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Abstract
Objectives. The theory and methods of spline approximation of plane curves given by a sequence of points are 
currently undergoing rapid development. Despite fundamental differences between used splines and those 
considered in the theory and its applications, results published earlier demonstrate the possibility of using spline 
approximation when designing routes of linear structures. The main difference here consists in the impossibility of 
assuming in advance the number of spline elements when designing the routes. Here, in contrast to widely use 
polynomial splines, the repeating element is the link “segment of a straight line + arc of a circle” or “segment of a 
straight line + arc of a clothoid + arc of a circle + arc of a clothoid.” Previously, a two-stage scheme consisting of 
a determination of the number of elements of the desired spline and subsequent optimization of its parameters 
was proposed. Although an algorithm for solving the problem in relation to the design of a longitudinal profile has 
been implemented and published, this is not suitable for designing a route plan, since, unlike a profile, a route 
plan is generally a multivalued function. The present paper aims to generalize the algorithm for the case of spline 
approximation of multivalued functions making allowance for the design features of the routes of linear structures.
Methods. At the first stage, a novel mathematical model is developed to apply the dynamic programming method 
taking into account the constraints on the desired spline parameters. At the second stage, nonlinear programming 
is used. In this case, it is possible to analytically calculate the derivatives of the objective function with respect to the 
spline parameters in the absence of its analytical expression through these parameters.
Results. An algorithm developed for approximating multivalued functions given by a discrete series of points using a 
spline consisting of arcs of circles conjugated by line segments for solving the first stage of the problem is presented. 
An additional nonlinear programming algorithm was also used to optimize the parameters of the resulting spline 
as an initial approximation. However, in the present paper, the first stage is considered only, since the complex 
algorithm of the second stage and its justification require separate consideration.
Conclusions. The presented two-stage spline approximation scheme with an unknown number of spline elements 
is also suitable for approximating multivalued functions given by a sequence of points on a plane, in particular, for 
designing a route plan for linear structures.
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в проектировании трасс линейных сооружений
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Резюме
Цели. В настоящее время наблюдается бурное развитие теории и методов сплайн-аппроксимации плоских 
кривых, заданных последовательностью точек. Проведенные исследования, первые результаты которых 
были опубликованы ранее, показали возможность применения сплайн-аппроксимации в проектировании 
трасс линейных сооружений, несмотря на принципиальные отличия используемых сплайнов от рассма-
триваемых в теории и ее приложениях. Главное отличие состоит в том, что в проектировании трасс нельзя 
заранее считать известным число элементов сплайна. Кроме того, в отличие от получивших широкое рас-
пространение полиномиальных сплайнов, повторяющимся элементом является связка «отрезок прямой +  
+ дуга окружности» или «отрезок прямой + дуга клотоиды + дуга окружности + дуга клотоиды». Ранее была 
предложена двухэтапная схема: определение числа элементов искомого сплайна, затем – оптимизация его 
параметров. Алгоритм решения задачи применительно к проектированию продольного профиля реализован 
и опубликован. Но этот алгоритм непригоден для проектирования плана трассы, т.к. план трассы, в отличие 
от профиля, в общем случае является многозначной функцией. Цель работы – обобщить алгоритм на случай 
сплайн-аппроксимации многозначных функций с учетом особенностей проектирования трасс линейных со-
оружений.
Методы. На первом этапе используется новая математическая модель, позволяющая применить метод ди-
намического программирования с учетом ограничений на параметры искомого сплайна. На втором этапе 
используется нелинейное программирование. При этом удается вычислять аналитически производные це-
левой функции по параметрам сплайна при отсутствии ее аналитического выражения через эти параметры.
Результаты. Разработаны алгоритм аппроксимации многозначных функций, заданных дискретным рядом 
точек, сплайном, состоящим из дуг окружностей, сопрягаемых отрезками прямых, для решения задачи на 
первом этапе и алгоритм нелинейного программирования для оптимизации параметров полученного сплай-
на как начального приближения. В настоящей статье рассматривается только первый этап, т.к. сложный ал-
горитм второго этапа и его обоснование требуют отдельного рассмотрения.
Выводы. Двухэтапная схема сплайн-аппроксимации при неизвестном числе элементов сплайна пригодна и 
для аппроксимации многозначных функций, заданных последовательностью точек на плоскости, в частности 
для проектирования плана трасс линейных сооружений.

Ключевые слова: трасса, план, продольный профиль, сплайн, динамическое программирование, целевая 
функция, ограничения
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INTRODUCTION

The present paper comprises a continuation of 
the work [1] in which the problem of approximating 
functions given by a sequence of points on a plane 
by the spline of special form was considered. There, 
arcs of circles conjugated by line segments comprised 
spline elements. The problem was analyzed in relation 
to the design of the longitudinal profile of linear 
structures (railways, highways, pipelines for various 
purposes,  etc.). Since a route comprises a plane curve 
whose plan is its projection on a plane XOY, while the 
longitudinal profile is the function Z(s), where s is the 
arc length from a given origin in the plan; then, the 
longitudinal profile comprises a flat curve representing 
a graph of a single-valued function. The algorithm for 
spline approximation discussed in [1] is based on this 
circumstance. Here, the route plan may or may not be 
the graph of a single-valued function. However, the 
earlier implemented algorithms turn out to be generally 
unsuitable for multivalued functions. Thus, other 
mathematical models and methods are required.

The theory of splines, which appeared in the late 
1960s, had been initially considered as a problem 
of interpolating given points (nodes) of some curve 
consisting of elements of the same given kind, which 
would have a common ordinate—and, as a rule, a 
common tangent—at the spline nodes [2].

From this point on, only the abscissas of nodes needed 
to be recorded, and researchers became to solve spline 
approximation problems instead of using interpolation. 
Then, spline approximation problems began to be 
solved when varying not only the ordinates but also the 
abscissas of nodes. In this case, the number of spline 
elements was taken as known. The most commonly used 
splines were polynomial and, in particular, cubic [3].

Spline approximation problems arising when 
designing railway and highway routes and other linear 
structures differ in that the repeating spline elements 
comprise groups of elements. When designing the 
route plan, it is the “straight line + clothoid + circle +  
+ clothoid”, etc. Finding the number of spline elements 
is a separate and rather complex task, as is optimizing the 
spline parameters that determine its position on a plane. 

As noted by Professor Hao Pu in [4], China currently 
has more than 120 000 km of operating railways, with 
about 20 000 km of existing railways to be reconstructed 
by 2025. It is noted that Chinese design engineers are 
very interested in the emergence of an automatic and 
accurate method for designing route plans.

When designing the Baikal-Amur Mainline (BAM) 
in the USSR in the 1970s, the first longitudinal profile 
design programs were used in all three BESM-4 
computers available at the design institutes of the Ministry 
of Transport Construction in Moscow, Leningrad, and 

Novosibirsk [5]. Due to the extremely limited technical 
capabilities of the best computer available at that 
time (4  096 random access memory cells and 40  000 
floating-point operations per second), the absence of 
visualization tools, and difficulties in input of initial data 
(punched cards), no significant cost reduction in design 
was achieved. However, the results obtained at various 
sections of the BAM proved the efficiency of applying 
mathematical optimization methods, which was above 
all due to the improved quality of design solutions [5]. 
In the 1980s, the domestic system of computer-aided 
design (CAD) of new railways, which used design 
programs but without visualization of initial data and 
results, was developed on ES EVM (the Unified System 
of Electronic Computers) computers. Consequently, 
imported systems having such tools and programs but 
without using optimization methods became widespread 
during the transition to personal computers. Since then, 
despite the establishment of a myth that optimization is 
unnecessary due to designers obtaining optimal solutions 
interactively, authors such as Hao Pu have shown that 
this is far from being the case.

At present, the problem of optimizing spline 
parameters is solved interactively in existing CAD 
systems1, 2, 3, 4, 5, with the designer specifying information 
that uniquely determines the desired design spline. 
This is essentially the method of element selection in 
graphics mode with visual control: the computer is used 
in place of template and ruler without the application 
of mathematical optimization methods. Therefore, the 
quality of the results depends on the experience, intuition, 
and motivation of the designer. Moreover, such “screen 
crawling” is a rather labor-intensive process. This would 
seem to justify research on formalizing the problem in 
mathematical models and applying mathematically 
correct optimization algorithms. However, in its place, 
various heuristic algorithms have been proposed both in 
Russia and abroad. The given points are connected by 
line segments to obtain a broken line (first-order spline) 
that must be replaced by a spline with circles conjugated 
by lines or clothoids and lines at the smallest (in a certain 
sense) deviation from the original spline (broken line). At 
the same time, technical constraints have been imposed 
on the desired spline parameters to ensure normal 
operation of the designed new or reconstructed structure.

1  Bentley Rail Track. URL: https://www.bentley.com/-med
ia/1EA2B937CB5B42BEA5EAE802620C0BA3.ashx. Accessed 
January 15, 2022.

2  CARD/1. URL: http://card-1.ru/. Accessed January 15, 
2022 (in Russ.).

3  Autodesk. URL: https://www.architect-design.ru/autodesk/
autocad/. Accessed January 15, 2022 (in Russ.).

4  Тоpomatic Robur. URL: http://www.topomatic.ru/. 
Accessed January 15, 2022 (in Russ.).

5  Credo-Dialog. URL: https://credo-dialogue.ru/. Accessed 
January 15, 2022 (in Russ.).

https://www.bentley.com/-media/1EA2B937CB5B42BEA5EAE802620C0BA3.ashx
https://www.bentley.com/-media/1EA2B937CB5B42BEA5EAE802620C0BA3.ashx
http://card-1.ru/
https://www.architect-design.ru/autodesk/autocad/
https://www.architect-design.ru/autodesk/autocad/
http://www.topomatic.ru/
https://credo-dialogue.ru/
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The first studies on designing a route plan considered 
curvature plots [6–8] used as a basis to determine straight 
inserts. However, this idea has not been developed 
further due to the extreme difficulty of obtaining, even 
visually, a straight insert of 30–35 m length on the 
disrupted route; this is especially true when the curves 
of the same sign are conjugated in complex cases of 
surveying points every 20 m.

Next, software developers moved towards the 
construction of angle diagrams [9], i.e., graphs of the 
angle of the current polyline element with the ОХ axis 
against the distance (polyline length) from the starting 
point. In such graphs, the straight line, circle, and clothoid 
correspond to the horizontal line, sloping line, and 
second-degree parabola in the route plan, respectively. 
The task then becomes to determine element boundaries 
and perform spline calculations.

Here, the recent work on automated designing the 
route plan of reconstructed railways by Hao Pu et al. 
[4] should be noted. The paper deals with the analysis 
of studies in this field concluding that existing methods 
do not allow the problem to be solved automatically but 
are only capable of generating a local optimal solution 
with allowance for several constraints. In addition, it is 
noted in [4] that automatic determination of the number 
of curves, lengths of circles, clothoids, and straight 
inserts is a complex task. For this reason, it is proposed 
to find the number of spline elements (circular curves 
with no allowance for the presence of clothoids) at 
the first stage using a heuristic algorithm with further 
result optimization using genetic algorithms [10–19]. 
According to [4], after preliminarily approximating the 
boundaries of the straight line by the angle diagram, a 
heuristic algorithm called a “swing iteration” is proposed 
for reclassifying point location and determining the 
position of straight lines more precisely, along with 
subsequent circular and transitive curves. In a swing 
iteration, the segment boundary of a geometric element 
is repeatedly changed from left to right, then right to left, 
and finally stabilized. It follows from [4] that genetic 
algorithms have allowed significant improvements to 
the first stage result while solving the real problem.

An apparently more reliable approach utilizes 
the same two-stage scheme for solving the problem, 
but with mathematically correct algorithms: dynamic 
programming algorithms for determining the number 
of elements and their parameter approximates at the 
first stage and nonlinear programming algorithms 
for optimizing the obtained spline parameters at the 
second stage. This scheme has been successfully used 
in designing the longitudinal profiles of railways and 
highways. When designing railways, the spline in the 
form of a broken line was originally used [20]; when 
moving to the design of highways, a spline consisting of 
vertical circular curves conjugated by straight lines was 

used [1]. For designing the longitudinal profiles of roads, 
a spline having elements of second-degree parabolas has 
also been used [21].

The problem of spline approximation of multivalued 
functions is relevant for computer-aided design of a route 
plan, which in general comprises a graph of precisely 
this function.

Spline becomes a multivalued function not only in 
the presence of curves having tangent line angles with 
the ОХ axis greater than 90° but also in the case of 
several curves of the same sign having small rotation 
angles, but at a large total angle of rotation. In general, it 
is also necessary to consider curves with rotation angles 
greater than 180°.

In this paper, we present dynamic programming 
features for solving this problem. First, we consider 
spline consisting of arcs of circles conjugated by straight 
lines as a multivalued function. This is a separate 
problem, since variable curvature curves that include 
clothoids are not used when designing route plans of 
some linear structures, for example, pipeline trenches of 
different purposes. This much simpler problem requires 
significantly less computation at the first stage than 
when using a spline with clothoids. In addition, when 
using clothoids of short lengths and large circular curve 
radii their insertion results in insignificant shifts of the 
resulting spline with circles, since deviation p of the 
circle of radius R from the angle side to which it fits with 
a clothoid of length l into may be calculated by the well-
known formula p = l2/(24R). Thus, p < 0.08 m is satisfied 
at l = 30 m and R = 500 m.

Therefore, a spline with circles may be considered 
generally as the initial approximation for the second 
stage. In any case, the number of curves is not further 
changed; the first stage may be repeated at a known 
number of elements to find a spline with clothoids.

This drastically reduces the number of calculations 
with the use of dynamic programming, since it is not 
necessary to consider replacing two curves by one at a 
known number of elements.

Optimizing parameters of the spline as a multivalued 
function using nonlinear programming is a complex 
problem with solution to be discussed in a separate 
paper.

PROBLEM STATEMENT  
AND FORMALIZATION

For a given sequence of points on a plane (Fig. 1), 
we shall obtain a spline consisting of arcs of circles 
conjugated by line segments, whose parameters satisfy 
the constraint system, while the sum of deviation squares 
of given points from the spline is minimal. If there are 
areas where it is necessary to obtain small deviations, 
the weighted sum of squares can be used instead of the 
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simple solution. In addition, the constraints in the form 
of inequalities can be imposed on deviations at separate 
points. Unfortunately, it is impossible to fix the point 
within the discrete search at this stage.

A

hi

B

Fig. 1. Starting points and approximating spline

The starting point A and end point B are set along 
with their directions and not changed during the spline 
search. These may or may not coincide with origins.

The deviations are calculated for normal to spline. If 
the number of points is n and their deviations from the 

spline are hi (i = 1, 2, ..., n), then the sum hi
i

n
2

1=
∑ must be 

minimal, subject to the following constraints on spline 
parameters: the lengths of line segments and arcs of 
circles must not be less than the specified values, while 
the radii of circular curves must be within the specified 
limits.

At the first stage, it would be convenient to consider 
the elements in the following order: curve + straight line, 
etc. If the number of these links is k, the line lengths are 
Lj
sl ,  the curve lengths are Lj

c ,  and the radii are Rj, then 
the constraints on spline parameters may be formalized 
by the following system of inequalities:

	  L Lj
sl sl≥ min , � (1)

	 L Lj
c c≥ min , � (2)

	 Rmin ≤ |Rj| ≤ Rmax (j = 1, 2, … k).� (3)

The radii of the curves are positive when moving 
counterclockwise and negative otherwise. All limit 
values L Lmin min, ,sl c

 Rmin, and Rmax are given.
Clearly, it would be sufficient to find the coordinates 

of each curve origin and the tangent direction in it. The 
first curve origin is considered given. This may be point A 
(Fig. 1) or another point on the tangent drawn from point A. 
However, if the initial line length is considered unknown at 
this stage, then the problem becomes much more complex, 
as can be seen below. However, it is possible to avoid 
significant complications by specifying several possible 

points for the first curve origin from which the initial line 
length may be consequently derived. The same procedure 
may be carried out with the end point along with the 
specification of several starting and ending directions.

The basic concept in dynamic programming—
“system state”—may be defined as an aggregate of the 
starting point of the next curve and the tangent direction 
to the curve at this point. To that end, normals to the 
given polyline should be constructed at starting points. 
These comprise a line connecting a given point to the 
center of a circle drawn through three adjacent points if 
they are not on the same line, or a normal to this line 
(Fig. 2). However, it is not necessary to construct 
normals at the beginning and end of the route in sections 
of length L L Lmin min min= +sl c  from the starting and end 
points, respectively, since the desired points of curve 
origins cannot in any case be located in these sections 
due to constraints (1)–(3).

Since the initial direction is given, moving from the 
beginning to the end at each point, the direction of the 
external normal—and, respectively, the tangent—may 
be determined so that they constitute the right-hand 
triple. The angles of external normals with the OX axis 
(γj in Fig. 2) are precalculated. The tangent direction 
is determined by angle (γj  −  π/2) with the OX axis. 
The starting point coordinates along with the tangent 
direction determine one “system state” on each normal. 
Since the curve origin does not necessarily coincide with 
the starting point, several points on each normal with 
step Δ (Fig. 2) and several possible tangent directions 
at each point on each normal (the angle side which the 
circle fits into) may be set.

Y

XO

C

D
∆

γj

Vrot.ang (i+1)

Vrot.ang.

Fig. 2. Defining the normals and sets of “system states” 
Vrot.ang. is the rotation angle vertex

In this way, a set of possible states may be 
constructed. The process of obtaining the spline is 
reduced to a dynamic programming problem: construct 
a path (sequence of states) to transfer the “system” from 
the initial state to the final one with minimum costs 
(at the minimum of the objective function). Sequential 
states should be selected with allowance for constraints 
(1)–(3) and constraints on displacements at separate 
points, if given.
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CONSTRUCTING A SPLINE USING  
THE DYNAMIC PROGRAMMING METHOD

When constructing a path from the initial to the 
final point in accordance with R. Bellman’s optimality 
principle [22], options for achieving the same state by 
different paths allowed by constraints are considered and 
compared; eventually, one option with a smaller value of 
the objective function is left in each state.

Implementing this rule requires setting some more 
parameters: the already mentioned discretes by normals 
Δ and angles φ, as well as their numbers per normal; 
maxrix is the maximum allowed deviation of the spline 
from surveying points, while Lmax is the maximum length 
of the link “circle + straight line,” i.e., the maximum 
distance (by initial broken line) between two subsequent 
states (curve origins). Typically, Lmax = (3–4)Lmin, but it 
may be greater in the presence of long curves. Due to the 
simplicity of the algorithm (in terms of low computational 
resources), it is reasonable to set Lmax “with a margin” and 
limit the link length, if Lmax already contains two curves 
with different sign, since these curves cannot be replaced 
by a single link with admissible deviations. The maxrix 
value, which specifies the search range on a plane with 
respect to the original polyline, should also be set with 
care when analyzing specific data. If small values are set, 
there may be no solution in the corresponding area due 
to constraints. Setting large maxrix values does not affect 
the search accuracy but results in the increased amount of 
computation that is not very significant in this case.

First stage of the algorithm

For the starting point A (if there are several starting 
points given, then for each of them sequentially), the 
normals in the range from Lmin to Lmax (points C and D 
in Fig. 3) are considered. For every point on every 
normal and every tangent direction at this point, the 
corresponding vertex of the angle of rotation at the 
intersection with the initial direction is determined. 
These comprise the points V1 and V2 in Fig. 3. Some 
other directions are shown as dashed lines. 

A

V1

V2

C1

C

D

Fig. 3. Option construction at the first stage  
of the algorithm

The distances from each angle vertex to the starting 
point and to the point on the normal may be obtained as 
follows. For the first vertex, the distances are AV1 and V1C, 
respectively. If AV V sl

1 1 1> −C Lmin ,  then this option of 
selecting starting points is rejected. Otherwise, point C1 on 
the angle side V1C is found such that AV1 = V1C1.The distance CC1 is the length of the straight line in 
the desired link “circle + straight line.”

AV tg1 2= ( )R α ,

where α is the rotation angle, i.e., the difference between 
the angles of the angle sides and the OX axis. From here, 
value R, followed by the center of the circle using point A 
and the normal to the initial direction, may be obtained. 
Since a search of the radius values is not required, the 
starting point of the curve has also been fixed, along with 
several options to be used if finding it is not possible. 
When constraint (3) (on radius) or constraint (2) (on curve 
length) is not satisfied, the next state may be considered. 
Here, it should be noted that if the constraints are violated, 
many states could be excluded from consideration. 

If constraints (1)–(3) are satisfied, then distances hi 
to the arc of the circle (before going beyond the arc) and 
then distances to the straight insert for remaining points 
are found. Should hi  >  maxrix or the constraints on 
displacement of some points be violated, the remaining 
distances are not calculated, while this option of locating 
starting points of the curve is rejected. Otherwise, the 
objective function value is calculated and memorized 
along with all data required to subsequently restore the 
spline (radius, coordinates of arc end C1, etc.).

C

V

A O

C1

α

Fig. 4. Calculation at angles of rotation greater than π

If rotation angle α > π (Fig. 4), no particular difficulties 
arise. In this case, AV tg tg= −( ) = ( )R Rπ α α2 2 ,AV tg tg= −( ) = ( )R Rπ α α2 2 ,  
CC1 is straight insert, while the arc length L = Rα. Hence, 
checking constraints (1)–(3) is performed in the same 
way as for small rotation angles. In the theoretically 
possible case of α = π (Fig. 5), there is no angle vortex, 
the radius is half the distance between parallel lines; the 
arc length L = πR. Straight insert CC1 as well as values R 
and L may be unacceptable. Deviations from survey 
points are calculated in the same way as above.
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C C1

O

A

Fig. 5. Calculation when parallel lines

It should be noted that there is no option comparison 
and their rejection by the objective function value at the 
first stage. 

General stage of the algorithm

At next stages, all normals ranging from 2Lmin to S 
is Lmin, where S is the length of the original polyline 
are considered. For each such normal, the possibility 
of constructing the link “circle + straight line” with the 
starting point belonging to the preceding normal that is 
at least Lmin and at most Lmax away from the considered 
normal is analyzed. The difference from the first stage of 
the algorithm is that now there are many options of the 
left angle side instead of one for each point and direction 
on the considered normal. All acceptable options of 
transition to the considered state from previous states 
are compared by the objective function and the best one 
memorized. The corresponding state of the constructed 
link origin is also memorized. In other words, transitions 
not only unacceptable by constraints but also ineffective 
are rejected. It may turn out that two admissible paths 
consisting of different number of links result in the same 
state. This means that dynamic programming considers 
paths with different number of elements to eventually 
determine the number of elements for the approximating 
spline, having previously been unknown.

At the last stage, the same actions are performed for 
the final state or several such states, if given. As a result, 
the comparison yields the objective function value for 
the best option of the path. The path, i.e., the desired 
spline, is defined by the usual reversal from the found 
final best state along the chain of links used in dynamic 
programming, since the corresponding curve origin has 
been memorized for each state [20, 21].

REDUCING THE SEARCH OF OPTIONS

The considered problem and the dynamic 
programming algorithm may be characterized by the 
presence of constraints not only avoiding an unnecessary 
complication of the problem but also allowing the 
search of options to be significantly reduced. When 
the attempt to construct the link “arc circle + line 
segment” is unsuccessful, many transitions to another 

state (displacements along the right normal or rotations 
of the tangent, Fig. 3) are obviously inefficient due to 
the constraints remaining violated during this transition. 
For example, the minimum radius constraint is violated 
when fitting into the angle. Obviously, with the rotation 
angle α unchanged, the tangent T (the distance from the 
tangent point to the angle vertex) cannot be reduced 
since R  =  T/tg(α/2). Accordingly, displacements along 
the right normal reducing T are unacceptable. 

A

V

α

φ

C1

C

∆

Fig. 6. Rejecting transitions  
when constraints are violated

In Fig. 6, T = AV. Transitions to the new state from 
point C (displacements along the normal and rotations 
of the tangent) unnecessary R < Rmin are shown dashed 
(e.g., to the left of point C). If straight insert C1C is less 
than the acceptable one, the constraints on radii and 
curve lengths are satisfied; then, conversely, only dashed 
displacements and rotations result in its increase. However, 
due to the reduction in tangent AV and curve length, the 
“margin” for these parameters may be insufficient. 

At any arrangement of normals and different rotation 
angles, each violated constraint provides information 
concerning which states cannot be efficiently transferred 
to on the given normal. Although this analysis slightly 
complicates the algorithm for spline construction, it is 
fully compensated by reducing the search of options.

CONCLUSIONS

The method for approximating the sequence of 
points on a plane by a spline with circles and straight 
lines described in this paper may not only be used 
in designing routes of linear structures but also in 
processing generally any type of data when constructing 
paths. As for its practical application in designing routes 
of linear structures, the question remains open and is the 
lack of interested users.

In Russia, the number of design works may increase 
in future due to new railway and highway construction 
and reconstruction projects. This may result in the 
growing interest of relevant authorities in reducing 
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construction costs by optimizing design solutions, thus 
giving relevance to developing new design algorithms 
and programs.

As was the case during the Soviet period, the 
development of such design approaches requires 
theoretical and experimental research by specialized 
scientific departments. The first Russian developments 
in optimization of design solutions were significantly 
ahead of their foreign equivalents. However, foreign 
authors even now propose mainly various heuristic 
algorithms without using modern mathematical 

achievements. The present paper and its sequel dealing 
with the optimization of splines with arcs of circles 
and straight lines for the approximation of multivalued 
functions using nonlinear programming paves the way 
for a solution of the more complex and important—
in theoretical and practical terms—problem of 
approximating multivalued functions using composite 
splines with clothoids. This is a relevant topic for 
further research in this field.
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