Russian Technological Journal. 2022;10(3):7-23 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMsbl. Uudopmaruka. [Ipodiaembl nHGopManMOHHONH 0€3011aCHOCTH

UDC 004.02+004.4+004.891+004.91
https.//doi.org/10.32362/2500-316X-2022-10-3-7-23 (@)Y |

RESEARCH ARTICLE

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova @,
Liliya A. Demidova,
Petr N. Sovetov

MIREA — Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: andrianova@mirea.ru

Abstract

Objectives. The active digitalization of the Russian economy has resulted in a shortage of IT personnel;
this is particularly true of software developers. Thus, the Russian university education is faced with the task
of undertaking the large-scale professional training of such specialists. The purpose of the present work
was to support the large-scale (“massive”) professional training of programmers through the creation and
implementation of Digital Teaching Assistant (DTA) computer system, allowing teachers working under stressful
conditions to concentrate on functions that require a creative approach, namely, drawing up and discussing
nontrivial programming tasks.

Methods. Pedagogical methods for the personification of learning processes were employed. The general
approach was based on satisfying the constraints for creating programming task generators. Tasks were generated
using methods for generating random programs and data based on probabilistic context-sensitive grammars,
along with translation methods using an abstract syntax tree. The declarative representation of the task generator
was performed using functional programming methods, allowing the creation of a domain-specific language using
combinators. The solutions were checked using automated testing methods.

Results. The developed structure of the proposed DTA system was presented. Considering the automatic
generation of programming tasks, classes of practical tasks that reflected the modern specifics of software
development were identified along with examples of their generation. A diagram of the programming task
generator was provided along with a description of the procedure for automatically checking the solutions of the
tasks using a set of program tests generated by the task generator. The presented procedure for comprehensive
assessment of a student’s solution included verification of the correctness of the result and plagiarism checks in
the case of tasks created manually by the teacher; this also involved validation for compliance with coding style
standards, along with metrics for assessing program complexity, etc. The means for recording of statistics of
academic achievement of students was characterized along with the interface of interaction between students
and teachers.

Conclusions. The experience of introducing a DTA into the learning process of teaching programming in Python
confirmed the possibility of personifying the learning process in the form of individual learning paths.

Keywords: massive programming learning, Digital Teaching Assistant, task generation, individual learning path,
student motivation

© E.G. Andrianova, L.A. Demidova, P.N. Sovetov, 2022

https://doi.org/10.32362/2500-316X-2022-10-3-7-23
mailto:andrianova@mirea.ru

Pedagogical design of a digital teaching assistant Elena G. Andrianova,
in massive professional training for the digital economy Liliya A. Demidova, Petr N. Sovetov

e Submitted: 29.12.2021 e Revised: 03.03.2022 ¢ Accepted: 11.05.2022

For citation: Andrianova E.G., Demidova L.A., Sovetov P.N. Pedagogical design of a digital teaching assistant in massive
professional training for the digital economy. Russ. Technol. J. 2022;10(3):7-23. https://doi.org/10.32362/2500-
316X-2022-10-3-7-23

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

HAYYHAA CTATbHA

«n(ppoBoi aCCUCTEHT NMpenoaaBarTe/isH
B MacCOBOM NpPodecCHOHAJIBLHOM 00y4YeHUH
1151 (U (PPOBO IKOHOMHUKHU

E.l'. AuppunaHosa @,
J1.A. Jemupoea,
N.H. CoBeToB

MUWP3A — Poccumickuni TexHosorn4eckmni yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp An19 nepenvicku, e-mail: andrianova@mirea.ru

Pe3iome

LUenun. AktneHas umdposmnsaums poCCUNCKON 9KOHOMUKN Bbi3blBaeT aedpuumt UT-kagpos 1, B NEPBYIO o4epenb,
neduunT pa3paboTynkoB NPOrpamMmMHoro obecnedyeHuns. ns pocCUNCKOro YyHMBEPCUTETCKOro 06pa3oBaHns akTy-
aNbHOM IBNSIeTCS 3a/a4a MacCoBOM NPOdeCcCnoHanbHOM NOAroTOBKN TakuxX crneunanmucToB. Lienb paboTbl — NOBbI-
LIeHMe KayecTBa MacCoBOW NpodeCcCroHanbHOM NOANrOTOBKM NPOrpaMMUCTOB NYTEM CO34aHUS, BHEAPEHUS U pas-
BUTUS PYHKLIMOHANTbHOCTU KOMMbIOTEPHOM cucTembl «Lingposoit accucteHT npenoaasatens» (LLAM). 3ta cuctema
No3BONISIET NMpPenogaBaTesio B YCIIOBUSX MACCOBOro 0Oy4eHUs CKOHLEHTPUPOBATLCA Ha DYHKUMSX, TPeOyoLmx
TBOPYECKOr0 NoAxo4a — COCTaBNEHUN Y 0OCYXXOEHUM HETPUBMASIbHBIX 33424 MO NPOrpaMMUPOBAHUIO.

MeTopabl. icnonb3oBaHbl Negarormyeckme MetToabl nepcoHndurkaumm yaedbHoro npotecca. Obwmin Nnoaxon, OCHO-
BaH Ha yO0BNETBOPEHNM OrpaHNYEeHNAM AJ19 CO30aHMS FreHepaTopoB 3a4a4 No NPOorpaMMmpoBaHmio. MNMpu reHepaummn
33424 NPYMEHEHbI METOAbl NOPOXAEHUS ClyYanHbIX MPOrpaMm 1 AaHHbIX HA OCHOBE BEPOATHOCTHbLIX KOHTEKCTHO-
3aBMCHMbIX FPaMMaTUK, @ TakkKe MEeTOAbl TPaHCSALMM C UCMNOJIb30BaHWEM AepeBa abCTpakTHOro cuHTakcuca. Ans
JeKknapaTuBHOro NpeacTaBfeHns reHepartopa 3aga4q NnpuMeHeHbl MeToabl GYHKLUMOHANbHOrO NPOrpaMMmnMpOBaHng,
No3BONsOLME CO3aaTh NPEAMETHO-0PUEHTUPOBAHHbIN A3bIK C MOMOLLIbIO KOMOMHATOPOB. [1151 NPOBEPKU PELLEHNIA
1CMOJIb30BaHbl METOAbl aBTOMATUYECKOIrO TECTUPOBAHMS.

PesynbTaTtbl. PaspaboTaHa cTpykTypa cuctemMsl LAMN. PaccmoTpeHa aBTomaTmnyeckas reHepaums 3agad no npo-
rpaMMNPOBaHWIO, BbIAENEHbI KNTACChl MPAKTUYECKMX 3a4a4, OTpaxaloLmMe COBPEMEHHYIO creumdunky paspabdoTku
nporpaMmmMHoOro obecneyeHusi, NpruBeaeHbl NpUMepbl Ux reHepaumn. MNMprnBegeHa cxema reHeparopa 3aaad no npo-
rpammunpoBaHuio. OnmncaHa npouenypa aBToMaTMyecKon NPOBEPKM peLleHnsl 3a4a4, OCYLL,ECTBASEMAs C MOMOLLLbIO
Habopa MporpaMMHbIX TECTOB, CPOPMUPOBAHHOIO reHepaTopom 3agad. [puBeneHa npouenypa KOMMIEKCHOM
OLIEHKN peLleHns obyyatoLLLerocs, BkoYaoLwas NpoBepky KOPPEKTHOCTU pelysibTaTta 1 NPOBEpPKY Ha nnarnat pe-
LIEeHM B Criyqae 3a4ad, CO34aHHbIX NpenogaBaTesieM BPY4YHYIO; COOTBETCTBME CTaHA4APTY CTUAS HanucaHus npo-
rpamMmbl, METPUKAM OLEHKM CITOXHOCTM NPOrpamMmsbl 1 T.4,. PACCMOTpeHbl BeAeHMe CTaTUCTUKM YCNeBaeMocTn 00y-
YaroLmMxcs N nHTepdenc B3aMMoaencTans o0yyatoLmnxcsa 1 NnpenoaaBaTenei.

BbiBogbl. OnbiT BHeapeHus LLAIM B y4eOHbIN npougecc kypca «MporpaMmmupoBaHme Ha a3bike Python» noaTteepaun
BO3MOXHOCTb 0b6ecrneyeHnss nepcoHndmrkaumm yyebHoro npouecca ans odyyalowmxcs B BUAE MHOVNBUAYATbHbLIX
o6pa3zoBaTesibHbIX TPAEKTOPUIA.

KnioueBble cnoea: MacCcoBoe 00y4eHre NporpaMMmnpoBaHunio, LMgPOBO aCCUCTEHT Npernoaasarens, reHepaums
3agaHuii, UHOVBUAOYanbHaa TPaeKTopusa 0B6y4eHns, MOTUBaLMS 00YyYaloLLMXCH

Russian Technological Journal. 2022;10(3):7-23

https://doi.org/10.32362/2500-316X-2022-10-3-7-23
https://doi.org/10.32362/2500-316X-2022-10-3-7-23
mailto:andrianova@mirea.ru

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

e Moctynuna: 29.12.2021 » Jopa6oTaHa: 03.03.2022 ¢ MpuHaTa kK ony6nukoBaHuio: 11.05.2022

Anga untnpoBanua: AHgpuaHosa E.I'., Jemungosa J1.A., CoseToB N.H. «LlndppoBoin accucTteHT npenogasatens» B Mac-
COBOM NpodeccmnoHanbHoOM 0bydyeHun ans umdposoli akoHoMukun. Russ. Technol. J. 2022;10(3):7-23. https://doi.

org/10.32362/2500-316X-2022-10-3-7-23

npospatmocn: cbvmaucoaoﬁ AeaTesibHOCTU: ABTOpr He NMerT CI)I/IHaHCOBOI‘/JI 3anHTEpPeCoOBaHHOCTW B nNpeacTaB/ieH-

HbIX MaTepunanax nnm MmetTogax.

ABTOPbI 3a9BNSIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.

INTRODUCTION

The digitalization of the economy, which has the
potential to radically transform all fields of human
activity, generates an urgent need for a large number
of professionals with IT or digital competences. Thus,
a significant challenge facing learning providers
concerns how to provide massive professional training
of personnel for the digital economy, in the first place,
software developers. In the medium term, the Russian
labor market anticipates an increase in the demand for
software developers in such promising areas as artificial
intelligence, big data analytics, robotics, virtual reality,
and the Internet-of-things' [1, 2].

Technologies of massive training of software
developers require the active implementation of intelligent
and IT technologies in the organization of learning
process and use of electronic educational resources to
support convenient and rapid communications between
participants in learning process and apply advanced
pedagogical innovations and practices.

However, there is a concern that the digitalization
of the learning process for massive training of software
developers might imply the unification of approaches
to all students. On the contrary, it is necessary to
provide a student with wide opportunities to create
and support personification of learning, first of all, by
creating individual learning paths, which imply the
active individual work of the student. According to
Yaroslavtseva, in making digital technologies available
for massive use, which structures the social system
and social relationships, electronic culture implies the
formation of new views of the world and methods of
perceiving it. The human in digital space thus becomes
a continuously developing “open anthroposystem,”
an interactive system, which “rapidly expands its
capabilities and creates the corresponding parameters
of the future” [3]. Meanwhile, some pedagogical
experts note a decrease in the motivation of students
for individual work. There is even an opinion that this
is due to educational labor now having the “traits of

I Rynok truda v Rossii (The labor market in Russia). Tadviser:
Gosudarstvo. Biznes. Tekhnologii (in Russ.). https://clck.ru/
ZDSAU. Accessed November 28, 2021.

forced labor” [4]. Thus, existing standards and training
materials are failing to provide students with personally
significant learning results but are instead perceived as
motivated by the requirements imposed by the education
system. Students do not feel as of their actions are
independent; rather, they are forced to conform to the
learning objectives, contents and methods of an external
control system. “Motives for learning are replaced by
motives for responsibility, social need and enforcement:
‘you should,” “you must’” [5].

Various concepts of learning approaches aimed
at increasing the motivation of students have been
proposed. For example, the heuristic learning concept,
which is based on an exteriorization model, is aimed at
the self-actualization of a student [6, 7]. Conversely, the
developmental learning concept, which is based on an
interiorization model, is targeted at the development of
a student [6, 7]. Whether proceeding according to the
heuristic or developmental learning approaches, the
purpose of the teacher lies not so much in the development
of course content (e.g., lectures and practical exercises)
as the search and monitoring of available educational
resources, which can comprise materials for the learning
content of the course. By taking this approach, it is
possible to support a student in creating an individual
learning path. However, it should be noted that the
important issue of providing support of the motivation
of a student to software development competence cannot
be reduced only to the material aspect.

When carrying out training of software developers,
technical universities using a classical form of programming
training have long competed in the provision of high-
quality massive open online course at leading companies
and educational institutions and with specialized online
educational platforms, such as Stepik [8] and JetBrains
Academy [9], which provide tools for the efficient learning
of programming languages that are currently in demand by
employers in software development.

The increased use of online technologies in the
learning processes as part of recent epidemic control
measures resulted in blended learning becoming a
standard part of the learning process at universities. This
has changed the duties of the teacher by supplementing
them with a tutoring function, which obviously increases
the scope of the teacher’s creative functions related to

Russian Technological Journal. 2022;10(3):7-23

https://clck.ru/ZD5AU
https://clck.ru/ZD5AU
https://doi.org/10.32362/2500-316X-2022-10-3-7-23
https://doi.org/10.32362/2500-316X-2022-10-3-7-23

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

the tutorship due to the necessity to take into account the
individual traits of a student in practice-oriented training
in programming. Due to the resultant significant increase
in the teacher’s workload, it has become necessary to
automate the routine part of the teacher’s duties by
creating and using a Digital Teaching Assistant (DTA).
Comprising a kind of intelligent learning system, a
DTA can take on functions of delivery and creation of
practical programming tasks, generation of tasks and
checking of results, monitoring of the attendance and
work of students, digital footprint acquisition, etc.

Thus, the development of a DTA, as well as its
realization and implementation in teaching a training
course in programming at a technical university,
becomes an urgent problem.

1. PEDAGOGICAL DESIGN
AND MAIN ELEMENTS OF COMPUTERIZATION
OF PROGRAMMING TRAINING

The state of the art in the educational system
of programming training provides a teacher with
significant opportunities for setting learning objectives
and undertaking pedagogical design of a training
course, which determines means for achieving the
set objectives. Pedagogical design is a systematized
approach to creating learning solutions, which uses
pedagogical principles and theories to ensure high
quality of learning [10].

In the context of digitalization of education,
pedagogical design represents an efficient tool for
developing learning content aimed at ensuring a
reasonable combination of online and offline learning
(blended learning), creating an intelligent environment
within the programming training course and supporting
the realization of an individual learning path.

The main principles of pedagogical design are to
provide a clear explanation of the goals and objectives of
learning, attraction and retention of student’s attention,
awaken interest in topic being learned or learning
methods applied, ensure rapid testing of obtained
knowledge in practice, receive feedback from students,
deliver assessments (including self-assessment) of
academic achievement and general assessment of
efficiency of training course, and help to student in
preserving and correctly using obtained knowledge [10].

By using pedagogical design principles in developing
the content of a training course, it becomes possible to
determine optimal conditions for achieving learning
goals: model of interactive interaction of participants
in the learning process, forms of representation of the
learning content of the training course and methods of
increasing the motivation of students for independent
work on the materials of the course (cognitive function).
For example, using crowdsourcing methods identifies

learning needs and deficits that are significant for
students trained in this programming training course.

The pedagogical design of the programming
training course encapsulates not only the format
of representation of the learning content, but also
methodological guidelines for students and teachers,
tasks and exercises on the developed content, as well as
test assignments and student self-assessment forms. Test
assignments, their performance, and the subsequent self-
assessment of academic achievement in the course by
students can partially be based on gamification. Student
self-assessment of competence can correspond to events
in an electronic system, e.g., such as evaluation of a
performed task on a pass/no pass or letter-grade basis,
and so on. For the content of the training course to be
of high quality, motivating stimuli should necessarily be
included, e.g., as creative tasks, tasks for determining
the problematic area of the course, etc.

The pedagogical design of a practice-oriented
programming training course has the following
mandatory elements:

e interactive materials available online (a student
can run examples directly in a study guide, can use
elements of a built-in graphical interface to update
the contents of graphs, etc.);

e presentation of the materials in a personalized form:
as a dependency graph (knowledge graph);

e online system for reception and verification of tasks;

e automatic adaptation of the complexity of tasks and
theoretical materials to the level of a student;

e automatic task generation;

e automatic generation of hints and comments on the
solutions of the tasks.

2. CONTEMPORARY PROGRAMMING
LEARNING TOOLS

A promising trend in the pedagogical design of a
university course of massive training in programming
consists in the use of learning tools and blended learning
(a combination of offline and online learning). The
asynchrony of the online part of the learning process
provides a student with the space to select the material
and time to learn it. Of particular relevance here is the
flipped classroom model based on online self-directed
online learning of students in the main theoretical
knowledge in the course. In this case, classroom lectures
become more interactive to include discussions of the
topics self-learned by students; such lectures widely
feature additional materials, as well as involving
collaborative solution of tasks.

For students to better retain the training material,
a conventional 1'2-hour-long lecture is more and more
often represented online as a set of short (5-15 min)
videos [11]. Using virtual reality technologies in learning

Russian Technological Journal. 2022;10(3):7-23

10

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

process becomes increasingly popular [11]. For prompt
assessment of academic achievement, feedback with
students can be organized directly during the online
lecture as brief test questions and test tasks. A special
role in ensuring the deep retention of the lecture material
by students can be played by such interactive elements
of the lecture as executable code fragments and various
apparent dynamic models, which are controlled by a
graphical interface (explorable explanation) [12]. In
particular, the Online Python Tutor [13] visualizes details
of the execution of a Python program in a dynamic mode.

In organizing a massive programming training
course, it is important to personalize learning by creating
an individual learning path to adapt the learning process
to an individual student’s needs. For lectures, the material
of the course can be represented as a knowledge graph
with the freedom of choice between topic nodes taking
into account dependency edges [14].

During performing practical exercises and under
quantitative constraints on instructional personnel, an
intelligent tutoring system (ITS) can be employed to
obtain feedback from students, transfer an individual
instruction or provide a response to the actions of students
on a real-time basis without teacher intervention. ITS are
computer systems that combine a knowledge domain
model with a student model and a teacher model. Such
integrated systems often use machine learning methods
and have a complex design [15].

The complexity of the design of an ITS as a single
system integrating all the situations and scenarios of
interaction led to propagation of computer tools, which
solve individual problems related to an ITS. In particular,
they comprise automated grading systems [16], data-
driven hint generation systems [17], as well as automatic
generators of exercises of a given complexity [18] and
systems for checking solutions for plagiarism [19].

A disadvantage of such systems is that they focus
only on a student’s individual work along with a limited,
formally defined set of tasks. In this context, specialized
forums such as Piazza®, which may include rewards
for students who help their colleagues, can be useful.
An important role is also played by using learning
projects developed collaboratively by students (project-
based learning) and using technologies to provide the
gamification of learning processes [20].

3. DIGITAL TEACHING ASSISTANT
3.1. DTA structure
In university massive programming training

courses, much of the teaching workload is borne by
teacher assistants, who create programming tasks and

2 https://piazza.com/. Accessed January 13, 2022.

check the correctness of their solution by students. In
this context, a new approach is proposed for organizing
the learning process of training of software developers
based on a DTA computer system. DTA helps
teachers working under massive learning conditions
to concentrate on functions that require a creative
approach, in particular, creating and discussing
nontrivial programming tasks and also developing the
DTA functionality.
The main DTA functions (Fig. 1) are:
e generation of individual tasks;
e check of tasks with informative answer for a
student;
e recording student academic achievement statistics;
e interface of interaction between learning process
participants.

Generation
of tasks

A

Teacher Student
Web interface [« > activity
database
; ; ; ; A
Students Check
of tasks

Fig. 1. DTA structure

Unlike an ITS [21], a DTA is not intended to
completely replace a teacher or resemble a “black
box” that automatically select tasks during learning or
evaluates solutions according to parameters hidden from
a student. The model of a tutor used in ITS is replaced in
DTA by real teacher’s settings.

3.2. Automatic generation
of programming tasks

The automatic generation of programming tasks
provides each of students with an individual set of tasks.
This inherently laborious function is difficult for teachers
to perform alone, especially if the number of students is
large. Automatic task generation also partially solves the
problem of plagiarism of solutions.

The following requirements are imposed on a task
generator;

e support of the main topics of the course and language
constructs;
e interest and practical utility of tasks;

Russian Technological Journal. 2022;10(3):7-23

11

https://piazza.com/

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

e clarity and univocality of the text of a task statement
and its resemblance to a human-composed text;
e identical complexity of all the generated variants of

a task at fixed settings of the task generator;

e absence of obvious cliché solutions to different
variants of a task;
e possibility of automatic check of solution.

A DTA contains a large number of task generators
G =g, ..., &,}, each generating variants of tasks of its
own type. The inputs of the task generator function g(h, s)
consist in the hash value 4 of the individual data of a
student and parameter s of complexity or size of the task.

Approaches to automatic generation remain to be
developed for all the types of programming tasks. The
types of tasks for which generators have already been
created are discussed below.

In a course of programming in a certain language,
one can identify the following classes of practical
tasks reflecting the modern specificity of software
development:

e creation of a new program;
e analysis of the existing program;
e creation of unit tests for the existing program.

Among the tasks involved in creating a new program,
there are generators of tasks of such types as [18]:

e translation of a certain representation into a program
code;
e data format conversion.

In tasks of the former type, the input representation
can be a mathematical formula. Thereby, a student learns
a practically important skill to translate a mathematical
language into a programming language. Another example
of a task of the former type is to translate a program
from one programming language into another. The input
representation can also be graphic notation. Examples
of tasks using graphic notation including converting
a finite-state machine graph or a UML diagram into a
program code.

Tasks to convert input data format into output data
format can use both text and binary data formats.

In the general form, generators of tasks of the
considered types can be created using approaches
from the field of combinatorial problems of artificial
intelligence. In particular, a promising approach is to
use the constraint satisfaction method [22]. Using this
approach, a set of variables and a set of their values
describe a space of generated programs or data formats,
and a set of constraints enables one to filter off only the
results that correspond to given characteristics for a
chosen type of tasks.

Random configuration p (program or data format
description) from a space of configurations P is
defined as

P EPAGP)AG(p)

Here, the specification predicate ¢, determines
the conditions of choosing p, while the predicate ¢,
characterizes the possibility to create for p a set of
nondegenerate (i.e., with different values within given
limits) program tests.

Random generations can be generated using
probabilistic grammars, in which each rule is
supplemented with the probability of using it in the
process of generation of the result. The same approach
is used in fuzzing [23].

Of special interest are probabilistic context-sensitive
grammars, which not only enable a syntactically correct
result to be achieved in the event of obtaining a random
result, but also carry out a number of semantic checks.
An example of such a check is correct use of a previously
defined variable in its scope.

In generating a task, it is insufficient to formulate its
statement. It is also necessary to obtain a set of program
tests, against which the correctness of students’ solutions
is evaluated. The step of test generation is part of the
total process generating the task. If the quality of the
obtained tests is unsatisfactory, the statement of the task
should be changed.

Along with simple unit tests, which contain set of
pairs {(x;, ¥), ..., (x,, ¥,)}, where x; is the vector of
input values and y; is the computation result, tests with
monitoring the state for responding systems can be used.
The input data in this case are a trace of calls (methods,
messages) and the responses of the system to each of
the calls.

Among typical programming tasks for analyzing
the correctness of the existing programs, generators that
allow the creation of variations using a set of program
templates could be of interest, as well as those for
introducing an error to a program code, whose correction
is delegated to a student.

A class of tasks related to the creation of program
tests is characterized by using mutation testing [24] to
determine the quality of program tests composed by
students for an automatically generated program.

3.3. Realization of task generators

Figure 2 presents a general flowchart of a
programming task generator. The statement of a task is
formulated based on the hash code of information on a
student and the task complexity parameter, along with
program tests for automatic check of solutions.

The possible realization of the random configuration
generator described below forms a random program
or a random data format. The configuration is further
subjected to a sequence of simplifications of its structure.
In the case of a generated program, they can consist
of conventional compiler-side optimizations, such as
constant folding and simplification of expressions.

Russian Technological Journal. 2022;10(3):7-23

12

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

SEUAENE’S -7 77T oo sossossaossasoseooooeses
hash code Task statement generator
andtask ™ 1
complexity coﬁzgjroa?on || Simplification | | Set N ir;l;;agitlztzgl |, Task
generator rules of constraints representation statement

2e B S
; Failure

Generated configuration

Check test generator

Random data
generator

Set

AST interpreter = Tests

of constraints

T— Failure %
——Unsuccessful conﬁguratior‘n—|

Fig. 2. Flowchart of programming task generator

The characteristics of the configuration are evaluated
using a set of constraints according to which the uniform
complexity of the generated tasks is maintained.
The well-generated configuration is translated into
an external representation, which comprises the task
statement for a student.

The check test generator creates random data
according to the type of a task being formed. The
previously obtained configuration is evaluated using
a set of tests. In the case of a program configuration,
its internal representation is interpreted as an abstract
syntax tree (AST) using random data as program
inputs. In the case of a data format configuration,
the corresponding structures are filled with random
values. If no set of tests with given characteristics is
successfully formed (e.g., after making a given number
of attempts), then the return to the generation of a new
configuration is performed.

To realize a random configuration generator, it is
proposedtouse aspecial grammar-describing language—
configuration generation rules. This language is an
extension of probabilistic context-sensitive grammars
and is a set of combinators in the spirit of functional
programming.

Combinators are higher-order functions used to
create embedded domain-specific languages (eDSL). In
particular, numerous realizations of parser combinators
are known [25]. In the case under consideration, the
combinator after computation of the arguments returns
the lexical closure f:

fic—oc

This wuses a computation model in which
combinators receive context ¢ and return a new version
of it. The context ¢ = {(a;, v)), ..., (a,, v,)} comprises
a set consisting of n pairs of the attribute—value form.

The context always contains the following attributes:
computation result a,, and Boolean error value a ..
If an error emerges during the computation, a local
rollback occurs from combinators: this is a return to one
of the calling combinators, which processes this error.

The basis of the considered combinator language are
combinators realizing operations known from the theory
of formal languages: concatenation (seq) and union (alf).
The basic combinator seq computes a sequence of its
combinator arguments, thus updating the context. If an
error emerges, there is a return from the combinator with
restoration of the state of the context at the beginning
of the execution of seq. The basic combinator alt
computes, among its arguments, a randomly chosen
combinator. For each of the arguments, the probability
that it has been selected can be given. The combinator
check checks the argument expression for truth using
the current context as an argument. It the expression is
false, then the unit value of a in the context indicates
an error. The combinator find repeats the execution of
the argument combinator until the computation result is
good.

A variant of a combinatorial language developed
in Python is considered. Using combinators, a random
polynomial generator can be developed as shown in
Fig. 3. This generator is realized according to three rules.
The coeff rule in Fig. 3a determines the value of the
coefficient. A choice is made between a random value
in a given range and zero with the probability given in
prob. The term rule forms an AST representation for
an expression of the form kx". The main rule forms an
AST representation of a polynomial to the third degree.
The combinator /et is used to name the results, while ref’
provides a means for their subsequent reference. Using
the combinator check, a constraint is imposed that the
generated polynomial should have at least one nonzero
coefficient at x.

Russian Technological Journal. 2022;10(3):7-23

13

Pedagogical design of a digital teaching assistant Elena G. Andrianova,
in massive professional training for the digital economy Liliya A. Demidova, Petr N. Sovetov

coeff = alt(randint(-1e€0, 1ee), e, prob=[0.3, ©.7])
term = A k, n: mul(k, power('x"', n))

1
2
3
4
5 main = find(seq(
6
7
8
9

let(a=coeff), let(b=coeff), 86x3 + 20x?% + —27
let(c=coeff), let(d=coeff), —85x
add(—98x
term(ref('a'), 3), 86x% + —47x% + 51x
10 term(ref('b'), 2), 40x + 44
11 term(ref('c'), 1), 93x
12 term(ref('d'), ©), —63x + —66
13)s —62x3 + —17x
14 check(A c: c.a =@ or c.b !=08 or c.c I=9) ~97x2
94x?

15))
(a) (b)
Fig. 3. Random polynomial generator:
(a) realization in eDSL and (b) examples of the results of generation in the LaTeX format

The search for the correct result is made by the Figure 4 presents a more extended example of the
combinator find. Thus, a simple declarative constraint realization of generation of random functions in C++
programming system is realized. This approach is much for array handling. Here, a task in the spirit of finite-
less productive than, e.g., SMT solvers and specialized impulse-response filters is imitated.
solvers for constraint programming tasks. Nevertheless, In the generated random functions, the data types
the considered declarative language allows constraints and the variable names are consistent. A cycle can be
of arbitrary complexity to be used. Moreover, the realized using both for and while, whose realization is
generation rate typically is not the most important similar to that of for. The realization of the combinator
characteristic of creating learning tasks. Finally, SMT expr is not shown because it presents nothing new in
solvers and other third-party tools can be used together =~ comparison with the previous example of polynomial
with the considered combinatorial language. generation.

1 args = shuffle_list(

2 decl_ptr(ref('ty'), ref('bufl')), decl_ptr(ref('ty'), ref('buf2')),
3 decl('int', ref('size'))

4)

5 for_array = A *body: for_loop(

6 eq(decl('int', ref('idx')), ref('mtap')), lt(ref('idx'), ref('size')),
7 postop('++', ref('idx"')), block(*body)

8)

9 memset = call('memset’,

10 Ist(ref('buf2'), 0, mul(call('sizeof', ref('ty')), ref('size')))

11)

12 loop_body = stmt(eq(load(ref('buf2'), ref('idx"')), expr))

13 main = seq(

14 let(ty=one_of('int float double')),

15 let(name=one_of('data buf arr x y')),

16 let(bufl=to(A c: c.name + '1')), let(buf2=to(A c: c.name + '2'))
17 let(size=to(A c: c.bufl + '_size')),

18 let(idx=one_of('i j k n")),

19 let(taps=to(A c: sorted(sample(range(1l, 5), randint(1, 3))))),
20 let(mtap=to(A c: max(c.taps))),

23 function(

22 one_of('calculate process compute perform'),

23 'void', args, block(stmt(memset),

24 alt(for_array(loop_body), while_array(loop_body))

25)

26)

27)

Fig. 4. Realization of a generator of random functions of array handling

Russian Technological Journal. 2022;10(3):7-23
14

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

Figure 5 gives some examples of the generated
random functions.

void process(int x_size, double *y, double *x) {
memset(y, @, sizeof(double) * x_size);
for (int i = 4; i < x_size; i++) {
y[i] = 8 * x[i] + 2 * x[i - 1] + -4 * x[i -
¥
}

void perform(float *arrl, int arrl_size, float *arr2) {

3] + -5 * x[i - 4];

memset(arr2, @, sizeof(float) * arrl_size);
int k = 2;
while (k < arrl_size) {
arr2[k] = 5 * arrl[k] + 8 * arrl[k - 2];
k++;
¥
}
void compute(int y1_size, float *y2, float *yl1) {
memset(y2, 0, sizeof(float) * yl size);
for (int k = 3; k < y1_size; k++) {
y2[k] = -6 * y1[k] + -7 * yl[k - 3];
}
}

Fig. 5. Examples of the generated random functions
of array handling in C++

3.4. Automatic check of tasks

The correctness of the obtained solution was
checked using a set of program tests, which is formed by
a task generator. For testing, a “sandbox”, representing a
medium of safe execution of program code, is realized.

It is also expedient to make a comprehensive
evaluation of a student’s solution without restricting
only to checking the correctness of the result. Elements
of such evaluation made automatically can include:

e check of solutions for plagiarism in the case of tasks
created manually by teachers;

e check for compliance with the program writing style
standard;

e analysis of the metrics for assessing the program
complexity;

e evaluation of the correctness of the result, the
computational complexity of the program, and the
memory size used by the program.

The first three items in the list can be realized using
statistical analysis tools, while the last item, requires the
use of program profiling tools.

In the case of an incorrect solution, the answer of
DTA should include at least a massage of the compiler
and an indication of the nonexecuted test.

A more informative answer includes an indication
of a typical error made by a student. Such a mechanism
can be realized by seeking templates in the AST of
the incorrect program. Rules of the template-message
form are added to DTA by the teacher. There are also

approaches that enable the generation, based on an
incorrect solution, of automatic hints directing the
student toward the correct result [26].

3.5. Recording of statistics of academic
achievement of students

By storing solutions received from students ina DTA
database, the teacher can dispense with the requirement
to manually fill out a gradebook. Furthermore, by
comprehensively evaluating solutions using the DTA, it
is possible to abandon simplified formulas for calculating
the final grade or ready sets of tasks. As a result, the
teacher can satisfy him- or herself with indicating the
minimum necessary number of solved tasks for each of
the topics of the course. At the same time, a DTA allows
a student to carry out an unlimited number, complexity
and type of training tasks.

3.6. Interface of interaction between students
and teachers

For a DTA, it is preferable to use a web interface that
provides access to the system from any device with an
Internet connection.

From a student’s standpoint, the interface should
allow the student to choose the types and parameters of
tasks on the current topic of the course. By providing
the results of the integrated assessment together with the
history of the previous results, the student is empowered
to evaluate his or her progress.

From a teacher’s standpoint, an important role is
played by the analysis of students’ activity data. Using
the DTA interface, the teacher can promptly assess
the situation and make the necessary decisions. This
concerns, e€.g., a situation in which a task turned out
to be too easy or too difficult to solve for the majority
of students. Here, data analysis can be used to identify
underachievers or predict a student’s final grade.

4. EXPERIENCE OF DEVELOPMENT
OF PYTHON PROGRAMMING
TRAINIUNG COURSE

The Python programming training course at the
MIREA — Russian Technological University, Moscow,
Russia, is organized as a blended learning environment.
Figure 6 presents online tools used in this course.

The instructional personnel of the course comprise
4 lecturers and 13 tutors of practical exercises. Since
more than 1500 students participated in the training,
a Telegram channel was created for their prompt
notification of important events during the course. In
terms of a duplex communication channel, the MantisBT
bug tracker was used. This was already known to the

Russian Technological Journal. 2022;10(3):7-23

15

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

Python programming
training course

. Notification Feedback Web interface
GitHub . .
repositor (Telegram with students for writing down
P y channel) (MantisBT) solutions
Lecture materials Seminar materials Procedural task Au?c_)ma_tlc
DandyBot game) verification
(Jupyter notebooks) (Jupyter notebooks) generation of solutions

Fig. 6. Structure of the inline part of the Python programming training course

students from a configuration management course and
was used as a replacement of conventional interaction
tools (electronic mail and forum).

The basic part of the course, which includes issues
of using the main constructs of the language and
introduces students to the object-oriented programming
style accepted in Python, was presented in the form of
lectures. The final lectures consider a number of special
issues, in particular:

e test automation: test coverage metrics, mutation
testing, design by contract, property- and model-
based testing;

e functional programming: higher-order functions,
closures, decorators, generators, immutable data
types, functools and itertools modules, and NumPy
library.

The main materials of the course are stored in a
separate GitHub repository. The students are rewarded
for errors found in the materials. Messages about the
found errors are received as pull requests.

The use of Jupyter notebooks increased the
interactivity of the online lectures delivered in a
webinar format. During the lecture, the students directly
experiment with brief proposed programs; responding
inter alia to the students’ questions, the lecturer can
modify and run examples of programs in cells of a
Jupyter notebook. The representation of lecture material
in the conventional slide form supplemented with the
interactivity provided by cells is performed using the
RISE extension for Jupyter notebooks.

The classroom lectures include an interactive
theoretical part, which allows:

e assessment of the retention of the lecture material
by the students online and, if necessary, timely
addressing of gaps in the students’ knowledge;

e introduce the students to the subject domain of the
tasks considered in the exercise.

In seminar classes, tasks of several types are used:

e procedure-generated tasks;

e tasks from Jupyter notebooks;

e tasks related to DandyBot game;
e individual and group creative projects on tutors’
topics.

Among the main problems involved in the design of
the considered course were the creation and organization
of rapid checks of practical tasks under massive learning
conditions given a shortage of tutors. It was decided to use
an approach based on procedural generation: an individual
set of tasks was automatically formed for each of the
students [18]. As well as solving the problem of plagiarism
among the students, this approach also reduced the tutors’
workload due to the automatic checking of solutions.

For example, variants of the following tasks are
generated automatically:

1) conversion of mathematical notation into code:
arithmetic expression;

2) conversion of mathematical notation into code:
branching;

3) conversion of mathematical notation into code:
cycles;

4) conversion of mathematical notation into code:
recursion;

5) conversion of solution tree into code;

6) realization of bit field swapping in a bit word;

7) tabular data format conversion (Fig. 7);

8) binary file format parsing (Fig. 8);

9) realization of finite-state machine by object-oriented
programming features.

For a given generated task, the degree of complexity
can be set along with the number of formed tests to allow
a student to check the correctness of his or her solution.

An important part is played by the informativeness
of messages received by the students from the system
submitting task solutions. For some types of tasks, there
is a support of rules according to which a detailed error
message is generated and accompanied by a reference
to methods for obtaining the correct solution using the
template found in the solution code. The pattern-matching
search is performed at the level of the representation of
a student’s program as an AST. In the bit field swapping

Russian Technological Journal. 2022;10(3):7-23

16

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

task, such rules allow an incorrect solution approach to be
identified (the presence of a number-to-string conversion
function) as well as hints given concerning the correct
direction (using bitwise operations).

The exam in the Python programming training
course also uses procedure-generated tasks. Figure 9
presents the web interface via which the students send
their solutions of tasks of this type.

For the majority of the seminar class, practical tasks
from Jupyter notebooks are discussed and solved. Some
of such tasks are considered “at the blackboard”: the
tutor invites someone of the students to take a seat at a
computer connected to the room’s projector. Using such
a format, other students can keep track of the solution
and the tutor’s comments. Better-prepared students
during the classroom learning solve tasks by themselves
and send the solutions to the tutor for checking through
the bug tracking system. Such a workflow allows the
tutor to actively participate in the learning without
continuously moving over the room from computer to
computer and, thereby, to respect COVID-19 restrictions
more rigorously. A sudden transition to offline learning
using such a workflow of practical exercise is not a
serious problem because the students send their task
solutions using the same bug tracking system.

Task 3. Realize a tabular data conversion function. The
input and output tables are given in row-by-row form. Filled
cells have a row data type. Empty cells have the None value.

Make the following conversions of the input tables:

— remove empty columns;

— divide column 1 by divider “!”;

— convert cell contents by examples;

— transpose the table.

Examples of table conversions:

1. Initial table:

+78694947943103-08-2003 | No
+79774177489127-03-2002 | Yes
+77571568485105-12-2001 | Yes
+73113372701121-07-2003 | No

Conversion result:

8694947943 | 9774177489 | 7571568485 | 3113372701
false true true false
03-08-03 02-03-27 01-12-05 03-07-21

2. Initial table:

+76058136232111-04-2001 | No
+72178434337102-10-2000 | No
+76826857881125-11-2003 | Yes

Conversion result:

6058136232 | 2178434337 | 6826857881
false false true
01-04-11 00-10-02 03-11-25

Task 3.1. Realize binary file format parsing (in the spirit of
the WAD format of the Doom game or the graphic PNG format).
The data begin with the signature 0 x 42, 0 x 58, 0 x 59,
0 x 9a followed by the structure A. Byte order: big-endian. The
addresses are expressed as the offsets from the data origin. In
the solution, it is allowed using the struct module.

Structure array B, size 4

intl6

int16

intl6

Structure C

Size (uint32) and address (uint32) of the double array|
uint32

Structure D

Structure A:

OO 1| O\ h| £ W] —

uint32
double
Size (uint32) and address (uint32) of the char array

Structure B:

QI B

Int16 array, size 5
uint64

intl6

int8

Structure C:

W D] -

-

intl6

int8

int8

uint64

Size (uint32) and address (uint32) of the uint16 array

Structure D:

| | W] —

Fig. 8. Example of an automatically generated task of
binary file format parsing (test data are not shown)

Exam in the Python programming training course

Group Variant

Solution:

import struct

def f31(x):
res = {}
res['A1'] = struct.unpack('f, x[3:7:])[0]
res['A2'] = struct.unpack('q’, x[7:15:])[0]
res['A3'] = {}
addr = x[15] + x[16] * 16 + x[17] * 16 * 16 + x[18] * 16 * 16 * 16
res['A3']['B1'] = struct.unpack('q’, x[addr : addr + 8])[0]
res['A3']['B2'] = struct.unpack('H', x[addr + 8 : addr+ 10])[0]
res['A3']['B3'] = struct.unpack('b’, x[addr + 10 : addr + 11])[0]
res['A4'] = struct.unpack('h’, x{19:21:])[0]
res['A5] = {}
res['/A5']['C1'] ="
size = x[21] + x[22] * 16 + x[23] * 16 * 16 + x[24] * 16 * 16 * 16
addr = x[25] + x[26] * 16 + x[27] * 16 * 16 + x[28] * 16 * 16 * 16
for i in range(addr, addr + size):
res['A5'['C1] += chr(xi])
res[AS]['C2]=[#="
size = x[29] + x[30] * 16
addr = x[31] + x[32] * 16
for i in range(size):
res['A5|['C2'.append({})
res['A5']['C2'][i]['D1'] = struct.unpack('H', x[addr + 4 *i:addr + 2 + 4 *i:])[0]
res['A5']['C2'][i]['D2"] = struct.unpack('H', x[addr + 2 + 4 *i:addr + 4 + 4 *i:])

Table of results
Error log

Fig. 7. Example of an automatically generated task of
tabular data conversion

Fig. 9. Web interface for receiving the solutions
of automatically generated tasks

Russian Technological Journal. 2022;10(3):7-23

17

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

Practical tasks from Jupyter notebooks, which belong
to different subject domains, are developed so that they
are of interest for students and in such a way as to permit a
solution to be obtained within a single practical exercise.
The topics of the practical tasks are as follows: random
digital economy report generator; Burrows—Wheeler
transform; ASCII banner generator; Schelling’s model of
segregation; graph imaging by physical modeling; stack
language interpreter; hierarchical clustering algorithm;
formal verification of computer game puzzles; undo/redo
mechanism in graphic editor; SQL-like query language;
Julia fractal; Floyd—Steinberg algorithm.

A special type of practical tasks is constituted by tasks
of simple data analysis based on information collected
by a web tool for receiving the students’ solutions of
procedure-generated tasks. Here, in the reflection mode,
the students learn their own activity in the course.
Figures 10 and 11 show the results of such an analysis.

Additional tasks for practical exercises are
provided via the DandyBot game, which was developed
especially for the considered course. It belongs to the
genre of games for programmers in which, for success
in the game, it is necessary to write a program code.
The DandyBot game, an example of a level of which is
shown in Fig. 12, is presented in the style of Roguelike
games to allow the “intelligence” of player characters to
be programmed in Python.

At the first levels, the players should write the
simplest programs; therefore, even the students with
minimum programming experience can be involved in
writing a code in Python in a playful way.

The DandyBot game used by the students is a semi-
product presented in the form of a GitHub repository
requiring numerous improvements. This stimulates the
students to develop the program code of the DandyBot
project as well as to create additional levels.

900+ 2000 -
S00% 1750 A
w [}
S 700 - 5
8 2 1500 -
=} =}
3 600 - 3 1250 -
c c
§ 500 :‘m_) 1000 -
(o) (@]
g 400 A g 750 -
§ 300 - § 500 -
200 A 250 -
100 +— T T T 0 -
0 5 10 15 20 Mon Tue Wed Thu Fri Sat Sun
Hour Day of week
Fig. 10. Students’ activity over the day and the days of the week
= Correct solutions
mm Incorrect solutions
800
[}
T
(0]
S 600 1
@
©
2400 A
€
=}
z
200

No. of a task

Fig. 11. Statistics of solutions of procedure-generated tasks that were sent by the students

Russian Technological Journal. 2022;10(3):7-23

18

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

¢

e &

nY A *

b3l b b ol o B b ol b o ol o o e}

FIEIE

b g, ot b “AE4EY

ararare

"‘ "‘ el

mmE e

Fig. 12. Alevel of the DandyBot game with a player controlled by a program in Python language

CONCLUSIONS

Under present-day conditions (massive programming
learning, transition from classroom learning to distant/
blended learning and back within a semester, and
competition with specialized courses and platforms
of learning of programming languages), teachers at
university programming teaching courses encounter a
significant increase in the workload, which is mostly
related to performing routine activities.

The developed DTA automates such procedures as
generating individual tasks and checking their solutions,
as well as providing an informative answer to the student
and recording the academic achievement of students.
This allows the teacher to devote more time and attention
to functions requiring creative input—in particular, to
creation and discussion of nontrivial programming tasks.

The experience of implementing the DTA in the
learning process of the Python Programming course
confirmed the possibility of personifying the learning
process for students in the form of individual learning
paths.

Authors’ contributions:

E.G. Andrianova: The urgency of automating
the process of massive programming training was
substantiated. The personification methods for the
massive programming training process were investigated
and adapted. Types of practical tasks reflecting the
contemporary specifics of software development were
highlighted.

L.A. Demidova: A procedure for a comprehensive
assessment of the student’s solution was proposed. This
procedure included checking the correctness of the result
and checking for plagiarism of solutions in the case of tasks
created by the teacher manually, as well as compliance
of the program style with the standard and metrics for
assessing the program complexity, etc. The maintenance
of statistics of students’ progress and the interface of
interaction between students and teachers are described.

P.N. Sovetov: Algorithms satisfying the constraints
for creating generators of programming tasks were
developed, the Digital Teaching Assistant computer
system architecture was built, and the implementation of
this system was completed. A procedure for automatic
verification of task solutions was developed and described.
This procedure is realized using software tests generated
by the task generator.

All authors took part in the development and
implementation of the Digital Teaching Assistant computer
system in the practice of the RTU MIREA educational
process in the Programming in Python discipline.

Russian Technological Journal. 2022;10(3):7-23

19

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

10.

11.

REFERENCES

. Gudov M.M., Ermakova E.R. Structural transformations

of the Russian economy in the conditions of acceleration

digitalization of industrial relations. Teoreticheskaya
i prikladnaya ekonomika = Theoretical and Applied
Economics. 2020;2:1-8 (in Russ.). https://doi.

org/10.25136/2409-8647.2020.2.32625

Novikova E.S. Risks and perspectives of higher school
transformation for the Russian economy in conditions
of gobalization and digitalization. Mezhdunarodnaya
torgovlya i torgovaya politika = International Trade and
Trade Policy. 2021;7(4):147-162 (in Russ.). https://doi.
org/10.21686/2410-7395-2021-3-147-162

Yaroslavtseva E.I. Humanitarian aspects of digital
technologies. Vestnik Rossiiskogo filosofskogo obshchestva
= Russian Philosophical Society. 2020;1-2(91-92):
248-251 (in Russ.). Available from URL: https:/rfo1971.
ru/wp-content/uploads/2020/03/09-03_248-251.pdf
Yaroslavtseva E.I. The potential of digital technologies and
the problems of human creativity. Voprosy Filosofii.
2020;11:58-66 (in Russ.). https://doi.org/10.21146/0042-
8744-2020-11-58-66.

. Strokov A.A. Digitalization of education: problems and

prospects. Vestnik Mininskogo universiteta = Vestnik of
Minin University. 2020;8(2):15 (in Russ.). https://doi.
0rg/10.26795/2307-1281-2020-8-2-15

Khutorskoi A.V. Pedagogical prerequisites for student
self-realization in heuristic learning. Vestnik Instituta
Obrazovaniya Cheloveka. 2020;1:1 (in Russ.). Available
from URL: http://eidos-institute.ru/journal/2020/100/
Eidos-Vestnik2020-101-Khutorskoy.pdf

Khutorskoi A.V. Interiorization and exteriorization — two
approaches to human education. Narodnoe obrazovanie.
2021;1(1484):37-49 (in Russ.).

Khalyapina L., Kuznetsova O. Multimedia professional
content foreign language competency formation in a digital
educational system exemplified by STEPIK framework.
Lecture Notes in Networks and Systems. 2020;131:
357-366. https://doi.org/10.1007/978-3-030-47415-7 38
Panoval.V.,Kolivnyk A.A. An overview of the content of online
courses on teaching the basics of programming in the Python
language. In: Sovremennye obrazovatel'nye Web-tekhnologii
v realizatsii lichnostnogo potentsiala obuchayushchikhsya
(Contemporary — Educational ~ Web-technologies in the
Realization of the Personal Potential of Students): Collection
of research articles of international scientific and practical
conference. Arzamas; 2020. P. 523-528 (in Russ).

Vorob’eva N.A., Oboeva S.V., Bernadiner M.I. Using
pedagogical design technologies in the context of
digitalization of education. Vestnik Moskovskogo
gorodskogo pedagogicheskogo universiteta. Seriya:
Informatika i informatizatsiya obrazovaniya = The
academic Journal of Moscow City University, series
Informatics and Informatization of Education.
2020;1(51):34-37 (in Russ).

Guo P.J., Kim J., Rubin R. How video production affects
student engagement: An empirical study of MOOC
videos. In: Proceedings of the First ACM Conference on
Learning @ Scale Conference. 2014. P. 41-50. https://
doi.org/10.1145/2556325.2566239

10.

11.

12.

CMUCOK JINTEPATYPbI

. I'ymo M.M., EpmakoBa 3.P. CtpykrypHble npeoOpazo-

BaHUSI POCCHUHCKOW SKOHOMHKH B YCIIOBHSX (OpPCHPO-
BaHHOH 1M(POBU3ALUK TPOU3BOJCTBEHHBIX OTHOLICHUH.
Teopemuueckas u npuxiaouas sxonomuxa. 2020;2:1-8.
https://doi.org/10.25136/2409-8647.2020.2.32625

. HoBukosa E.C. Pucku u nepcriekTuBbl TpaHchopmaium

BBICIIICH MIKOMBI IJIsl POCCUIICKON SKOHOMHUKH B YCIIOBHSIX
mo6anu3anuu U udposusaun. MesicdyHapoouas mop-
20615 u mopeosas norumuxa. 2021;7(4):147-162. https://
doi.org/10.21686/2410-7395-2021-3-147-162

. SIpocnaBueBa E.J. I'ymanuTapHble acleKTbl LU(POBBIX

TeXHONOTuH. Becmuux Poccutickozo ghunocogpckozo obuye-
cmea. 2020;1-2(91-92):248-251. URL: https://rfo1971.ru/
wp-content/uploads/2020/03/09-03 248-251.pdf

. SIpocnasuesa E.W. IToreHunan uudpoBbIX TEXHOIOIUN U

po0JIeMbl TBOpPYECTBA YellOBEeKa. Bonpocwl ghuiocoghuu.
2020;11:58-66. https://doi.org/10.21146/0042-8744-
2020-11-58-66

. CrpoxoB A.A. Iudpposuzanus oOpazoBaHus: IpoOIEeMbl

1 TEPCIeKTUBBl. Becmuux Mununckozo ynueepcumema.
2020;8(2):15. https://doi.org/10.26795/2307-1281-2020-
8-2-15

. Xyropckoit A.B. Ilemarorumueckue NpeINoOChUIKH ca-

MOpeajn3aliy YYCHHKAa B HSBPHCTHYCCKOM OOYUCHHH.
Becmuux Hncmumyma obpaszosanus yenosexa. 2020;1:1.
URL: http://eidos-institute.ru/journal/2020/100/Eidos-
Vestnik2020-101-Khutorskoy.pdf

. Xytopckoit A.B. UHTepropu3anust 1 SKCTEPHOPHU3ALIHS —

JIBa 1OJIX0/1a K 00pa3oBaHuI0 YenoBeka. Hapoonoe oopa-
s06anue. 2021;1(1484):37-49.

. Khalyapina L., Kuznetsova O. Multimedia professional

content foreign language competency formation in a digital
educational system exemplified by STEPIK framework.
Lecture Notes in Networks and Systems. 2020;131:357-366.
https://doi.org/10.1007/978-3-030-47415-7_38

. IManora U.B., Konueubik A.A. O030p comepaHusi OH-

JIAiH KypCOB MO 00YYEHHIO OCHOBAM MPOTrPaMMUPOBAHHS
Ha si3pike Python. B: Cospemenuvie obpazosamenvhbie
Web-mexnonoauu 6 peanuzayuy 1u4HOCMHO20 NOMEHYU-
ana obyuaiowuxcs. COOpPHHUK cTaTell yyacTHUKOB Mexy-
HApOJHON HAay4YHO-MPAKTUYECKOH KoH(DepeHunu. Ap3a-
Mac; 2020. C. 523-528.

Bopob6seBa H.A., O6oeBa C.B., bepnagunep M.U. Hc-
M10JIb30BaHUE TEXHOJOTHH IEAarorndeckoro au3aiiHa B
yCIoBHSAX IU(poBH3aunu oOpasoBanus. Becmuux Mo-
CKOBCKO20 20POOCKO20 Nedaco2utecko20 YHUGepCUmemd.
Cepusi: Ungopmamuxa u ungopmamusayus obpasosa-
nus. 2020;1(51):34-37.

Guo P.J., Kim J., Rubin R. How video production affects
student engagement: An empirical study of MOOC
videos. In: Proceedings of the First ACM Conference on
Learning @ Scale Conference. 2014. P. 41-50. https://
doi.org/10.1145/2556325.2566239

Lau S., Guo PJ. Data theater: a live programming
environment for prototyping data-driven explorable
explanations. Workshop on Live Programming (LIVE).
2020. 6 p. URL: https://www.samlau.me/pubs/Data-
Theater-prototyping-explorable-explanations LIVE-
2020.pdf

20

Russian Technological Journal. 2022;10(3):7-23

https://doi.org/10.25136/2409-8647.2020.2.32625
https://doi.org/10.21686/2410-7395-2021-3-147-162
https://doi.org/10.21686/2410-7395-2021-3-147-162
https://rfo1971.ru/wp-content/uploads/2020/03/09-03_248-251.pdf
https://rfo1971.ru/wp-content/uploads/2020/03/09-03_248-251.pdf
https://doi.org/10.21146/0042-8744-2020-11-58-66
https://doi.org/10.21146/0042-8744-2020-11-58-66
https://doi.org/10.26795/2307-1281-2020-8-2-15
https://doi.org/10.26795/2307-1281-2020-8-2-15
http://eidos-institute.ru/journal/2020/100/Eidos-Vestnik2020-101-Khutorskoy.pdf
http://eidos-institute.ru/journal/2020/100/Eidos-Vestnik2020-101-Khutorskoy.pdf
https://doi.org/10.1007/978-3-030-47415-7_38
https://doi.org/10.1145/2556325.2566239
https://doi.org/10.1145/2556325.2566239
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://doi.org/10.25136/2409-8647.2020.2.32625
https://doi.org/10.25136/2409-8647.2020.2.32625
https://doi.org/10.21686/2410-7395-2021-3-147-162
https://doi.org/10.21686/2410-7395-2021-3-147-162
https://rfo1971.ru/wp-content/uploads/2020/03/09-03_248-251.pdf
https://rfo1971.ru/wp-content/uploads/2020/03/09-03_248-251.pdf
https://doi.org/10.21146/0042-8744-2020-11-58-66
https://doi.org/10.21146/0042-8744-2020-11-58-66
https://doi.org/10.26795/2307-1281-2020-8-2-15
https://doi.org/10.26795/2307-1281-2020-8-2-15
http://eidos-institute.ru/journal/2020/100/Eidos-Vestnik2020-101-Khutorskoy.pdf
http://eidos-institute.ru/journal/2020/100/Eidos-Vestnik2020-101-Khutorskoy.pdf
https://doi.org/10.1007/978-3-030-47415-7_38
https://doi.org/10.1145/2556325.2566239
https://doi.org/10.1145/2556325.2566239

Pedagogical design of a digital teaching assistant
in massive professional training for the digital economy

Elena G. Andrianova,
Liliya A. Demidova, Petr N. Sovetov

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Lau S., Guo P.J. Data Theater: A live programming
environment for prototyping data-driven explorable
explanations. Workshop on Live Programming (LIVE).
2020. 6 p. Available from URL: https://www.samlau.me/
pubs/Data-Theater-prototyping-explorable-explanations_
LIVE-2020.pdf

Guo PJ. Online python tutor: embeddable web-based
program visualization for cs education. In: Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education. 2013. P. 579-584. https://doi.
org/10.1145/2445196.2445368

Miller H., Willcox K., Huang L. Crosslinks: Improving
course connectivity using online open educational
resources. The Bridge. 2016;43(3):38—45. Available from
URL: http://hdl.handle.net/1721.1/117022

Utterberg M.M., et al. Intelligent tutoring systems: Why
teachers abandoned a technology aimed at automating
teaching processes. In: Proceedings of the 54th Hawaii
International Conference on System Sciences. 2021.
P. 1538. Available from URL: http://hdl.handle.
net/10125/70798

Sherman M., et al. Impact of auto-grading on an
introductory computing course. J. Comput. Sci. Coll.
2013;28(6):69-75.

Rivers K., Koedinger K.R. Data-driven hint generation in
vastsolution spaces: aself-improving python programming
tutor. Int. J. Artif. Intell. Educ. 2017;27(1):37-64. https://
doi.org/10.1007/s40593-015-0070-z

Sovietov P. Automatic generation of programming
exercises. In: 2021 Ist International Conference on
Technology Enhanced Learning in Higher Education
(TELE). IEEE. 2021. P. 111-114. https://doi.org/10.1109/
TELES52840.2021.9482762

Schleimer S., Wilkerson D.S., Aiken A. Winnowing: local
algorithms for document fingerprinting. In: Proceedings
of the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD’03). 2003. P. 76-85.
https://doi.org/10.1145/872757.872770

Rogers M., etal. Exploring Personalization of gamification
in an Introductory programming course. In: Proceedings
of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE’21). 2021. P. 1121-1127.
https://doi.org/10.1145/3408877.3432402

Putnam V., Conati C. Exploring the need for explainable
artificial intelligence (XAI) in intelligent tutoring
systems (ITS). IUI Workshops. 2019. V. 19. Available
from URL: https://explainablesystems.comp.nus.
edu.sg/2019/wp-content/uploads/2019/02/TUT19WS-
ExSS2019-19.pdf

Shcherbina O.A. Constraint satisfaction and constraint
programming. [Intellektual’nye sistemy = Intelligent
Systems. 2011;15(1-4):53—170 (in Russ.).

Wang J., Chen B., Wei L., Liu Y. Skyfire: Data-driven
seed generation for fuzzing. In: 2017 IEEE Symposium
on Security and Privacy (SP). IEEE. 2017. P. 579-594.
https://doi.org/10.1109/SP.2017.23

Papadakis M., et al. Mutation testing advances: an analysis
and survey. Adv. Comput. 2019;112:275-378. https://doi.
org/10.1016/bs.adcom.2018.03.015

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Guo PJ. Online python tutor: embeddable web-based
program visualization for cs education. In: Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education. 2013. P. 579-584. https://doi.
org/10.1145/2445196.2445368

Miller H., Willcox K., Huang L. Crosslinks: Improving
course connectivity using online open educational
resources. The Bridge. 2016;43(3):38—45. URL: http://
hdl.handle.net/1721.1/117022

Utterberg M.M,, et al. Intelligent tutoring systems: Why
teachers abandoned a technology aimed at automating
teaching processes. In: Proceedings of the 54th Hawaii
International Conference on System Sciences. 2021.
P. 1538. URL: http://hdl.handle.net/10125/70798
Sherman M., et al. Impact of auto-grading on an
introductory computing course. J. Comput. Sci. Coll.
2013;28(6):69-75.

Rivers K., Koedinger K.R. Data-driven hint generation in
vastsolutionspaces: aself-improving python programming
tutor. Int. J. Artif. Intell. Educ. 2017;27(1):37-64. https://
doi.org/10.1007/s40593-015-0070-z

Sovietov P. Automatic generation of programming
exercises. In: 2021 Ist International Conference on
Technology Enhanced Learning in Higher Education
(TELE). IEEE. 2021. P. 111-114. https://doi.org/10.1109/
TELES52840.2021.9482762

Schleimer S., Wilkerson D.S., Aiken A. Winnowing: local
algorithms for document fingerprinting. In: Proceedings
of the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD’03). 2003. P. 76-85.
https://doi.org/10.1145/872757.872770

Rogers M., et al. Exploring personalization of gamification
in an introductory programming course. In: Proceedings
of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE’21). 2021. P. 1121-1127.
https://doi.org/10.1145/3408877.3432402

Putnam V., Conati C. Exploring the need for explainable
artificial intelligence (XAI) in intelligent tutoring
systems (ITS). IUI Workshops. 2019. V. 19. URL: https://
explainablesystems.comp.nus.edu.sg/2019/wp-content/
uploads/2019/02/TUI19WS-ExSS2019-19.pdf

[lep6una O.A. YnoBiIeTBOpEHHE OTPAHUYUCHHNA U MPO-
rpaMMHPOBAaHUE B OTPAHUYCHUSX. MHmeniekmyanvHbie
cucmemwr. 2011;15(1-4):53-170.

Wang J., Chen B., Wei L., Liu Y. Skyfire: Data-driven
seed generation for fuzzing. In: 2017 IEEE Symposium
on Security and Privacy (SP). IEEE. 2017. P. 579-594.
https://doi.org/10.1109/SP.2017.23

Papadakis M., et al. Mutation testing advances: an analysis
and survey. Adv. Comput. 2019;112:275-378. https://doi.
org/10.1016/bs.adcom.2018.03.015

Hutton G., Meijer E. Monadic Parser Combinators.
Technical Report NOTTCS-TR-96-4. Department of
Computer Science, University of Nottingham. 1996. 38 p.
URL: https://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
Phothilimthana P.M., Sridhara S. High-coverage hint
generation for massive courses: Do automated hints
help CS1 students? In: Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE’17).2017. P. 182—187. https://
doi.org/10.1145/3059009.3059058

Russian Technological Journal. 2022;10(3):7-23

21

https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
http://hdl.handle.net/1721.1/117022
http://hdl.handle.net/1721.1/117022
http://hdl.handle.net/10125/70798
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3408877.3432402
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
https://doi.org/10.1145/3059009.3059058
https://doi.org/10.1145/3059009.3059058
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://www.samlau.me/pubs/Data-Theater-prototyping-explorable-explanations_LIVE-2020.pdf
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
http://hdl.handle.net/1721.1/117022
http://hdl.handle.net/10125/70798
http://hdl.handle.net/10125/70798
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3408877.3432402
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://explainablesystems.comp.nus.edu.sg/2019/wp-content/uploads/2019/02/IUI19WS-ExSS2019-19.pdf
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015

Pedagogical design of a digital teaching assistant Elena G. Andrianova,
in massive professional training for the digital economy Liliya A. Demidova, Petr N. Sovetov

25. Hutton G., Meijer E. Monadic Parser Combinators.
Technical Report NOTTCS-TR-96-4. Department of
Computer Science, University of Nottingham. 1996. 38 p.
Available from URL: https://www.cs.nott.ac.uk/~pszgmh/
monparsing.pdf

26. Phothilimthana P.M., Sridhara S. High-coverage hint
generation for massive courses: Do automated hints
help CS1 students? In: Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE’17).2017. P. 182—187. https://
doi.org/10.1145/3059009.3059058

About the authors

Elena G. Andrianova, Cand. Sci. (Eng.), Associated Professor, Head of the Department of Corporate Information
Systems, Institute of Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr.,
Moscow, 119454 Russia). E-mail: andrianova@mirea.ru. Scopus Author ID 57200555430, ResearcherlD T-7908-2018,
SPIN-code RSCI 9858-3229, http://orcid.org/0000-0001-6418-6797

Liliya A. Demidova, Dr. Sci. (Eng.), Professor, Professor of the Department of Corporate Information Systems,
Institute of Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: demidova@mirea.ru. Scopus Author ID 56406258800, ResearcherID R-6077-2016,
SPIN-code RSCI 9447-3568, http://orcid.org/0000-0003-4516-3746

Petr N. Sovetov, Cand. Sci. (Eng.), Associated Professor, Department of Corporate Information Systems,
Institute of Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: sovetov@mirea.ru. Scopus Author ID 57221375427, SPIN-code RSCI 9999-1460, http://
orcid.org/0000-0002-1039-2429

Russian Technological Journal. 2022;10(3):7-23
22

https://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
https://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
https://doi.org/10.1145/3059009.3059058
https://doi.org/10.1145/3059009.3059058
mailto:andrianova@mirea.ru
http://orcid.org/0000-0001-6418-6797
mailto:demidova@mirea.ru
http://orcid.org/0000-0003-4516-3746
mailto:sovetov@mirea.ru
http://orcid.org/0000-0002-1039-2429
http://orcid.org/0000-0002-1039-2429

Pedagogical design of a digital teaching assistant Elena G. Andrianova,
in massive professional training for the digital economy Liliya A. Demidova, Petr N. Sovetov

006 aBTOpax

AnppuaHoBa EneHa lNenbeBHa, K.T.H., JOUEHT, 3aBeaylowmin kadeapon KopnopaTnBHbIX MHOOPMaLMOHHbLIX
cucteM MHcTUTyTa MHPOPMaAUMOHHBLIX TexHonornin GreQy BO «MUP3SA — PocCUiicKuiA TEXHONOMMYECKUA YHU-
BepcuteT» (119454, Poccusa, Mockea, np-T BepHaackoro, a. 78). E-mail: andrianova@mirea.ru. Scopus Author ID
57200555430, ResearcherlD T-7908-2018, SPIN-koa PUHLL 9858-3229, http://orcid.org/0000-0001-6418-6797

AemupoBa Jiunua AHatonbeBHa, A.T.H., npodeccop, npodeccop kadenpbl KOPNOpaTUBHLIX MHPOPMALN-
OHHbIX CUCTEM MIHCTUTYTa MHPOPMALMOHHBLIX TexHonoruii PreQy BO «MUPDA — PoCCUMCKUIA TEXHONOMMYECKNIA
yHuBepcuteT» (119454, Poccus, Mockea, np-T BepHaackoro, a. 78). E-mail: demidova@mirea.ru. Scopus Author
ID 56406258800, ResearcherlD R-6077-2016, SPIN-kon PUHLL 9447-3568, http://orcid.org/0000-0003-4516-3746

CogBeToB lNeTp HukonaeBuY, K.T.H., AOLEHT Kadenpbl KOPNOPATUBHbLIX NHPOPMALMOHHBIX cUCTeEM UHCTUTY-
Ta MHPOPMALIMOHHbLIX TexHonornii, ®reQY BO «MUP3A — Poccuiickmini TEXHONIOrMYecknin yHnBepcuteT» (119454,
Poccus, MockBa, np-T BepHaackoro, a. 78). E-mail: sovetov@mirea.ru. Scopus Author ID 57221375427, SPIN-kop,
PWHL, 9999- 1460, http://orcid.org/0000-0002-1039-2429

Translated by V. Glyanchenko
Edited for English language and spelling by Thomas Beavitt

Russian Technological Journal. 2022;10(3):7-23
23

mailto:andrianova@mirea.ru
http://orcid.org/0000-0001-6418-6797
mailto:demidova@mirea.ru
http://orcid.org/0000-0003-4516-3746
mailto:sovetov@mirea.ru
http://orcid.org/0000-0002-1039-2429

	РТЖ_обложка_03_2022_ENG_1

