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Abstract 
Objectives. Recent research in machine learning and artificial intelligence aimed at improving prediction accuracy 
and reducing computational complexity resulted in a novel neural network architecture referred to as an extreme 
learning machine (ELM). An ELM comprises a single-hidden-layer feedforward neural network in which the weights 
of connections among input-layer neurons and hidden-layer neurons are initialized randomly, while the weights of 
connections among hidden-layer neurons and output-layer neurons are computed using a generalized Moore–
Penrose pseudoinverse operation. The replacement of the iterative learning process currently used in many neural 
network architectures with the random initialization of input weights and the explicit computation of output weights 
significantly increases the performance of this novel machine learning algorithm while preserving good generalization 
performance. However, since the random initialization of input weights does not necessarily guarantee optimal 
prediction accuracy, the purpose of the present work was to develop and study approaches to intelligent adjustment 
of input weights in ELMs using bioinspired algorithms in order to improve the prediction accuracy of this data analysis 
tool in regression problems.
Methods. Methods of optimization theory, theory of evolutionary computation and swarm intelligence, probability 
theory, mathematical statistics and systems analysis were used.
Results. Approaches to the intelligent adjustment of input weights in ELMs were developed and studied. These 
approaches are based on the genetic algorithm, the particle swarm algorithm, the fish school search algorithm, 
as well as the chaotic fish school search algorithm with exponential step decay proposed by the authors.  
By adjusting input weights with bioinspired optimization algorithms, it was shown that the prediction accuracy of ELMs 
in regression problems can be improved to reduce the number of hidden-layer neurons to reach a high prediction 
accuracy on learning and test datasets. In the considered problems, the best ELM configurations can be obtained 
using the chaotic fish school search algorithm with exponential step decay.
Conclusions. The obtained results showed that the prediction accuracy of ELMs can be improved by using 
bioinspired algorithms for the intelligent adjustment of input weights. Additional calculations are required to adjust 
the weights; therefore, the use of ELMs in combination with bioinspired algorithms may be advisable where it is 
necessary to obtain the most accurate and most compact ELM configuration.

Keywords: neural networks, extreme learning machine, bioinspired algorithms, genetic algorithm, particle swarm 
optimization algorithm, fish school search algorithm, machine learning, regression analysis
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Резюме 
Цели. В результате современных исследований в машинном обучении, направленных на повышение точно-
сти и снижение вычислительной сложности алгоритмов анализа данных, была предложена новая архитек-
тура искусственной нейронной сети – машина экстремального обучения. Это нейронная сеть прямого рас-
пространения с единственным скрытым слоем. В этой сети веса соединений между входными нейронами и 
нейронами скрытого слоя инициализируются случайно, а веса соединений между нейронами скрытого слоя 
и выходными нейронами вычисляются с использованием операции псевдообращения Мура – Пенроуза. За-
мена итерационного процесса обучения, присущего многим архитектурам нейронных сетей, на случайную 
инициализацию одной части весов и вычисление другой части делает рассматриваемый инструмент суще-
ственно более производительным, с сохранением хорошей обобщающей способности. Однако случайная 
инициализация входных весов не гарантирует оптимальной точности прогнозов. Цель работы – разработка 
и исследование подходов к интеллектуальной настройке входных весов в машинах экстремального обучения 
биоинспирированными алгоритмами для повышения точности прогнозов этого инструмента анализа данных 
в задачах восстановления регрессии.
Методы. Использованы методы теории оптимизации, теории эволюционных вычислений и роевого интел-
лекта, теории вероятностей и математической статистики, системного анализа.
Результаты. Разработаны и исследованы подходы к интеллектуальной настройке входных весов в машинах 
экстремального обучения, основанные на применении генетического алгоритма, алгоритма роя частиц, ал-
горитма поиска косяком рыб, алгоритма хаотического поиска косяком рыб с экспоненциальным убыванием 
шага, предложенного авторами настоящего исследования. Выявлено, что применение биоинспирированных 
алгоритмов способно улучшить точность прогнозов машин экстремального обучения в задачах восстановле-
ния регрессии, причем машине экстремального обучения с уточненными биоинспирированными алгоритма-
ми весами требуется меньшее число нейронов на скрытом слое для достижения высокой точности прогно-
зов на тренировочных и тестовых наборах данных. С помощью хаотического алгоритма поиска косяком рыб  
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INTRODUCTION

Due to the digitalization of the economy, an 
increasing number of enterprises are integrating 
intelligent modules into their products and enterprise 
information systems in order to automate and accelerate 
business processes. These modules often comprise 
decision support systems, expert systems, and prediction 
systems that use machine learning algorithms. Such 
algorithms are used to automate the discovery of hidden 
relationships in datasets to make predictions without 
human intervention. Due to the increasing amounts of 
data being processed by intelligent systems, there is a 
need to increase the efficient performance of machine 
learning algorithms while preserving the accuracy of 
automated decisions.

In studies of classification, regression analysis, and 
prediction of time series, a variety of efficient machine 
learning approaches have been proposed, e.g., k-nearest 
neighbors [1], support vector machines [2], various 
hybrid versions [3], random forests [4], and artificial 
neural networks [5], which allow a high decision 
accuracy to be achieved.

A widely used and efficient supervised machine 
learning approach uses artificial neural networks 
(ANN), which can automate decision-making via the 
evolution of a complex nonlinear system [6]. Numerous 
ANN architectures and training methods have been 
developed, which demonstrate high efficiency in 
solving classification problems using deep learning, 
convolutional layers, and dropout layers [7], as 
well as solving regression layers using hybrids of 
population- and gradient-based algorithms of ANN 
learning [8, 9]. To find the optical hyperparameters 
of ANNs, bio-inspired algorithms are often used. For 

example, the particle swarm optimization algorithm 
was used to optimize the hyperparameters of a recurrent 
network with long short-term memory to predict time  
series [10].

The ANN training problem reduces to a problem of 
minimizing a certain ANN loss function on a training 
dataset. Researchers and practitioners conventionally 
train ANNs using an iterative backpropagation method 
and algorithms based on stochastic gradient descent 
[11, 12]. However, with increasing amounts of analyzed 
data, the time required for the convergence of gradient 
methods increases, especially when using deep ANN 
architectures. In order to accelerate ANN training, 
Google researchers proposed a distributed stochastic 
gradient descent algorithm [13], in which subsets of 
the training dataset are placed at several slave nodes 
of the computational network. At each iteration, slave 
computational nodes compute multidimensional 
gradient matrices for the proper data subset. A master 
node receives the computed multidimensional gradient 
matrices from the slave nodes, subtracts the gradients 
from the ANN weight matrix, and then sends the 
updated multidimensional weight matrix to the slave 
nodes, after which the process is repeated until the 
stopping criterion is satisfied. However, even when 
using distributed ANN training methods, the training 
may take a long time: from several hours to several 
days.

To accelerate ANN training, Huang et al. [14] 
proposed a novel ANN architecture referred to 
as an extreme learning machine (ELM). An ELM 
comprises a single-hidden-layer ANN in which the 
weights of connections among input-layer neurons 
and hidden-layer neurons, as well as the hidden-
layer shift vector, are initialized randomly, whereas 
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с экспоненциальным убыванием шага могут быть получены наилучшие конфигурации машин экстремального 
обучения в рассмотренных задачах.
Выводы. Полученные результаты показывают, что точность прогнозов машин экстремального обучения мо-
жет быть улучшена посредством применения биоинспирированных алгоритмов интеллектуальной настройки 
входных весов. Для выполнения настройки весов требуются дополнительные вычисления, поэтому исполь-
зование машин экстремального обучения в сочетании с биоинспирированными алгоритмами может быть 
целесообразно в тех областях, где необходимо получение наиболее точной и компактной конфигурации ма-
шины экстремального обучения.

Ключевые слова: нейронные сети, машины экстремального обучения, биоинспирированные алгоритмы, 
генетический алгоритм, алгоритм роя частиц, алгоритм поиска косяком рыб, машинное обучение, регрессион-
ный анализ
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the weights of connections among hidden-layer 
neurons and output-layer neurons are computed 
using a generalized Moore–Penrose pseudoinverse 
operation [15]. Besides, the hidden-layer activation 
function should be infinitely differentiable [14]. By 
using an ELM, it is possible to eliminate the iterative 
process of optimizing the ANN loss function from 
the process of preparation of an ANN model capable 
of making accurate decisions, thus significantly 
reducing the computational effort to train the ANN. 
The absence of an iterative training process does 
not prevent the ELM from demonstrating good 
generalization performance in a number of applied 
problems [16−18].

However, the random initialization of the weights 
of connections among input-layer and hidden-layer 
neurons along with the hidden-layer shift vector 
does not guarantee the optimal configuration of an 
ELM. Instead, the problems of intelligent refinement 
of input weights and hidden-layer shift vector of 
ELMs may be solved using bioinspired optimization 
algorithms [16, 19]. Such algorithms are heuristic 
methods of global optimization that process several 
solutions at each iteration without using information 
on the derivative of the function for their optimization; 
this simplifies the launch of these algorithms in parallel 
and distributed modes [20]. Widely used bioinspired 
algorithms included the genetic algorithm (GA) [21], 
the particle swarm optimization (PSO) [22], the fish 
school search (FSS) [23, 24], and others. Cai et al. 
[16] used particle swarm optimization to obtain the 
optimal ELM configuration for traffic flow forecasting. 
Song et al. [19] carried out a comparative analysis 
of the classical realization of ELM and the ELM, in 
which the intelligent selection of input weights was 
performed using the genetic algorithm, demonstrating 
the high efficiency of the ELM configuration obtained 
via GA.

In the present work, the efficiencies of various 
bioinspired algorithms were studied, including the 
genetic algorithm, the particle swarm algorithm, the 
standard fish school search algorithm, as well as a 
chaotic fish school search algorithm with exponential 
step decay, which were used in the problem of choosing 
the optimal weights of connections among input-layer 
and hidden-layer neurons, as well as the hidden-
layer shift vector. Regression estimation problems 
were considered on three datasets; the generalization 
performances were compared between the classical 
ELM [14] and the ELMs in which the intelligent 
adjustment of input weights was made using bioinspired 
algorithms. Additionally, landscapes optimized using 
bioinspired loss function algorithms were studied in 
the course of the refinement of the input weights and 
shifts in the ELMs.

EXTREME  
LEARNING MACHINE

In a supervised machine learning problem, a set of 
objects, X = XL ∪ XT, is given, where XL is a learning 
dataset, and XT is a test dataset; also given are a set of 
possible answers, Y, and an unknown objective 
function,  f: X → Y, which maps the set of objects to 
the set of possible answers. The f values are known for 
each object in the set X. The set XL is used during the 
training of the model, and the trained model quality is 
evaluated on the set XT. The learning dataset XL has 
the form { , ,..., },  x x xs1 2  where s is the number of 
objects in XL; each (ith) object xi ∈XL  is represented 
as a set of features, x h h hi n= ( , ,..., ),1 2  which 
characterize the object xi ;  and the yi  values are 
known for each (ith) object xi  and are equal to f xi( ).  
In the course of the training, the machine learning 
algorithm constructs the function a: X → Y to 
sufficiently approximate the unknown objective 
function f on X = XL ∪ XT.

An extreme learning machine (ELM) is a supervised 
machine learning algorithm, which, similarly to an 
ANN, can make decisions by automatically configuring 
a complex nonlinear system for a certain problem. It 
comprises a single-hidden-layer feedforward neural 
network with an infinitely differentiable activation 
function in the hidden layer [14] where the weights 
of connections among input-layer neurons and 
hidden-layer neurons, as well as hidden-layer shifts, 
are initialized randomly, whereas the weights of 
connections among hidden-layer neurons and output-
layer neurons are computed. Figure 1 presents the 
structure of the ELM.

Fig. 1. Extreme learning machine

Elements of the matrix α of the weights of 
connections among input-layer neurons h1, h2, … hn and 
hidden-layer neurons k1, k2, … kd, having the form 


d n× ,  where n is the number of the input-layer 
neurons, and d is the number of the hidden-layer neurons, 
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are initialized randomly; shifts b1,  b2,  …  bd of the 
hidden-layer neurons are also initialized randomly, 
while the vector of the shifts has the form d .  The 
matrix β of the weights of connections among the 
hidden-layer neurons k1, k2, … kd and output-layer 
neurons o1, o2, … om, which has the form d m× ,  where 
m is the number of the output-layer neurons, is  
calculated as

β H Y†= L, where H H H H H X α b† = = +−( ) , ( ).T T
L
T1 g �(1)

Here, XL is a matrix having the form s n× ,  in 
which the rows code s objects in the learning dataset 
XL, with each object being represented as a set of n 
features {h1, h2, … hn}. αT is the transposed matrix of 
the weights of connections among neurons of the form 


n d× ,  where n is the number of the input-layer 
neurons and d is the number of the hidden-layer 
neurons. b is a matrix of the form s d×  that is 
obtained by the transformation of the vector of shifts 
of the hidden-layer neurons of the form d  to a 
matrix of the form 1×d  in which the first row is 
repeated s times. g is an infinitely differentiable 
activation function, which is applied element-by-
element to each element of the matrix. H is the output 
matrix of the hidden-layer neurons of the form s d× .  
H† is the Moore–Penrose pseudoinverse of the matrix 
H [15] of the form d s× .  YL is the matrix of answers 
of the form s m× ,  in which the row code answers 
correspond to objects in the learning dataset XL, each 
answer having the form {o1, o2, … om}. Thus, the 
matrix β of the weights of connections among d 
hidden-layer neurons and m output-layer neurons has 
the form d m× .  For the hidden-layer activation 
function g in ELMs, the sigmoid activation function is 
often used [25]:

	 σ( ) .x x=
− −

1
1 e

� (2)

Here, x is an element of the hidden-layer output 
matrix of the form s d× ,  which is obtained by the 
multiplication of the matrix XL and the matrix αT with 
the subsequent addition of the matrix b.

The number d of the hidden-layer neurons, which 
is an ELM hyperparameter, should be adjusted to 
the problem to be solved. The number n of features 
of each object in the learning dataset is determined 
according to the specificity of the domain of the 
problem being solved. In solving the regression 
estimation problem using the ELM considered in 
this work, the number m of output-layer neurons is 
taken to be 1.

INTELLIGENT SELECTION  
OF INPUT WEIGHTS USING  

BIOINSPIRED ALGORITHMS

The random initialization of the weights α of 
connections among input-layer neurons and hidden-
layer neurons, as well as the hidden-layer shifts b, does 
not guarantee the optimal ELM configuration [16, 19]. 
Studies have been carried out in which particle swarm 
optimization was used to obtain the optimal ELM 
configuration in traffic flow forecasting problems 
[16], with a genetic algorithm being applied in 
regression estimation problems [19]. In these works, 
the root mean square error (RMSE) was selected as 
the objective function for the bioinspired algorithms:

	 RMSE = −=∑1 2
1s
a x yi ii

s ( ( ) ) ,

�  (3)

where 
xi  is the ith object in the learning dataset XL 

comprising s objects, yi is the answer for the ith object, and 
a xi( )  is the prediction of the ELM for the ith object 

xi .
The generalization performance of a trained ANN 

model is often evaluated using the mean absolute error 
(MAE) function:

	 MAE = −=∑1
1s
a x yi ii

s ( ) ,

�  (4)

where 
xi  is the ith object in the learning dataset XL 

comprising s objects, yi is the answer for the ith object, 
and a xi( )  is the prediction of the ELM for the ith object. 
The mean absolute error function was used [16] to 
evaluate the ELM model quality.

When solving the problem of selecting the optimal 
values of the input weights given by the matrix α of the 
form 

d n×  and the hidden-layer shift vector 
{b1, b2, …, bd} of the form d  (Fig. 1), each (ith) agent 
in the population of bioinspired algorithms can be 
represented as the vector { , ,..., , , ,..., ,..., , ,...,α α α α α α α α α11 12 1 21 22 2 1 2

i i
n
i i i

n
i

d
i

d
i

ddn
i i i

d
ib b b, , ,..., }.1 2 

{ , ,..., , , ,..., ,..., , ,...,α α α α α α α α α11 12 1 21 22 2 1 2
i i

n
i i i

n
i

d
i

d
i

ddn
i i i

d
ib b b, , ,..., }.1 2

The genetic algorithm used in the problem of 
intelligent selection of the input weights and hidden-
layer shifts in the ELM [19] is a heuristic population 
optimization algorithm inspired by evolutionary 
processes occurring in biological nature. Algorithm 1 
determines the pseudocode of the genetic algorithm. 
The selection, crossover, and mutation operators are 
sequentially applied to the agents in the population at 
each iteration using various selection strategies, e.g., 
tournament selection and truncation selection [21].

The particle swarm optimization (PSO) algorithm 
used in the problem of selecting the optimal values of the 
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input weights and hidden-layer shifts in the ELM [16] is 
the well-known global optimization algorithm proposed 
by Kennedy and Eberhart [22], which was inspired by the 
coordinated flight of bird flocks. Algorithm 2 determines 
the pseudocode of the particle swarm algorithm.

The fish school search (FSS) algorithm is a global 
optimization algorithm inspired by the behavior of fish 
schools swimming in search of food. The algorithm, 
which was proposed by Bastos Filho et al. [23], has 
found application in solving numerous problems, 
including image reconstruction [26] and distribution of 
weights in ANN [27].

The modification of the fish school search algorithm 
proposed by Demidova and Gorchakov [24], which 

converges faster than FSS, is called tent map-based fish 
school search with exponential step decay (ETFSS). The 
ETFSS pseudocode is determined by Algorithm 3.

In Algorithm 3, uniformly distributed random numbers 
for the vectors 

r1  and 
r2  are generated by the mapping 

tent using a dynamic system in a chaotic state. The dynamic 
system is described by time set T, state set S, and mapping 
M:  T  ×  S  →  S, which characterize the evolution of the 
dynamic system. The mapping tent is defined as

	 yn + 1 = μ min(yn, 1 − yn), where μ = 1.9999. � (5)

Here, the number μ is a bifurcation parameter, and 
yn determines the state of the dynamic system at time t.

Algorithm 1. Genetic algorithm
Start: Pcrossover is the crossover probability, Pmutation is the mutation probability.

1: define fitness function (f)
2: set the number of a generation to be 0 (t = 0)
3: randomly generate agents in the initial population Pt
4: calculate the f value for each agent in Pt
5: until the stopping criterion is satisfied, do
6: t = t + 1
7: select agents for the population Pt from the population Pt − 1
8: change agents in Pt using the crossover operator with the probability Pcrossover
9: change agents in Pt using the mutation operator with the probability Pmutation

10: calculate the f value for each agent in Pt
11: complete cycle
12: return the best evolved solution

Algorithm 2. Particle swarm algorithm*
Start: w, c1, c2, vmax

1: define fitness function (f)
2: set the number of a generation to be 0 (t = 0)
3: randomly generate agents in the initial population Pt

Fig. 2. (a) Bifurcation diagram of the dynamic system of mapping (5)  
and (b) the comparison of the linear and exponential step decays in FSS and ETFSS, respectively
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4: randomly generate the velocities Vt of agents in the range [–vmax, vmax]
5: calculate the f value for each agent in Pt

6: select agent 
p Ptgbest ∈ , such that ∀ ∈ ≤

  p P f p f pi t t i t, ,: ( ) ( )gbest,t

7: for each particle 
p Pi t t, ,∈  set the best position 

p ipbest,  to be equal to 
pi t,

8: until the stopping criterion is satisfied, do
9: t = t + 1

10: for each agent 
p Pi t t, ∈ , do

11: randomly generate 
r1  and 

r2 ,  the components of which ∈[ , ]0 1

12:
       v wv c r p p c r p pi t i t i t i i t, , , ,( ) ( )= + − + −−1 1 1 2 2gbest pbest,

13: restrict 
vi t,  to the range [–vmax, vmax]

14:
  p p vi t i t i t, , ,= +−1

15: calculate the f value for the agent 
pi t,

16: if f p f pi t i( ) ( ),, ,
 

< pbest  then 
 p pi i tpbest, ,=

17: complete cycle

18: select agent 
p Pt tgbest, ∈ , such that ∀ ∈ ≤

  p P f p f pi t t t i t, ,: ( ) ( )gbest,  

19: if f p f pt( ) ( ), 

gbest, gbest<  then 
 p p tgbest gbest,=

20: complete cycle

21: return the best found solution 
pgbest

*gbest is the global best solution at iteration t in terms of particle swarm optimization algorithm and pbest is the best solution found 
by a certain agent (personal best) at iteration t in terms of particle swarm optimization algorithm.

Algorithm 3. Chaotic fish school search algorithm with exponential step decay*
Start: stepind,initial, stepvol,initial, γ = 5

1: define fitness function (f)

2: set the number of a generation to be 0 (t = 0)

3: randomly generate agents in the initial population Pt

4: calculate the f value for each agent in Pt

5: select agent 
p Ptgbest ∈ , such that ∀ ∈ ≤

  p P f p f pi t t t i t, ,: ( ) ( )gbest,

6: until the stopping criterion is satisfied, do

7: t = t + 1

8: step stept

t
iter

ind ind initiale, , max=
−γ

9: step stept

t
iter

vol vol initiale, , max=
−γ

10: for each agent 
p Pi t t, ∈ , do

11: randomly generate 
r1  and 

r2 ,  the components of which ∈[ , ]0 1

12:
  p p step ri t i t t, , ,= +−1 1ind

13: calculate the f value for 
pi t,
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14: if f p f pi t i t( ) ( ), ,
 

≥ −1 , then 
 p pi t i t, ,= −1

15: w w
f
fi t i t
i t

i t
, ,

,

,max( )
= +−

+
1

1

∆

∆
16: complete cycle

17:


 

I
p p f

f

i t i t i ti
n

i ti
n=
− −=

=

∑
∑

( ), , ,

,

11

1

∆

∆

18: for each agent 
p Pi t t, ∈ , do 

 



p p Ii t i t t, ,= +

19:







B
p w

p

i t i ti
n

i ti
n= =

=

∑
∑

, ,

,

1

1

20: for each agent 
p Pi t t, ∈ , do

21:
  









p p step r
p B

p Bi t i t t
i t t

i t t
, , ,

,

,
;= ±

−

−
+

+
vol 2

1

1   
 the sign is minus, if w wi ti

n
i ti

n
, , ;= −=∑ ∑>1 11  otherwise, the sign is plus

22: complete cycle

23: select agent 
p tgbest, , such that ∀ ∈ ≤

  p P f p f pi t t t i t, ,: ( ) ( )gbest,

24: if f p f pt( ) ( ), 

gbest, gbest<  then 
 p p tgbest gbest,=

25: complete cycle

26: return the best found solution 
pgbest

*stepind
 is the maximum step size of the individual movement in terms of the fish school optimization algorithm, stepvol is the 

maximum step size of the collective-volitive movement in terms of the fish school optimization algorithm, iter is the number of iterations, 
and itermax is the maximum allowable number of iterations in the algorithm.

Figure 2a presents the bifurcation diagram of  
system (5).

Figure 2b compares the exponential step decay used 
in the ETFSS algorithm and the linear step decay used in 
the original fish school search algorithm. The efficiency 
of using a chaotic pseudorandom number generator (5) 
and exponential step decay (Fig. 2b) in the fish school 
search algorithm has been previously shown [24].

COMPUTATIONAL EXPERIMENT

To study the efficiencies of the algorithms GA, PSO, 
FSS, and ETFSS in the problem of distribution of input 
weights and shifts in the ELM and compare the obtained 
ELM configurations with the classical realization of 
ELM, in which the input weights and shifts are initialized 
randomly, three earlier described [28, 29] open datasets 
were considered. The first set, which contained Central 
Processing Unit (CPU) Performance data, comprised 
209 rows and 10 columns. Each row was used to 
code 9 features; these could potentially affect the 10th 
feature, which quantitatively characterized the processor 
performance. The second set, which contained auto 
imports data, comprised 206 rows and 26 columns. Each 
row coded 25 features of an object, which could affect 

the 26th feature: car price. The third dataset contained 
Boston Housing data and comprised 506 rows and 14 
columns. Each row coded 13 features of objects, which 
potentially affected the 14th feature.

To solve the regression estimation problem for the 
above datasets using the ELM, a sigmoid activation 
function (2) in the hidden layer was used. In the classical 
realization of ELM, each of the datasets was divided 10 
times into learning dataset XL, which contained 70% of 
the total number of objects in the set X, and test dataset 
XT, which contained 30% of objects of the set X. The 
classical realization of ELM was trained 10 times on the 
set XL by formula (1) and estimated 10 times on the set 
XT by formula (4) in order to select the optimal number 
of neurons in the hidden layer. Figure 3 illustrates the 
process of selection of the number of neurons, while the 
selected numbers of neurons are given in Table 1.

Table 1. Selected number of hidden-layer neurons  
in the classical ELM

Dataset CPU 
Performance

Auto 
Imports

Boston 
Housing

Number of 
neurons 30 20 60
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The number of neurons in the ELM trained by 
the bioinspired algorithms was selected in a similar 
fashion. It was shown [16, 19] that compact ELM (in 
which the number of hidden-level neurons is relatively 
small) can achieve better generalization performance 
in the case of using bioinspired algorithms for selection 
of input weights and shifts. For this reason, the upper 
bound of the number of hidden-level neurons was set 
according to Table 1. In a preliminary study in which 
cross validation was carried out over 10 blocks at 
various numbers of hidden-level neurons in the ELM, 
with the input weights and the hidden-level shifts 
being distributed by the bioinspired algorithms, it was 
determined that models with the best generalization 
performance can be obtained using ETFSS. Table 2 
and Fig. 4 present the results of the selection of the 
number of neurons for the ELM optimized by ETFSS 
(ETFSS-ELM).

Table 2. Selected number of neurons  
in the ELM adjusted by the ETFSS algorithm

Dataset CPU 
Performance

Auto 
Imports

Boston 
Housing

Number of 
neurons 10 10 30

As Figs. 3 and 4 show, if the selected number of 
neurons is too small or too large, the ELM prediction 
accuracy decreases as a consequence of underfitting or 
overfitting of the model, respectively. The ETFSS-ELM 
requires fewer neurons to achieve better accuracy on the 
test data than the classical ELM.

Figure 5 presents the convergence curves of the GA, 
PSO, and ETFSS algorithms in the optimization of root-
mean-square loss function (3) of the compact ELM on 
learning datasets at the values of the parameters of the 
bioinspired algorithms that are given in Table 3. Table 2 
presents the numbers of hidden-layer neurons in the 
compact bioinspired ELM.

Table 3. Values of the parameters  
of the bioinspired algorithms

Algorithm Selected parameter values

GA Pcrossover = 0.9, Pmutation = 0.1

PSO vmax = 5, c1 = 0.8, c2 = 0.5, w = 0.8

FSS, ETFSS stepind,initial = 0.7, stepvol,initial = 0.7

All algorithms 300 iterations, 100 population agents

It is evident from the curves in Fig. 5 that the 
ETFSS algorithm, which is an improved version of the 
FSS algorithm, can find better solutions to the problem 
of searching for the optimum of loss function (3) in 
comparison with the GA, PSO, and FSS algorithms.
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Fig. 3. Selection of the optimal number of neurons  
in ELM. The shaded areas represent the scatter  

of the values of function (4) on XT in 10-block cross-
validation; the lines represent the averaged values of 

function (4) for the (a) CPU Performance,  
(b) Auto Imports,  

and (c) Boston Housing datasets
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The generalization performances of the models 
GA-ELM, PSO-ELM, FSS-ELM, and ETFSS-ELM 
obtained by refining the weights by the algorithms GA, PSO, 
FSS, and ETFSS, respectively, were estimated using the 
box-and-whisker plots of the values of mean average error 
(MAE) function (4) (Fig. 6). Table 4 presents the average 
MAE values on the test subsets of the considered datasets. 
The comparison also included the classical realizations of 
ELM with random initialization of input weights and shifts 
with the numbers of neurons given in Table 1 and 2.

Table 4. Average values of MAE (4)  
on the test subsets of the considered datasets,  
which are obtained by 10-block cross validation  
of ELM-1 with the numbers of hidden-level  
neurons given in Table 2; ELM-2 with the numbers  
of hidden-level neurons given in Table 1, GA-ELM,  
PSO-ELM, FSS-ELM, and ETFSS-ELM

Dataset ELM-
1

ELM-
2 

GA-
ELM

PSO-
ELM

FSS-
ELM

ETFSS-
ELM

CPU 
Performance 13.2 10.4 9.4 8.8 10.3 6.2

Auto 
Imports 2657 2354 2155 2199 2522 2124

Boston 
Housing 3.47 2.89 2.69 2.86 3.11 2.64

Figure 6 and Table 4 show that the ETFSS-ELM 
model has the best generalization performance among 
the studied models. GA-ELM, PSO-ELM, FSS-ELM, 
and ETFSS-ELM, in which intelligent adjustment of 
weights and shifts was carried out, demonstrate the 
best generalization performance for all the datasets 
in comparison with the classical ELM with the same 
number of hidden-layer neurons. The ELM with the 
increased numbers of hidden-layer neurons as given in 
Table 1 is superior to the compact classical ELM and 
inferior to the compact ELMs that were adjusted by the 
bioinspired algorithms and have the numbers of hidden-
layer neurons as indicated in Tables 2 and 4.

VISUALIZATION  
OF THE LANDSCAPES  

OF THE OPTIMIZED LOSS FUNCTION

Landscapes of objective function (3) were visualized 
to illustrate the process of the search for the optimal 
values of input weights α of dimension d n× ,  where d 
is the number of hidden-layer neurons in the ELM, and 
n is the number of input-layer neurons and shifts of 
dimension d . Objective function (3) in this problem 
of intelligent adjustment of the input weights and shifts 
in the ELM inputs multidimensional; vector 

w  of the 
form q ,  where q = d × n + d. Table 5 presents the q 
values for each of the considered datasets.
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Table 5. Dimensions of the vector 
w  of weights  

and shifts in the ELM

Dataset CPU 
Performance Auto Imports Boston 

Housing

Dimension 
of w  100 260 420

As Table 5 shows, the dimension of objective 
function (3) is high enough in each of the analyzed 
problems, but the landscapes can be visualized only for 
two-dimensional functions. There are a number of 
approaches to visualizing multidimensional functions in 
a three-dimensional rectangular coordinate system. For 
example, it was proposed [30] to define two orthogonal 
vectors, 

a  and 


b ,  the dimension of which coincides 
with the dimension of 

w,  and then define function u to 
be visualized as

	 u f w a b( , ) ( ).α β α β= + +
 



� (5)

Here, f is the initial function, 
w  is a multidimensional 

vector, α and β are scalar parameters, 
a  and 



b  are 
orthogonal unit vectors the dimension of which coincides 
with that of vector 

In the problem under consideration, the function f is 
defined by formula (3); the vector 

w  contains the input 
weights and shifts in the optimal ELM configuration; 
a = { , , , ,...};0 1 0 1  



b = { , , , ,...};1 0 1 0  and the dimensions 
of the vectors 





a b w, ,  and  coincide. For each of the 
considered datasets, the landscapes of function (3) near 
the found optimum 

w  were visualized (Figs. 7, 8). The 
scalar parameters α and β were varied during the 
visualization in the range [−1, 1] at an interval of 0.02. 

To visualize the process of convergence of the 
ETFSS algorithm in spaces containing many local 
extrema shown in Figs. 7 and 8, the changes in the 
position of a randomly selected agent of the ETFSS 
algorithm at every 25th iteration were determined. For 
each position 

p  of the agent, the nearest point was 
chosen in the grid constructed during the landscape 
visualization by varying the scalars α and β. The 
proximity of the vector 

p  to the point {αi,  βi} was 
determined by calculating the Manhattan distance with a 
shift with respect to the vector 

w,  near which the 
visualization is performed:

	

dist p p w a b

p w a b

i j i j

k k i k j kk

( , , ) ( ) ( )

( ) ( )

   



α β α β

α β

= − − + =

= − − +

   

==∑ 1
n .  �

(6)

Fig. 7. Visualization of landscapes of multidimensional loss functions near the found optimum  
for the (a) CPU Performance, (b) Auto Imports, and (c) Boston Housing datasets

Fig. 8. Visualization of contour lines of multidimensional loss functions near the found optimum  
for the (a) CPU Performance, (b) Auto Imports, and (c) Boston Housing datasets
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Here, n is the dimension of the agent position vector 
p;  this dimension coincides with that of the vector 

w,  
which codes the input weights and shifts in the found 
optimal ELM coordination. The dimension of the agent 
position vector 

p  also coincides with that of the 
mutually orthogonal vectors 

a  and 


b , 




a b= ={ , , , ,...}, { , , , ,...},0 1 0 1 1 0 1 0 




a b= ={ , , , ,...}, { , , , ,...},0 1 0 1 1 0 1 0  where αi and βi are the coordinates of a 
visualization grid point.

Figure 9 presents the visualizations of the change in 
the position 

p  of the randomly selected agent of the 
ETFSS algorithm at every 25th iteration in the process 
of the search for the optimal values of the input weights 
and shifts in the ELM by optimizing loss function (3) 
near the found solution .

It can be seen from Figure 7 and 8 that function 
(3) in the considered problems has a large number 
of extrema, which are successfully passed by the 
bioinspired optimization algorithms in the search for 
the optimal values of the input weights and hidden-layer 
shifts in the ELM. The trajectories in Fig. 9 suggest that 
the ETFSS algorithm improves the solutions obtained 
by the population of agents at each iteration until the 
completion of the execution of the algorithm.

CONCLUSIONS

In this work, the efficiency of bioinspired algorithms 
was studied in the problem of intelligent selection of the 
weights of connections among input-layer neurons and 
hidden-layer neurons and also the hidden-layer shifts 
in extreme learning machines in regression estimation 
problems.

Generalization performances between the classical, 
compact classical, and compact ELMs were compared, 

in which the intelligent adjustment of input weights 
and hidden-layer shifts was made using the genetic 
algorithm (GA-ELM), the particle swarm optimization 
(PSO-ELM), the fish school search (FSS-ELM), and the 
chaotic fish school search with exponential step decay 
(ETFSS-ELM). It was determined that the compact 
ELM in which the input weights are adjusted by the 
bioinspired algorithms achieves a better generalization 
performance using fewer hidden-layer neurons. The 
chaotic fish school search with exponential step decay 
(ETFSS) [24] can ensure the best ELM configurations in 
the considered problems.

The constructed visualizations of the 
multidimensional loss function landscapes in the three-
dimensional rectangular coordinate system near the 
found solution demonstrate the presence of numerous 
extrema, which makes it expedient to use bioinspired 
algorithms in the search for the global optimum. The 
obtained visualization of the trajectory of a randomly 
selected agent of the ETFSS algorithm shows that, 
iteration by iteration, the algorithm improves the 
solutions found by the population.

Further studies may be aimed at exploring the 
possibility of using ETFSS to refine the weights of an 
online extreme learning machine capable of further 
learning as new data are received without iterative 
retraining [31] Analysis of the dependence of the 
results obtained using bioinspired algorithms on their 
hyperparameters is also a promising research direction.
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Fig. 9. Changes in the position of a randomly selected agent of the ETFSS algorithm near the found solution  
for the (a) CPU Performance, (b) Auto Imports, and (c) Boston Housing datasets
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