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Abstract
Objectives. A frequently used method for obtaining Pareto-optimal solutions is to minimize a selected quality index 
under restrictions of the other quality indices, whose values are thus preset. For a scalar objective function, the global 
minimum is sought that contains the restricted indices as penalty terms. However, the landscape of such a function 
has steep-ascent areas, which significantly complicate the search for the global minimum. This work compared the 
results of various heuristic algorithms in solving problems of this type. In addition, the possibility of solving such 
problems using the sequential quadratic programming (SQP) method, in which the restrictions are not imposed as 
the penalty terms, but included into the Lagrange function, was investigated.
Methods. The experiments were conducted using two analytically defined objective functions and two objective 
functions that are encountered in problems of multi-objective optimization of characteristics of analog filters. The 
corresponding algorithms were realized in the MATLAB environment.
Results. The only heuristic algorithm shown to obtain the optimal solutions for all the functions is the particle 
swarm optimization algorithm. The sequential quadratic programming (SQP) algorithm was applicable to one of the 
analytically defined objective functions and one of the filter optimization objective functions, as well as appearing to 
be significantly superior to heuristic algorithms in speed and accuracy of solutions search. However, for the other two 
functions, this method was found to be incapable of finding correct solutions.
Conclusions. A topical problem is the estimation of the applicability of the considered methods to obtaining Pareto-
optimal solutions based on preliminary analysis of properties of functions that determine the quality indices.
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НАУЧНАЯ СТАТЬЯ

Свойства целевых функций и алгоритмов поиска  
в задачах многокритериальной оптимизации

А.В. Смирнов @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: av_smirnov@mirea.ru 

Резюме
Цели. Часто применяемый метод поиска оптимальных по Парето решений состоит в минимизации выбран-
ного показателя качества при задании ограничений на остальные показатели, значения которых, таким обра-
зом, оказываются заранее определенными. При этом выполняется поиск глобального минимума скалярной 
целевой функции, в которую ограничиваемые показатели входят в виде штрафных слагаемых. Рельеф такой 
функции содержит участки быстрого роста, значительно затрудняющие поиск глобального минимума. В рабо-
те сравниваются результаты различных эвристических алгоритмов при решении задач этого типа. Кроме того, 
исследуется возможность использования алгоритма последовательного квадратичного программирования 
(SQP), в котором ограничения учитываются не через штрафные слагаемые, а включаются в функцию Лагранжа.
Методы. В экспериментах использовались две аналитически заданные целевые функции и две целевые 
функции, встречающиеся в задачах многокритериальной оптимизации характеристик аналоговых фильтров. 
Исследуемые алгоритмы были реализованы программами в среде MATLAB. 
Результаты. Установлено, что единственным эвристическим алгоритмом, который нашел оптимальные ре-
шения для всех функций, оказался алгоритм роя частиц. Алгоритм SQP оказался применим для одной из 
аналитически определенных функций и для одной из целевых функций оптимизации фильтров, существенно 
превзойдя при этом эвристические алгоритмы по точности и скорости поиска решения. Но для двух других 
функций данный алгоритм оказался неспособным находить правильные решения. 
Выводы. Актуальной является задача оценки применимости рассмотренных методов для поиска Парето-
оптимальных решений на основе предварительного анализа свойств функций, определяющих показатели качества.

Ключевые слова: многокритериальная оптимизация, оптимальность по Парето, показатель качества, целе-
вая функция, рельеф целевой функции, эвристический алгоритм, квадратичное программирование
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INTRODUCTION

The global extrema of multimodal objective functions 
(OFs) having many local extrema can be obtained using 
heuristic algorithms [1, 2]. Unlike classical optimization 
methods, heuristic algorithms have not yet been 
subjected to comprehensive theoretical analysis [2–4]. 
Their characteristics can be evaluated and compared 
experimentally using sets of test functions [5, 6]. Different 
algorithms show the best characteristics on different test 
functions, which leads to the problem of choosing the most 
appropriate algorithm for an OF with certain properties. 

Methods have recently been developed for automatic 
analysis of the properties of the OF relief (exploratory 
landscape analysis, ELA) and machine learning to select 
an algorithm and/or adjust its parameters according to the 
results of such an analysis [7, 8]. However, the complete 
solution of this problem is still far away.

In radio engineering and other sciences, of 
considerable interest are multi-objective optimization 
problems [9]. As a rule, it is impossible to simultaneously 
optimize all quality indices (QI) because improvement 
of some of the QIs leads to impairment of others. 
Therefore, the goal of multi-objective optimization is to 
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find a set of Pareto-optimal solutions [1, 10]. A widely 
used way to search for them is to solve the problem
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where x is the coordinate vector in the search space, D is 
the set (defined by inequality and/or equality restrictions) 
of allowable values of x in the search space, Qj(x) are 
functions that describe the QIs, M is the number of QIs, 
and x* is the coordinate vector of the optimal solution. 
Without loss of generality, the problem of minimizing all 
the QIs was considered here.

In problem (1), all the QIs, except Qk, are restricted 
from above, while Qk is minimized. If the QIs are 
competing, then the minimum of Qk is at the point x* at 
which the other QIs reach the restrictions Qjt imposed on 
them. This makes it possible to obtain solutions in which 
all the coordinates in the space of QIs, except the kth, are 
fixed at the objective values of Qjt. It is known that this 
method can find any Pareto-optimal solution [10].

One of the methods to solve problem (1) is based on 
minimizing a scalar OF of the form
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where Qj(x) and Qjt are the current and objective values 
of the jth QI, respectively; and Wj is the weighting factor 
of the jth QI [2, 10]. If it is necessary to normalize the 
deviation of a QI from the objective value to reduce the 
terms in (2) to the same range of values, the exponent 
qj = 1. If such a normalization is unnecessary, then the 
exponent qk  =  0. At x  >  0, max(x, 0)  =  x; otherwise, 
max(x, 0) = 0.

The objective value Qkt of the QI being minimized is 
given sufficiently low, e.g., equal to its minimum possible 
value, and the weighting factor is taken to be Wk = 1. The 
terms containing the other QIs are penalties for violation 
of restrictions imposed on them. The weighting factors 
at them should meet the conditions Wj >> 1 for such QI 
to be fixed near the objective values.

Problems of multi-objective optimization of the 
characteristics of analog and digital filters by the scalar 
OF method were considered earlier [11, 12].

The relief of OF (2) can be complex. If the objective 
values of the QIs to be fixed are exceeded, the OF value 
rapidly increases; for this reason, the relief has areas 
hereinafter referred to as “walls.” In the available works 
aimed at analyzing the properties of OFs and selecting 
optimization algorithms, such OF properties were not 
studied. In view of the importance of multi-objective 
optimization, this gap needs to be addressed.

Another approach to solving problem (1) is based on 
nonlinear programming methods, in which restrictions 
on QIs are not imposed as penalty terms, but included 
in the Lagrange function; as applied to problem (1), this 
function has the form

M j ≠,  ,

L Q g

g Q Q i M j

k i i
i

M

i j jt

( , ) ( ) ,

( ) , ,..., ,

x λ x x

x x

= + ( )

( ) = − = − =
=

−

∑ λ
1

1

1 1 11,...,

,

k

D∈x

� (3)

where λi are the Lagrange multipliers. The minimum 
of function (3) is found, in particular, using sequential 
quadratic programming (SQP) algorithm [3], provided 
that the Lagrange function L(x, λ) has continuous second 
derivatives.

Population algorithms, which comprise an 
alternative to the scalar OF method, can give an 
approximation of the Pareto set containing a given 
number of elements within one search cycle [1]. The 
main advantage of these methods is their significantly 
accelerated search. However, there are difficulties in 
obtaining solutions with given values of some of the 
QIs. Moreover, with increasing number of QIs, the 
quality of the found approximations of the Pareto set 
may decrease. For example, by comparing the results 
of solving the problem of multi-objective optimization 
of the characteristics of electric filters using population 
algorithms and the scalar OF method, it was shown that, 
at the number of QIs M = 2, population algorithms are 
advantageous not only in terms of search speed, but also 
in quality of the solutions obtained. At the same time, at 
M = 3, they are inferior in quality to the approximation 
of the Pareto set to the scalar function method [13]. The 
prospects for the use of population algorithms for multi-
objective optimization require further research and will 
not be considered here.

The purpose of the present work was to study the 
characteristics of various optimization algorithms of 
searching for the global minimum of scalar OF of 
type (2) whose relief has walls, as well as to develop 
recommendations for choosing algorithms for solving 
such problems. In addition, we studied the possibilities 
of applying methods for solving problem (1) that do not 
use penalty terms.

METHODS OF INVESTIGATION

First of all, let us define OFs with necessary 
properties, i.e., with walls. The first two OFs are defined 
analytically:
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In these expressions, ND is the dimension of the 
search space. In both functions, the QI being minimized 
is calculated as the sum of the coordinates of the vector x. 
In function f1(x), the QI being fixed is defined as the sum 
of the squares of the coordinates; while in function f2(x), 
it is represented by the known Rastrigin test function [5]. 
The parameters a1 and a2 are the objective values of the 
QI being fixed, while the parameters W1 and W2 are the 
weighting factors of the penalty terms.

Figure 1 presents the graphs of the OFs f1(x) and 
f2(x) at ND = 2, a1 = 1, a2 = 2, W1 = W2 = 100, −2 ≤ xi ≤ 2, 
and i = 1, 2. In the graphs, the values of the functions are 
bounded from above at the levels f1(x) = 1 and f2(x) = 2. 
The reliefs of both functions contain pronounced 
walls. The number of local extrema of f2(x) increases 
exponentially with increasing dimension ND.

Let us further define two OFs that are encountered 
in the problems of multi-objective optimization of the 
characteristics of analog electric filter [11]. The first of 
them has the form
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Here, DHp is the passband attenuation ripple (dB), 
Hs is the stopband attenuation (dB), DHt is the excess of 
the frequency response over the permissible level in the 
transition band between the passband and the stopband 
(dimensionless), and DTd is the relative passband delay 
time ripple (%). The coordinate vector x consists of the 
real and imaginary coordinates of the poles and zeros 
of the transfer function (one each from the complex 
conjugate pair). Methods to calculate the listed QIs were 
described in the literature [11, 14].

OF f3(x) (6) is obtained in the problem of minimizing 
the DTd QI under restrictions on the other three QIs. Since 
the Hs value should be maximized, this QI is subtracted 
from its objective value. In the experiments below, the 
values of the following quantities were given: the number 
of filter poles, NP = 6; the number of zeros, NZ = 0; the 
objective values of QI, DHpt = 0.5, Hst = 40, DHtt = 1, and 
DTdt = 10; and the weighting factors, WHp = 20, WHs = 500, 
and WHt = 1000. The search space in all the coordinates 
was bounded by the inequalities −3 ≤ xi ≤ −0.01.

The last OF has the form
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Here, Tss is the transient-process time; Tfr is the 
rise time of the transient front; and Um is the maximum 
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Fig. 1. Graphs of the test functions (a) f1(x) and (b) f2(x) at the dimension ND = 2
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value (surge) of the transient voltage. The time intervals 
and the voltage are measured on normalized scales and 
are expressed in dimensionless quantities. The other QIs 
are defined above.

OF f4(x) (7) is obtained in the problem of minimizing 
the transition-process time Tss under restrictions on 
the front rise time Tfr, the maximum transient voltage 
Um, the stopband attenuation Hs, and the excess of 
the frequency response in the transition band DHt. In 
the experiments, the values of the following quantities 
were given: number of poles, NP = 6; number of zeros, 
NZ = 0; objective values of QIs, Tsst = 0.1, Tfrt = 0.5, 
Umt = 1.1, Hst = 40, and DHtt = 0; the weighting factors, 
WTfr = 100, WUm = 10, WHs = 100, and WHt = 1000. 
The boundaries of the search space are the same as 
for f3(x). Information on the methods to calculate the 
QIs is available in the literature [11, 14].

The graphs of these OFs are not presented here since 
solving the problems of optimizing OFs (6) and (7) at 
ND  =  2, i.e., for filters of the second order, is of no 
interest; moreover, at higher dimensions, the graphical 
representation is complicated.

Let us further list the studied optimization algorithms. 
All of them were implemented in the MATLAB software 
environment1. For each algorithm, an abbreviated 
notation is introduced, as presented below:

•	 SS (Step Search)—a simple coordinate search 
algorithm with the step size bound from above [2, 3].

•	 PS—patternsearch(..) function from the Global 
Optimization Toolbox in MATLAB. An improved 
coordinate search with the possibility of transition 
between the domains of attraction of local 
extrema [2].

•	 MS—fminsearch(..) function from the Optimization 
Toolbox. A search for a minimum of an OF using the 
Nelder–Mead simplex algorithm [2].

•	 SA—simulannealbnd(..) function from the Global 
Optimization Toolbox. A search for the global 
minimum of an OF using the simulated annealing 
algorithm [1, 2].

•	 GA—ga(..) function from the Global Optimization 
Toolbox. A search for the global minimum of an OF 
using a genetic algorithm [1, 2].

•	 PSO—particleswarm(..) function from the 
Global Optimization Toolbox. A search for the 
global minimum of an OF by the particle swarm 
optimization algorithm [1, 2].

•	 CS—a function realizing the cuckoo search 
algorithm for searching for the global minimum 
of an OF [1]. The function is not included in the 
MATLAB toolboxes and is written based on a 
published example [15].

•	 MC1—fmincon(..) function that is included in 
the Optimization Toolbox and realizes the SQP 
1  http://www.mathworks.com. Accessed December 14, 2021.

algorithm. In this case, an OF is minimized with 
penalties (4)–(7), and restrictions are imposed only 
on the coordinates of the search space.

•	 MC2—fmincon(..) function from the Optimization 
Toolbox, too. But in this case, a selected QI is 
minimized, and functions used to calculate the fixed 
QIs are introduced in the arguments of fmincon(..) as 
inequality restrictions.
Each algorithm was run NT  =  100 times for the 

functions f1(x) and f2(x) and NT = 40 times for f3(x) and 
f4(x). The starting points in the search space for each 
run of the non-population algorithms were given using 
the lhsdesign(NT, ND) function, which returns a Latin 
hypercube sample matrix; random starting positions of 
agents of the population algorithms GA, PSO, and CS 
were given by their realizing functions. The algorithms 
included in the MATLAB toolbox were set by default. 
The end condition of the search was the absence of 
changes in the function being minimized that exceeded 
the DGFmin level, which was one of the settings and, as 
noted above, was set by default. For the CS algorithm, 
the population size Npop  =  20 and the number of 
generations maxgenN = 400 were given. The search was 
ended after all the generations had been sought.

RESULTS AND DISCUSSION

Table 1 presents the results of the experiments 
with the OF f1(x). The first and second subcolumns of 
each column show the minimum and maximum values, 
respectively, of the found solutions over 100 search 
cycles at the dimensions ND  =  2, 4, and 8. The third 
subcolumns present the numbers Neval of calculations 
of the OF in the course of the search. The top row 
shows the analytically found exact values of the global 
minimum.

Additional information on the operation of the 
algorithms is provided by the maps of the positions of the 
starting points of the search cycles, which are connected 
by straight line segments to the corresponding end 
points; examples are given in Fig. 2. For the population 
algorithms, in particular, for PSO, only the positions of 
the found optimal solutions are shown, since each agent 
in the population has its own starting position.

The non-population algorithms SS, PS, MS, and 
MC1 move toward a point of minimum until they 
reach a wall. Their results over the search cycles have a 
significant scatter. The population algorithms PSO and 
CS turned out to be significantly better. Since most of the 
solutions they found are in the immediate vicinity of the 
global minimum, it does not take many iterations of the 
search to get a good result. The best results were shown 
by the MC2 algorithm. This is understandable because 
f1(x) has no local minima. In this case, both the QI to be 
minimized and the restricted QI are described by twice 

http://www.mathworks.com
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differentiable functions. Under such conditions, the 
SQP algorithm quickly and accurately finds the optimal 
solution in each run at all the dimensions of the search 
space.

Table 2 presents the results of the experiments 
with the OF f2(x). The estimated values of the global 
minimum in the top row were obtained by an additional 
search within the restricted neighborhoods of the best of 
the found solutions. Figure 3 gives the examples of the 
position maps of the starting and end points of search. 
Figure 4 presents the examples of the histograms of the 
found optimal solutions at ND = 8.

The algorithms SS, MS, and MC1 end the search at 
the local minimum closest to the starting point (Fig. 3). 
To obtain the global minimum or at least a minimum 
close to it, a significant number of search cycles should 
be performed. At the same time, the algorithms SA, GA, 
PSO, and CS end all the search cycles either at the global 
minimum or at two local minimums closest to it. This 
was to be expected, since these algorithms are intended 
for global optimization.

At the dimension ND  =  8, the exact value of the 
global minimum is only found using the PSO algorithm. 
However, as the histogram in Fig. 4 shows, this value 
is found once in a hundred attempts. At the same time, 

the CS algorithm repeatedly ended the search near the 
global minimum, while, in the other cases, it hit local 
minima closest to the global one.

The results of the MC2 algorithm should be noted. 
Among them are many values that are significantly 
smaller than the global minimum of f2(x) (Fig. 4). A 
check shows that these solutions violate the restrictions 
imposed on the fixed QI. Thus, although both QIs are 
described by twice differentiable functions in the 
vicinity of any of its local minima, the MC2 algorithm 
turned out to be unsuitable for optimizing this function.

Let us turn to the results of optimizing the OF 
f3(x) (6) and f4(x) (7). These problems belong to 
Black Box Optimization problems, for which neither 
the exact solutions nor any information on the 
properties of the OF is known before the start of the 
search. Tables 3 and 4 present the best solutions for 
each algorithm, respectively. Significant violations 
of the restrictions imposed on the OF are marked 
in italics. The best results are highlighted in bold. 
Figures 5 and 6 show the examples of the histograms 
of the OF values for the found solutions. For the MC2 
algorithm, the scale of the horizontal axis presents 
the values of the QI being minimized, rather than the 
scalar OF.

Table 1. Results of the experiments with the OF f1(x)

Algorithm

ND = 2, min(f1) = −1.414 ND = 4, min(f1) = −2.000 ND = 8, min(f1) = −2.828

min(f1) max(f1) Neval min(f1) max(f1) Neval min(f1) max(f1) Neval

SS −1.414 −1.017 84844 −2.000 −1.396 320100 −2.717 −2.327 1280948

PS −1.414 −1.126 14503 −1.998 −1.540 30330 −2.780 −1.833 70876

MS −1.414 −1.052 23623 −2.000 0.053 60650 −2.806 1.010 147627

SA −1.414 −1.386 192039 −1.998 −1.873 381223 −2.782 −2.340 752386

GA −1.414 −1.372 631387 −2.000 −1.946 1456566 −2.827 −2.821 5748740

PSO −1.414 −1.412 187060 −2.000 −1.996 541760 −2.828 −2.821 1508800

CS −1.414 −1.413 1677900 −2.000 −1.984 1677900 −2.825 −2.793 1677900

MC1 −1.414 −0.756 29340 −1.999 −0.542 72418 −2.828 −0.440 100494

MC2 −1.414 −1.414 3465 −2.000 −2.000 7201 −2.828 −2.828 16211
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Fig. 2. Starting points of search and the positions of solutions (blue) for f1(x) at ND = 2
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Table 2. Results of the experiments with the OF f2(x)

Algorithm
ND = 2, min(f2) = −2.000 ND = 4, min(f2) = −2.040 ND = 8, min(f2) = −2.097

min(f2) max(f2) Neval min(f2) max(f2) Neval min(f2) max(f2) Neval

SS −2.000 560.2 24313 −2.016 1036.3 94421 86.4 1892.6 376213

PS −1.999 −0.475 15173 −2.034 −0.545 34606 −1.559 −0.690 87668

MS −2.000 564.0 10383 −1.998 1042.0 20267 −2.082 1896.4 88995

SA −2.000 −0.924 190021 −2.039 1.765 455552 −2.089 372.8 819478

GA −2.000 −1.269 535649 −2.040 −0.633 1400355 −1.593 −0.895 6594051

PSO −2.000 −1.277 208501 −2.040 −0.647 593081 −2.097 0.304 1603361

CS −2.000 −1.279 31960 −2.040 −1.404 31960 −2.091 −1.566 31960

MC1 −1.998 278.1 15445 −2.036 942.1 20946 −0.609 1608.6 36057

MC2 −2.848 1.897 130078 −5.696 5.696 329294 −11.386 5.701 577958
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Fig. 3. Starting points of search and the positions of solutions (blue) for f2(x) at ND = 2

Table 3. Results of the experiments with the OF f3(x)

Algorithm min(OF) DHp, dB Hs, dB DHt DTd % Neval

SS 5.070 0.500 40.040 0.000 60.699 332488

PS 5.615 0.510 40.000 0.000 62.103 46699

MS 6.708 0.500 40.000 0.000 77.084 33887

SA 2.552 0.500 40.009 0.000 35.515 280390

GA 2.253 0.500 40.881 0.000 32.530 3009450

PSO 2.127 0.500 40.000 0.000 31.266 1211160

CS 62.124 1.752 39.559 0.000 75.268 1278400

MC1 2.913 0.500 40.533 0.000 39.128 40771

MC2 31.126 0.500 40.000 0.000 31.126 39828

The problem of optimizing f3(x) consisted 
in minimizing the DTd QI under the restrictions 
DHp  ≤  0.5  dB, Hs  ≥  40  dB, and DHt  ≤  0. These 
restrictions are satisfied by all the algorithms, 
except CS. The minimum value of DTd was found by 
the MC2 method, which also outperformed the other 
algorithms in number of solutions coinciding with the 
best one (Fig. 5). But at the same time, among the 
results of the search by this method, there are several 

solutions violating the restrictions. Because of this, 
the DTd QI turned out to be less than the correct 
optimal value.

The problem of optimizing f4(x) consisted in 
minimizing the Tss QI under the restrictions Hs ≥ 40 dB, 
DHt  ≤  0, Tfr  ≤  0.5, and Umt  ≤  1.1. The restrictions 
are only satisfied with acceptable accuracy by the 
population algorithms GA and PSO (Table 4), for which 
the best results of searching for the minimum of Tss are 
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Fig. 4. Histograms of the found solutions for f2(x) at ND = 8
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Fig. 5. Histograms of the found solutions for f3(x)
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Table 4. Results of the experiments with the OF f4(x)

Algorithm min(OF) Hs, dB DHt Tfr Tss Um Neval

SS 38.283 33.821 0.000 0.528 1.681 1.235 75904

PS 11.888 40.247 0.000 0.500 1.273 1.116 41477

MS 16.378 40.000 0.000 0.500 1.569 1.269 30440

SA 12.747 40.003 0.000 0.500 1.324 1.151 227064

GA 11.287 40.001 0.000 0.500 1.229 1.100 1512630

PSO 11.301 40.000 0.000 0.500 1.229 1.101 548280

CS 20.796 35.942 0.000 0.500 1.165 1.080 1278400

MC1 33.355 40.267 0.000 0.551 2.391 1.132 15107

MC2 1.480 43.663 0.000 1.044 1.480 1.006 19902
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the same. According to the statistics of the results, the 
two algorithms are also equivalent (Fig. 6), and in the 
required number of computational operations, the PSO 
algorithm turned out to be noticeably better than GA. 
The MC2 algorithm proved to be completely unsuitable 
for solving this problem.

CONCLUSIONS

The obtained results showed that the search for 
Pareto-optimal solutions by solving problem (1) can 
be performed by different methods, which should 
be selected based on the properties of the functions 
contained in (1). Since, out of the considered 
algorithms, the best solutions for all functions were 
only obtained by the heuristic algorithm PSO, this can 
be recommended as the main method to solve problems 
of type (1).

For the functions f1(x) and f3(x), the nonlinear 
programming algorithm MC2 turned out to be applicable. 
For these functions, this method not only finds the 
optimal solution in most of the search cycles, but also 
requires much less computation resources for the search 
than the heuristic algorithms that optimize scalar OF (2). 
However, for the functions f2(x) and f4(x), the MC2 
algorithm proved to be unsuitable. For the function f2(x), 
this can be explained in terms of its multimodality. For 
the function f4(x), there is still no explanation because 
nothing can be said about the properties of functions 
contained in (7).

One of the approaches for assessing the applicability 
of nonlinear programming methods of the MC2 type 
to solving problem (1) is to preliminarily study the 
properties of the functions that determine the values of 
the QIs contained in (1). However, this approach also 
entails certain problems, for example, in terms of how to 
check the multimodality of an OF. The commonly used 
approach is based on multiple searches for local extrema 
from uniformly distributed starting points. In this case, it is 
recommended to use the Nelder–Mead algorithm (referred 
to as MS above) [7]. However, if the relief of the OF has 
“valleys,” i.e., areas in which the rate of change in the 
function in one direction is much lower than in others, then 
the local search algorithms will stop at various points of 
the bottom of the valley, which are not local minima [10]. 
Methods for detecting walls, valleys, and plateaus in the 
relief of an OF, as well as those that search for extrema in 
the presence of such areas, are still poorly developed.

Thus, the issue of assessing the applicability of 
MC2-type nonlinear programming algorithms to solving 
problem (1) requires additional research. In the meantime, 
the following course of action can be proposed. First, it is 
necessary to run a certain number of search iterations for 
a solution to problem (1) using the MC2 method. If most 
of the solutions are close to each other and the imposed 
restrictions are not violated, then the best of these 
solutions can be taken as the desired optimum. Moreover, 
if the solutions have a significant scatter and the majority 
have violated restrictions, then one should proceed to the 
optimization of scalar OF (2) using the PSO algorithm.

Fig. 6. Histograms of the found solutions for f4(x)
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