the exact value of the
global minimum is only found using the PSO algorithm.
However, as the histogram in Fig. 4 shows, this value
is found once in a hundred attempts. At the same time,

the CS algorithm repeatedly ended the search near the
global minimum, while, in the other cases, it hit local
minima closest to the global one.

The results of the MC2 algorithm should be noted.
Among them are many values that are significantly
smaller than the global minimum of f,(x) (Fig. 4). A
check shows that these solutions violate the restrictions
imposed on the fixed QI. Thus, although both QIs are
described by twice differentiable functions in the
vicinity of any of its local minima, the MC2 algorithm
turned out to be unsuitable for optimizing this function.

Let us turn to the results of optimizing the OF
f3(x) (6) and f,(x) (7). These problems belong to
Black Box Optimization problems, for which neither
the exact solutions nor any information on the
properties of the OF is known before the start of the
search. Tables 3 and 4 present the best solutions for
each algorithm, respectively. Significant violations
of the restrictions imposed on the OF are marked
in italics. The best results are highlighted in bold.
Figures 5 and 6 show the examples of the histograms
of the OF values for the found solutions. For the MC2
algorithm, the scale of the horizontal axis presents
the values of the QI being minimized, rather than the
scalar OF.
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Table 2. Results of the experiments with the OF f,(x)

ND =2, min(f,) = —2.000 ND = 4, min(f,) = —2.040 ND = 8, min(f,) = —2.097
Algorithm
min(f,) max(f;) Neval min(f;) max(f;) Neval min(f,) max(f;) Neval
SS —-2.000 560.2 24313 -2.016 1036.3 94421 86.4 1892.6 376213
PS -1.999 —0.475 15173 —2.034 —0.545 34606 —1.559 —0.690 87668
MS —2.000 564.0 10383 —1.998 1042.0 20267 —2.082 1896.4 88995
SA —2.000 —0.924 190021 -2.039 1.765 455552 —2.089 372.8 819478
GA —=2.000 -1.269 535649 —2.040 —0.633 1400355 —1.593 —0.895 6594051
PSO —2.000 -1.277 208501 —2.040 —0.647 593081 -2.097 0.304 1603361
CSs —2.000 -1.279 31960 —2.040 —1.404 31960 —2.091 —1.566 31960
MClI -1.998 278.1 15445 -2.036 942.1 20946 —-0.609 1608.6 36057
MC2 —2.848 1.897 130078 —5.696 5.696 329294 —11.386 5.701 577958
MS
2.0
= -
N A P
w0~ g N
0.5 :
e W | N
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Fig. 3. Starting points of search and the positions of solutions (blue) for fy(x) at ND = 2

Table 3. Results of the experiments with the OF 75(x)

Algorithm min(OF) DHp, dB Hs, dB DHt DTd % Neval
SS 5.070 0.500 40.040 0.000 60.699 332488

PS 5.615 0.510 40.000 0.000 62.103 46699

MS 6.708 0.500 40.000 0.000 77.084 33887
SA 2.552 0.500 40.009 0.000 35.515 280390
GA 2.253 0.500 40.881 0.000 32.530 3009450
PSO 2.127 0.500 40.000 0.000 31.266 1211160
CS 62.124 1.752 39.559 0.000 75.268 1278400

MC1 2913 0.500 40.533 0.000 39.128 40771

MC2 31.126 0.500 40.000 0.000 31.126 39828

The problem of optimizing f;(x) consisted
in minimizing the D7d QI under the restrictions
DHp < 0.5 dB, Hs > 40 dB, and DHt < 0. These
restrictions are satisfied by all the algorithms,
except CS. The minimum value of D7d was found by
the MC2 method, which also outperformed the other
algorithms in number of solutions coinciding with the
best one (Fig. 5). But at the same time, among the
results of the search by this method, there are several

solutions violating the restrictions. Because of this,
the DTd QI turned out to be less than the correct
optimal value.

The problem of optimizing f,(x) consisted in
minimizing the 75s QI under the restrictions Hs > 40 dB,
DHt < 0, Tfir < 0.5, and Um, < 1.1. The restrictions
are only satisfied with acceptable accuracy by the
population algorithms GA and PSO (Table 4), for which
the best results of searching for the minimum of 73s are
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Fig. 5. Histograms of the found solutions for f3(x)

Table 4. Results of the experiments with the OF f,(x)

Algorithm min(OF) Hs, dB DHt Tf Tis Um Neval

SS 38.283 33.821 0.000 0.528 1.681 1.235 75904

PS 11.888 40.247 0.000 0.500 1273 1116 41477

MS 16.378 40.000 0.000 0.500 1.569 1.269 30440
SA 12.747 40.003 0.000 0.500 1.324 1.151 227064
GA 11.287 40.001 0.000 0.500 1.229 1.100 1512630
PSO 11.301 40.000 0.000 0.500 1.229 1.101 548280
cs 20.796 35.942 0.000 0.500 1.165 1.080 1278400

MC1 33.355 40.267 0.000 0.551 2.391 1.132 15107

MC2 1.480 43.663 0.000 1.044 1.480 1.006 19902
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Fig. 6. Histograms of the found solutions for 7,(x)

the same. According to the statistics of the results, the
two algorithms are also equivalent (Fig. 6), and in the
required number of computational operations, the PSO
algorithm turned out to be noticeably better than GA.
The MC2 algorithm proved to be completely unsuitable
for solving this problem.

CONCLUSIONS

The obtained results showed that the search for
Pareto-optimal solutions by solving problem (1) can
be performed by different methods, which should
be selected based on the properties of the functions
contained in (1). Since, out of the considered
algorithms, the best solutions for all functions were
only obtained by the heuristic algorithm PSO, this can
be recommended as the main method to solve problems
of type (1).

For the functions f(x) and f;(x), the nonlinear
programming algorithm MC2 turned out to be applicable.
For these functions, this method not only finds the
optimal solution in most of the search cycles, but also
requires much less computation resources for the search
than the heuristic algorithms that optimize scalar OF (2).
However, for the functions f,(x) and f;(x), the MC2
algorithm proved to be unsuitable. For the function f,(x),
this can be explained in terms of its multimodality. For
the function f,(x), there is still no explanation because
nothing can be said about the properties of functions
contained in (7).

One of the approaches for assessing the applicability
of nonlinear programming methods of the MC2 type
to solving problem (1) is to preliminarily study the
properties of the functions that determine the values of
the QIs contained in (1). However, this approach also
entails certain problems, for example, in terms of how to
check the multimodality of an OF. The commonly used
approach is based on multiple searches for local extrema
from uniformly distributed starting points. In this case, it is
recommended to use the Nelder—Mead algorithm (referred
to as MS above) [7]. However, if the relief of the OF has
“valleys,” i.e., areas in which the rate of change in the
function in one direction is much lower than in others, then
the local search algorithms will stop at various points of
the bottom of the valley, which are not local minima [10].
Methods for detecting walls, valleys, and plateaus in the
relief of an OF, as well as those that search for extrema in
the presence of such areas, are still poorly developed.

Thus, the issue of assessing the applicability of
MC2-type nonlinear programming algorithms to solving
problem (1) requires additional research. In the meantime,
the following course of action can be proposed. First, it is
necessary to run a certain number of search iterations for
a solution to problem (1) using the MC2 method. If most
of the solutions are close to each other and the imposed
restrictions are not violated, then the best of these
solutions can be taken as the desired optimum. Moreover,
if the solutions have a significant scatter and the majority
have violated restrictions, then one should proceed to the
optimization of scalar OF (2) using the PSO algorithm.
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