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Abstract

Objectives. The theory and methods of spline approximation of plane curves given by a sequence of points are
currently undergoing rapid development. Despite fundamental differences between used splines and those
considered in the theory and its applications, results published earlier demonstrate the possibility of using spline
approximation when designing routes of linear structures. The main difference here consists in the impossibility of
assuming in advance the number of spline elements when designing the routes. Here, in contrast to widely use
polynomial splines, the repeating element is the link “segment of a straight line + arc of a circle” or “segment of a
straight line + arc of a clothoid + arc of a circle + arc of a clothoid.” Previously, a two-stage scheme consisting of
a determination of the number of elements of the desired spline and subsequent optimization of its parameters
was proposed. Although an algorithm for solving the problem in relation to the design of a longitudinal profile has
been implemented and published, this is not suitable for designing a route plan, since, unlike a profile, a route
plan is generally a multivalued function. The present paper aims to generalize the algorithm for the case of spline
approximation of multivalued functions making allowance for the design features of the routes of linear structures.
Methods. At the first stage, a novel mathematical model is developed to apply the dynamic programming method
taking into account the constraints on the desired spline parameters. At the second stage, nonlinear programming
is used. In this case, it is possible to analytically calculate the derivatives of the objective function with respect to the
spline parameters in the absence of its analytical expression through these parameters.

Results. An algorithm developed for approximating multivalued functions given by a discrete series of points using a
spline consisting of arcs of circles conjugated by line segments for solving the first stage of the problem is presented.
An additional nonlinear programming algorithm was also used to optimize the parameters of the resulting spline
as an initial approximation. However, in the present paper, the first stage is considered only, since the complex
algorithm of the second stage and its justification require separate consideration.

Conclusions. The presented two-stage spline approximation scheme with an unknown number of spline elements
is also suitable for approximating multivalued functions given by a sequence of points on a plane, in particular, for
designing a route plan for linear structures.
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Pesiome

Llenu. B HacTosLwee Bpems HabnopaeTcs OypHOe pa3BuTrE TEOPUM M METOA0B CrJalH-annpoKCMaLmMmn MNIOCKNX
KPWBbIX, 3aAaHHbIX MOCNELOBATENbHOCTLIO ToYek. [TpoBeaeHHbIE MCCNEeA0BaHWS, NEPBbIE Pe3ynbTaTbl KOTOPbIX
Obln onybnrMKoBaHbl paHee, Nokasann BO3MOXHOCTb NMPUMEHEHUS CrlaH-annpoKCUMaLmMmM B NMPOEKTUPOBaHUM
TPacc NNHENHBbIX COOPYXEHWIA, HECMOTPS Ha MPUHLUMNMANbHBIE OTANYMS UCMOMb3YEMbIX CMIAaMHOB OT paccMma-
TpYBaeMbIX B TEOPUN N ee NPUNOXeEHUSX. [NaBHOE OTMYME COCTOUT B TOM, HTO B MPOEKTUPOBAHUM TPACC HENb3S
3apaHee cYUTaTb M3BECTHBLIM YACIO 3NIEMEHTOB crnnariHa. Kpome Toro, B OTAMYME OT MNONYYMBLUMX LUMPOKOE pac-
NPOCTPaHeHMe NOSIMHOMMASbHBIX CMIAHOB, MOBTOPSIOLLMMCS 3/IEMEHTOM SIBIIETCS CBA3KA «OTPE30K NPsSMOit +
+ [yra OKpYy>XHOCTU» U «OTPEe30K NPSIMON + ayra Knotouapl + Ayra OKpy>XHOCTU + ayra knotouabl». PaHee Obina
npenJsioxeHa AByxaTanHas cxema: OrnpefeneHne Yucna 91EMEHTOB MCKOMOrO crnariHa, 3aTeM — onTMMu3aLms ero
napameTpoB. ANIrOPUTM PeLLEHMS 3a4a41 NMPUMEHUTENBHO K MPOEKTUPOBAHWIO NPOAOBHOIO NPOdUa peanM3oBaH
1 ony6nvkoBaH. Ho 9TOT anropntm HENPUroAeH AN NPOEKTUPOBAHWSA MaHa TPacchl, T.K. MaaH Tpacckl, B OTIMYmne
oT Npodus, B 06LLEM Clyvyae SBASETCS MHOro3Ha4yHo pyHkumei. Llenb paboTbl — 0606LWNTbL anropuTM Ha ciy4dai
cniarH-annpokCcuMaLm MHOrO3HauYHbIX GYHKLMIA C y4eTOM 0COOEHHOCTEN MPOEKTUPOBAHUS TPACC JIMHENHBIX CO-
OPYXEHUIA.

MeTopabl. Ha nepBoM aTane Ucnosib3yeTcs HoBas MateMaTudeckas Moaesb, No3BoNsoLwas NPUMEHNTL METOS, AM-
HaMW4YeCKOro NporpaMMmMpPOBaHUS C YH4ETOM OrpaHMyeHUi Ha napameTpbl MICKOMOro crnanHa. Ha BTopom atane
NCNONb3YeTCs HENMHENHOE NporpaMmMmnpoBaHne. MNMpu 3ToM yaaeTcs BbIMUCAATb aHANIMTUYECKM MPOU3BOAHbIE Lie-
NeBOW GyHKLMM NO NapameTpam crnnariHa npu oTCYyTCTBUN ee aHaNUTUYECKOro BbIPaXXEeHUS Yeped 3TU napamMeTpsl.
PesynbTaTtbl. Pa3paboTaHbl anropmMtM annpoKCUMaLLMM MHOMO3HAYHbIX PYHKLMIA, 3a0aHHbIX OUCKPETHLIM PSAAOM
TOYEK, CMIANHOM, COCTOSILLMM 13 Ayr OKPYXXHOCTEN, ConpsiraeMblx OTPe3KkaMu NpsiMbIX, AJ1si PELLEHNs 3a4a4M Ha
nepBoOM aTane 1 anropuTM HEIMHENHOTO NPOrPaMMUPOBaHMS A8 ONTUMU3aUMM NapamMeTpoB MNoMy4eHHOro cnnam-
Ha Kak Ha4yasibHOro NpubnuxeHus. B HacTosILLeln cTaTbe pacCMaTPUBAETCS TONbKO NEPBbIA 3Tar, T.K. CNOXHbIM an-
rOpvTM BTOPOro 3Tana 1 ero 060CHoBaHWe TPeBYIOT OTAEIbHONO PACCMOTPEHNS.

BeiBoAbl. [1ByxaTanHas cxema crnianH-annpokcumMaLMm npu HEM3BECTHOM YUCTIE 3/IEMEHTOB CrnyaiHa NpurogHa u
A5t annpoKCMaLUmMmn MHOTO3HauYHbIX PYHKLMIA, 3a4aHHbIX MOCNEA0BATENBHOCTLIO TOYEK HA MIOCKOCTU, B YACTHOCTHU
D151 NPOEKTMPOBAHMWS MiaHa TPacC IMHEHbIX COOPYXEHUIA.

KnioueBble cnoBa: Tpacca, nnaH, NnpoaosibHbIA NPOodUnb, CNianH, AMHAMMYECKOE NPporpaMmMmnpoBaHme, Lenesas

dYHKUMS, orpaHnyeHns

e Moctynuna: 27.01.2022 » Aopa6oTaHa: 26.05.2022 ¢ MpuHaTa kK ony6nukoBaHuio: 24.06.2022

Ana uutuposaHua: Kapnos [.A., CtpydeHkoB B.W. CnnaliH-annpokcMmauusi MHOFO3HauYHbIX (YHKLMIA B NpPOEK-
TUPOBaHUK TPaCC NNHENHbIX COoopyXxeHuin. Russ. Technol. J. 2022;10(4):65-74. https://doi.org/10.32362/2500-
316X-2022-10-4-65-74

Mpo3payHocTb hMHAHCOBOM AeATENIbHOCTU: ABTOPbI HE UMEIDT PUHAHCOBOI 3aMHTEPECOBAHHOCTN B MPEACTABNEH-
HbIX MaTepuanax uam MeToaax.

ABTOpPbI 3a1BASAOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.
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INTRODUCTION

The present paper comprises a continuation of
the work [1] in which the problem of approximating
functions given by a sequence of points on a plane
by the spline of special form was considered. There,
arcs of circles conjugated by line segments comprised
spline elements. The problem was analyzed in relation
to the design of the longitudinal profile of linear
structures (railways, highways, pipelines for various
purposes, etc.). Since a route comprises a plane curve
whose plan is its projection on a plane XOY, while the
longitudinal profile is the function Z(s), where s is the
arc length from a given origin in the plan; then, the
longitudinal profile comprises a flat curve representing
a graph of a single-valued function. The algorithm for
spline approximation discussed in [1] is based on this
circumstance. Here, the route plan may or may not be
the graph of a single-valued function. However, the
earlier implemented algorithms turn out to be generally
unsuitable for multivalued functions. Thus, other
mathematical models and methods are required.

The theory of splines, which appeared in the late
1960s, had been initially considered as a problem
of interpolating given points (nodes) of some curve
consisting of elements of the same given kind, which
would have a common ordinate—and, as a rule, a
common tangent—at the spline nodes [2].

From this point on, only the abscissas of nodes needed
to be recorded, and researchers became to solve spline
approximation problems instead of using interpolation.
Then, spline approximation problems began to be
solved when varying not only the ordinates but also the
abscissas of nodes. In this case, the number of spline
elements was taken as known. The most commonly used
splines were polynomial and, in particular, cubic [3].

Spline approximation problems arising when
designing railway and highway routes and other linear
structures differ in that the repeating spline elements
comprise groups of elements. When designing the
route plan, it is the “straight line + clothoid + circle +
+ clothoid”, etc. Finding the number of spline elements
is a separate and rather complex task, as is optimizing the
spline parameters that determine its position on a plane.

As noted by Professor Hao Pu in [4], China currently
has more than 120 000 km of operating railways, with
about 20 000 km of existing railways to be reconstructed
by 2025. It is noted that Chinese design engineers are
very interested in the emergence of an automatic and
accurate method for designing route plans.

When designing the Baikal-Amur Mainline (BAM)
in the USSR in the 1970s, the first longitudinal profile
design programs were used in all three BESM-4
computers available at the design institutes of the Ministry
of Transport Construction in Moscow, Leningrad, and

Novosibirsk [5]. Due to the extremely limited technical
capabilities of the best computer available at that
time (4 096 random access memory cells and 40 000
floating-point operations per second), the absence of
visualization tools, and difficulties in input of initial data
(punched cards), no significant cost reduction in design
was achieved. However, the results obtained at various
sections of the BAM proved the efficiency of applying
mathematical optimization methods, which was above
all due to the improved quality of design solutions [5].
In the 1980s, the domestic system of computer-aided
design (CAD) of new railways, which used design
programs but without visualization of initial data and
results, was developed on ES EVM (the Unified System
of Electronic Computers) computers. Consequently,
imported systems having such tools and programs but
without using optimization methods became widespread
during the transition to personal computers. Since then,
despite the establishment of a myth that optimization is
unnecessary due to designers obtaining optimal solutions
interactively, authors such as Hao Pu have shown that
this is far from being the case.

At present, the problem of optimizing spline
parameters is solved interactively in existing CAD
systems'-23-43 with the designer specifying information
that uniquely determines the desired design spline.
This is essentially the method of element selection in
graphics mode with visual control: the computer is used
in place of template and ruler without the application
of mathematical optimization methods. Therefore, the
quality of the results depends on the experience, intuition,
and motivation of the designer. Moreover, such “screen
crawling” is a rather labor-intensive process. This would
seem to justify research on formalizing the problem in
mathematical models and applying mathematically
correct optimization algorithms. However, in its place,
various heuristic algorithms have been proposed both in
Russia and abroad. The given points are connected by
line segments to obtain a broken line (first-order spline)
that must be replaced by a spline with circles conjugated
by lines or clothoids and lines at the smallest (in a certain
sense) deviation from the original spline (broken line). At
the same time, technical constraints have been imposed
on the desired spline parameters to ensure normal
operation of the designed new or reconstructed structure.

! Bentley Rail Track. URL: https://www.bentley.com/-med
ia/1EA2B937CB5B42BEASEAE802620C0BA3.ashx. Accessed
January 15, 2022.

2 CARD/1. URL: http://card-1.ru/. Accessed January 15,
2022 (in Russ.).

3 Autodesk. URL: https://www.architect-design.ru/autodesk/
autocad/. Accessed January 15, 2022 (in Russ.).

4 Topomatic Robur. URL:  http://www.topomatic.ru/.
Accessed January 15, 2022 (in Russ.).

3 Credo-Dialog. URL: https://credo-dialogue.ru/. Accessed
January 15, 2022 (in Russ.).
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The first studies on designing a route plan considered
curvature plots [6—8] used as a basis to determine straight
inserts. However, this idea has not been developed
further due to the extreme difficulty of obtaining, even
visually, a straight insert of 30-35 m length on the
disrupted route; this is especially true when the curves
of the same sign are conjugated in complex cases of
surveying points every 20 m.

Next, software developers moved towards the
construction of angle diagrams [9], i.e., graphs of the
angle of the current polyline element with the OX axis
against the distance (polyline length) from the starting
point. In such graphs, the straight line, circle, and clothoid
correspond to the horizontal line, sloping line, and
second-degree parabola in the route plan, respectively.
The task then becomes to determine element boundaries
and perform spline calculations.

Here, the recent work on automated designing the
route plan of reconstructed railways by Hao Pu et al.
[4] should be noted. The paper deals with the analysis
of studies in this field concluding that existing methods
do not allow the problem to be solved automatically but
are only capable of generating a local optimal solution
with allowance for several constraints. In addition, it is
noted in [4] that automatic determination of the number
of curves, lengths of circles, clothoids, and straight
inserts is a complex task. For this reason, it is proposed
to find the number of spline elements (circular curves
with no allowance for the presence of clothoids) at
the first stage using a heuristic algorithm with further
result optimization using genetic algorithms [10—19].
According to [4], after preliminarily approximating the
boundaries of the straight line by the angle diagram, a
heuristic algorithm called a “swing iteration” is proposed
for reclassifying point location and determining the
position of straight lines more precisely, along with
subsequent circular and transitive curves. In a swing
iteration, the segment boundary of a geometric element
is repeatedly changed from left to right, then right to left,
and finally stabilized. It follows from [4] that genetic
algorithms have allowed significant improvements to
the first stage result while solving the real problem.

An apparently more reliable approach utilizes
the same two-stage scheme for solving the problem,
but with mathematically correct algorithms: dynamic
programming algorithms for determining the number
of elements and their parameter approximates at the
first stage and nonlinear programming algorithms
for optimizing the obtained spline parameters at the
second stage. This scheme has been successfully used
in designing the longitudinal profiles of railways and
highways. When designing railways, the spline in the
form of a broken line was originally used [20]; when
moving to the design of highways, a spline consisting of
vertical circular curves conjugated by straight lines was

used [1]. For designing the longitudinal profiles of roads,
a spline having elements of second-degree parabolas has
also been used [21].

The problem of spline approximation of multivalued
functions is relevant for computer-aided design of a route
plan, which in general comprises a graph of precisely
this function.

Spline becomes a multivalued function not only in
the presence of curves having tangent line angles with
the OX axis greater than 90° but also in the case of
several curves of the same sign having small rotation
angles, but at a large total angle of rotation. In general, it
is also necessary to consider curves with rotation angles
greater than 180°.

In this paper, we present dynamic programming
features for solving this problem. First, we consider
spline consisting of arcs of circles conjugated by straight
lines as a multivalued function. This is a separate
problem, since variable curvature curves that include
clothoids are not used when designing route plans of
some linear structures, for example, pipeline trenches of
different purposes. This much simpler problem requires
significantly less computation at the first stage than
when using a spline with clothoids. In addition, when
using clothoids of short lengths and large circular curve
radii their insertion results in insignificant shifts of the
resulting spline with circles, since deviation p of the
circle of radius R from the angle side to which it fits with
a clothoid of length / into may be calculated by the well-
known formula p = I?/(24R). Thus, p < 0.08 m is satisfied
at /=30 mand R =500 m.

Therefore, a spline with circles may be considered
generally as the initial approximation for the second
stage. In any case, the number of curves is not further
changed; the first stage may be repeated at a known
number of elements to find a spline with clothoids.

This drastically reduces the number of calculations
with the use of dynamic programming, since it is not
necessary to consider replacing two curves by one at a
known number of elements.

Optimizing parameters of the spline as a multivalued
function using nonlinear programming is a complex
problem with solution to be discussed in a separate

paper.

PROBLEM STATEMENT
AND FORMALIZATION

For a given sequence of points on a plane (Fig. 1),
we shall obtain a spline consisting of arcs of circles
conjugated by line segments, whose parameters satisfy
the constraint system, while the sum of deviation squares
of given points from the spline is minimal. If there are
areas where it is necessary to obtain small deviations,
the weighted sum of squares can be used instead of the
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simple solution. In addition, the constraints in the form
of inequalities can be imposed on deviations at separate
points. Unfortunately, it is impossible to fix the point
within the discrete search at this stage.

A

Fig. 1. Starting points and approximating spline

The starting point A and end point B are set along
with their directions and not changed during the spline
search. These may or may not coincide with origins.

The deviations are calculated for normal to spline. If
the number of points is 7 and their deviations from the

n

spline are h, (i = 1, 2, ..., n), then the sum Zhlz must be
minimal, subject to the following constralinlts on spline
parameters: the lengths of line segments and arcs of
circles must not be less than the specified values, while
the radii of circular curves must be within the specified
limits.

At the first stage, it would be convenient to consider
the elements in the following order: curve + straight line,
etc. If the number of these links is £, the line lengths are

szl, the curve lengths are L‘J:., and the radii are R, then

the constraints on spline parameters may be formalized
by the following system of inequalities:

1 1
B2l (1)
L£2 L5, 2)
Rpin SIRI SR G=1,2, ... k), 3)

The radii of the curves are positive when moving
counterclockwise and negative otherwise. All limit

values LS., LS. R .»and R are given.

Clearly, it would be sufficient to find the coordinates
of each curve origin and the tangent direction in it. The
first curve origin is considered given. This may be point A
(Fig. 1) or another point on the tangent drawn from point A.
However, if the initial line length is considered unknown at
this stage, then the problem becomes much more complex,
as can be seen below. However, it is possible to avoid

significant complications by specifying several possible

points for the first curve origin from which the initial line
length may be consequently derived. The same procedure
may be carried out with the end point along with the
specification of several starting and ending directions.

The basic concept in dynamic programming—
“system state”—may be defined as an aggregate of the
starting point of the next curve and the tangent direction
to the curve at this point. To that end, normals to the
given polyline should be constructed at starting points.
These comprise a line connecting a given point to the
center of a circle drawn through three adjacent points if
they are not on the same line, or a normal to this line
(Fig. 2). However, it is not necessary to construct
normals at the beginning and end of the route in sections
of length L ;. = L;l]in + LS ;, from the starting and end
points, respectively, since the desired points of curve
origins cannot in any case be located in these sections
due to constraints (1)—(3).

Since the initial direction is given, moving from the
beginning to the end at each point, the direction of the
external normal—and, respectively, the tangent—may
be determined so that they constitute the right-hand
triple. The angles of external normals with the OX axis
(yj in Fig. 2) are precalculated. The tangent direction
is determined by angle (yj — n/2) with the OX axis.
The starting point coordinates along with the tangent
direction determine one “system state” on each normal.
Since the curve origin does not necessarily coincide with
the starting point, several points on each normal with
step A (Fig. 2) and several possible tangent directions
at each point on each normal (the angle side which the
circle fits into) may be set.

Y 4

\<Vrot.an .

rot.ang (i+1)

»

o X

Fig. 2. Defining the normals and sets of “system states”
\Y is the rotation angle vertex

rot.ang.

In this way, a set of possible states may be
constructed. The process of obtaining the spline is
reduced to a dynamic programming problem: construct
a path (sequence of states) to transfer the “system” from
the initial state to the final one with minimum costs
(at the minimum of the objective function). Sequential
states should be selected with allowance for constraints
(1)-(3) and constraints on displacements at separate
points, if given.
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CONSTRUCTING A SPLINE USING
THE DYNAMIC PROGRAMMING METHOD

When constructing a path from the initial to the
final point in accordance with R. Bellman’s optimality
principle [22], options for achieving the same state by
different paths allowed by constraints are considered and
compared; eventually, one option with a smaller value of
the objective function is left in each state.

Implementing this rule requires setting some more
parameters: the already mentioned discretes by normals
A and angles ¢, as well as their numbers per normal,;
maxrix is the maximum allowed deviation of the spline
from surveying points, while L is the maximum length
of the link “circle + straight line,” i.e., the maximum
distance (by initial broken line) between two subsequent
states (curve origins). Typically, L, = (3-4)L, ;. but it
may be greater in the presence of long curves. Due to the
simplicity of the algorithm (in terms of low computational
resources), it is reasonable to set L, “with a margin” and
limit the link length, if L _, already contains two curves
with different sign, since these curves cannot be replaced
by a single link with admissible deviations. The maxrix
value, which specifies the search range on a plane with
respect to the original polyline, should also be set with
care when analyzing specific data. If small values are set,
there may be no solution in the corresponding area due
to constraints. Setting large maxrix values does not affect
the search accuracy but results in the increased amount of
computation that is not very significant in this case.

First stage of the algorithm

For the starting point A (if there are several starting
points given, then for each of them sequentially), the
normals in the range from L ; to L . (points C and D
in Fig. 3) are considered. For every point on every
normal and every tangent direction at this point, the
corresponding vertex of the angle of rotation at the
intersection with the initial direction is determined.
These comprise the points V,; and V, in Fig. 3. Some
other directions are shown as dashed lines.

Fig. 3. Option construction at the first stage
of the algorithm

The distances from each angle vertex to the starting
point and to the point on the normal may be obtained as
follows. For the first vertex, the distances are AV, and V,C,
respectively. If AV, >V,C, —Lﬂlin, then this option of
selecting starting points is rejected. Otherwise, point C; on
the angle side V,C is found such that AV, =V, C,

The distance CC, is the length of the straight line in
the desired link “circle + straight line.”

AV, = Rig(a/2),

where a is the rotation angle, i.e., the difference between
the angles of the angle sides and the OX axis. From here,
value R, followed by the center of the circle using point A
and the normal to the initial direction, may be obtained.
Since a search of the radius values is not required, the
starting point of the curve has also been fixed, along with
several options to be used if finding it is not possible.
When constraint (3) (on radius) or constraint (2) (on curve
length) is not satisfied, the next state may be considered.
Here, it should be noted that if the constraints are violated,
many states could be excluded from consideration.

If constraints (1)—(3) are satisfied, then distances 4,
to the arc of the circle (before going beyond the arc) and
then distances to the straight insert for remaining points
are found. Should 4, > maxrix or the constraints on
displacement of some points be violated, the remaining
distances are not calculated, while this option of locating
starting points of the curve is rejected. Otherwise, the
objective function value is calculated and memorized
along with all data required to subsequently restore the
spline (radius, coordinates of arc end C,, etc.).

Fig. 4. Calculation at angles of rotation greater than nt

Ifrotation angle o> m (Fig. 4), no particular difficulties
arise. In this case, AV = R|tg(7t - OL/2)| = R|tg(0c/2)|,
CC, is straight insert, while the arc length L = Ra. Hence,
checking constraints (1)—(3) is performed in the same
way as for small rotation angles. In the theoretically
possible case of o = & (Fig. 5), there is no angle vortex,
the radius is half the distance between parallel lines; the
arc length L = nR. Straight insert CC, as well as values R
and L may be unacceptable. Deviations from survey
points are calculated in the same way as above.
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Fig. 5. Calculation when parallel lines

It should be noted that there is no option comparison
and their rejection by the objective function value at the
first stage.

General stage of the algorithm

At next stages, all normals ranging from 2L _. to S
is L_.., where S is the length of the original polyline
are considered. For each such normal, the possibility
of constructing the link “circle + straight line” with the
starting point belonging to the preceding normal that is
atleast L, ; and at most L . away from the considered
normal is analyzed. The difference from the first stage of
the algorithm is that now there are many options of the
left angle side instead of one for each point and direction
on the considered normal. All acceptable options of
transition to the considered state from previous states
are compared by the objective function and the best one
memorized. The corresponding state of the constructed
link origin is also memorized. In other words, transitions
not only unacceptable by constraints but also ineffective
are rejected. It may turn out that two admissible paths
consisting of different number of links result in the same
state. This means that dynamic programming considers
paths with different number of elements to eventually
determine the number of elements for the approximating
spline, having previously been unknown.

At the last stage, the same actions are performed for
the final state or several such states, if given. As a result,
the comparison yields the objective function value for
the best option of the path. The path, i.e., the desired
spline, is defined by the usual reversal from the found
final best state along the chain of links used in dynamic
programming, since the corresponding curve origin has
been memorized for each state [20, 21].

REDUCING THE SEARCH OF OPTIONS

The considered problem and the dynamic
programming algorithm may be characterized by the
presence of constraints not only avoiding an unnecessary
complication of the problem but also allowing the
search of options to be significantly reduced. When
the attempt to construct the link “arc circle + line
segment” is unsuccessful, many transitions to another

state (displacements along the right normal or rotations
of the tangent, Fig. 3) are obviously inefficient due to
the constraints remaining violated during this transition.
For example, the minimum radius constraint is violated
when fitting into the angle. Obviously, with the rotation
angle a unchanged, the tangent 7 (the distance from the
tangent point to the angle vertex) cannot be reduced
since R = T/tg(o/2). Accordingly, displacements along
the right normal reducing 7 are unacceptable.

Fig. 6. Rejecting transitions
when constraints are violated

In Fig. 6, T = AV. Transitions to the new state from
point C (displacements along the normal and rotations
of the tangent) unnecessary R < R_. are shown dashed
(e.g., to the left of point C). If straight insert C,C is less
than the acceptable one, the constraints on radii and
curve lengths are satisfied; then, conversely, only dashed
displacements and rotations result in its increase. However,
due to the reduction in tangent AV and curve length, the
“margin” for these parameters may be insufficient.

At any arrangement of normals and different rotation
angles, each violated constraint provides information
concerning which states cannot be efficiently transferred
to on the given normal. Although this analysis slightly
complicates the algorithm for spline construction, it is
fully compensated by reducing the search of options.

CONCLUSIONS

The method for approximating the sequence of
points on a plane by a spline with circles and straight
lines described in this paper may not only be used
in designing routes of linear structures but also in
processing generally any type of data when constructing
paths. As for its practical application in designing routes
of linear structures, the question remains open and is the
lack of interested users.

In Russia, the number of design works may increase
in future due to new railway and highway construction
and reconstruction projects. This may result in the
growing interest of relevant authorities in reducing
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construction costs by optimizing design solutions, thus
giving relevance to developing new design algorithms
and programs.

As was the case during the Soviet period, the
development of such design approaches requires
theoretical and experimental research by specialized
scientific departments. The first Russian developments
in optimization of design solutions were significantly
ahead of their foreign equivalents. However, foreign
authors even now propose mainly various heuristic

algorithms without using modern mathematical
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