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Abstract

Objectives. Recent research in machine learning and artificial intelligence aimed at improving prediction accuracy
and reducing computational complexity resulted in a novel neural network architecture referred to as an extreme
learning machine (ELM). An ELM comprises a single-hidden-layer feedforward neural network in which the weights
of connections among input-layer neurons and hidden-layer neurons are initialized randomly, while the weights of
connections among hidden-layer neurons and output-layer neurons are computed using a generalized Moore—
Penrose pseudoinverse operation. The replacement of the iterative learning process currently used in many neural
network architectures with the random initialization of input weights and the explicit computation of output weights
significantly increases the performance of this novel machine learning algorithm while preserving good generalization
performance. However, since the random initialization of input weights does not necessarily guarantee optimal
prediction accuracy, the purpose of the present work was to develop and study approaches to intelligent adjustment
of input weights in ELMs using bioinspired algorithms in order to improve the prediction accuracy of this data analysis
tool in regression problems.

Methods. Methods of optimization theory, theory of evolutionary computation and swarm intelligence, probability
theory, mathematical statistics and systems analysis were used.

Results. Approaches to the intelligent adjustment of input weights in ELMs were developed and studied. These
approaches are based on the genetic algorithm, the particle swarm algorithm, the fish school search algorithm,
as well as the chaotic fish school search algorithm with exponential step decay proposed by the authors.
By adjusting input weights with bioinspired optimization algorithms, it was shown that the prediction accuracy of ELMs
in regression problems can be improved to reduce the number of hidden-layer neurons to reach a high prediction
accuracy on learning and test datasets. In the considered problems, the best ELM configurations can be obtained
using the chaotic fish school search algorithm with exponential step decay.

Conclusions. The obtained results showed that the prediction accuracy of ELMs can be improved by using
bioinspired algorithms for the intelligent adjustment of input weights. Additional calculations are required to adjust
the weights; therefore, the use of ELMs in combination with bioinspired algorithms may be advisable where it is
necessary to obtain the most accurate and most compact ELM configuration.

Keywords: neural networks, extreme learning machine, bioinspired algorithms, genetic algorithm, particle swarm
optimization algorithm, fish school search algorithm, machine learning, regression analysis
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Pe3iome

Llenun. B pesynbtate COBPEMEHHbIX UCCNEeA0BaHNI B MALLMHHOM 00Yy4YeHMN, HanpaBeHHbIX Ha NOBbLILLIEHNE TOYHO-
CTU U CHUXEHME BbIYUCIIUTENIBHOWM CIIOXHOCTM afirOPUTMOB aHanm3a OaHHbIX, Oblla NpeasioxXeHa HoBasi apXmuTek-
Typa UCKYCCTBEHHOM HEMPOHHOM CEeTU — MalLMHAa SKCTPEMasbHOro 00y4eHus. ATO HEMPOHHAsA CeTb NPAMOro pac-
MPOCTPaHEHUS C eAVHCTBEHHbBIM CKPbITbIM CNIOEM. B 3TOI ceTn Beca CoeaAnHEHUIN MeXAY BXOOHbIMW HENPOHaAMU 1
HEeMpoOHaMM CKPbITOrO CNOS MHULMANU3VPYIOTCS Cly4anHo, a BeCa COeAMHEHUIN MeXAY HENPOHAMN CKPLITOrO Crosi
1 BbIXOOHbIMW HEMPOHAaMU BbIYNCAAIOTCS C UCMOJIb30BaHNEM onepauumn nceraoobpatleHms Mypa — NeHpoysa. 3a-
MeHa UTepaLMoHHOro npouecca 0byy4eHus, NPUCYLLErO MHOTMM apXUTEKTYPaM HEMPOHHbLIX CETEN, Ha ClyyarHyo
VHNLMaNN3aumio O4HOM 4aCT BECOB N BblYUCIEHME APYIrOl YacTu AenaeT pacCcMaTprBaEMbIN MHCTPYMEHT CylLe-
CTBEHHO 6onee Npon3BOAMTENBHLIM, C COXpPaHeHNEM xopoluer obobuiatollern cnocobHocTn. OgHako cnyyariHas
VHNLMaNn3aums BXOAHbIX BECOB HE rapaHTUPYeET ONTUMasibHOM TOYHOCTM NPOrHO30B. Llenb paboTkl — pa3paboTka
1 nccnenoBaHme noaxoaoB K MHTENNEKTyalbHOW HACTPOWKE BXOAHbIX BECOB B MaLLIMHAX 9KCTPEMaJIbHOro 00yyYeHus
ONOMHCNNPUPOBAHHbLIMU aNFOPUTMaMK A1 NOBbLILLEHWS TOYHOCTM NPOrHO30B 3TOM0 MHCTPYMEHTA aHann3a AaHHbIX
B 3a4a4ax BOCCTAHOBJ/IEHUS perpeccun.

MeTopbl. /Icnonb3oBaHbl METOAbI TEOPUM ONTUMU3ALNN, TEOPUN IBOMOLMOHHBIX BbIHVICAEHUA 1 POEBOIO UHTES-
lekTa, Teopum BEPOATHOCTEN U MaTEMATUYECKOW CTAaTUCTUKN, CACTEMHOIO aHanmMaa.

PeaynbTaTbl. Pa3paboTaHbl U UCcneaoBaHbl NOAXOAbl K MHTENNEKTYyalbHOM HACTPOWKE BXOAHbLIX BECOB B MaLLIMHAX
3KCTpeMasnbHOro 06y4eHnsi, OCHOBaHHbIE HA MPUMEHEHUN FTEHETUYECKOrO anropuTma, airopntMma pos HacTtuu, an-
ropuTMa rnomcka Kocsikom pbid, anroputmMa XaoTM4eCKoro Nnoncka KOCSiKOM pbld ¢ 3KCMOHEHLUMaNbHbIM YObIBAHUEM
wara, NnpenioXXeHHoro aBTopamMm HaCTOSAILLErO UCCNed0BaHus. BbiISBNEHO, 4TO NpUMeHeHne BMOVNHCIMPUPOBAHHbIX
aNropuTMOB CMOCOBHO YNYYLLINTL TOYHOCTb MPOrHO30B MaLLWH 3KCTPeMasibHOro 0by4eHuns B 3aa4ax BOCCTaHOBNE-
HUS perpeccumn, NpuiyemM MallmHe 3KCTPEMasbHOro 06y4YeHust C YTOYHEHHbBIMU OMOMHCMNPUPOBAHHLIMK anropnuTMma-
MK BecaMmn TPeBYETCS MEHbLLIEE YNCIO HEMPOHOB Ha CKPLITOM CJI0€ A1 AOCTUXEHNS BICOKO TOYHOCTM NPOrHO-
30B Ha TPEHMPOBOYHbIX 1 TECTOBbIX HAbopax AaHHbIX. C MOMOLLbIO Xa0TUYECKOro anropmTMa noncka Kocsikom pbld
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C 3KCMOHeHUalbHbIM y6bIBaHI/IeM wara MoryTt OblITb noJiy4eHbl Hanny4wine KOHCDVIpraLJ,I/IVI MaLUVH SKCTPEMaJIbHOIro

00Yy4eHNs B PACCMOTPEHHbIX 3aJa4ax.

BI:IBOAI:I. I'IonyquHble pe3ysibTaTbl MOKa3bIiBAOT, HTO TOYHOCTb MPOrHO030B MalLUMH 3KCTPEeMasibHOIro 06yHeva MO-
XeT ObIThb yJyyLLEHa NOCPEACTBOM NPUMEHEHNS BMONHCNINPUPOBAHHbIX 2TOPUTMOB MHTENNIEKTYasIbHOM HACTPOKM
BXOOHbIX BECOB. ,ﬂ,ﬂﬂ BbIMOJIHEHNA H&CTDOVIKVI BECOB Tp6‘6y}OTCﬂ A0MNOJIHNUTEJIbHbIE BblHUCNIEHNA, MO3TOMY UCMOJIb-
30BaHMe MallnH 3KCTpeMasibHOro 06yqu|/|9| B co4YeTaHun C 6I/IOI/IHCFII/IpI/IpOBaHHbIMI/I anropuTMamMmm MoxeT ObITb
LenecoobpasHo B Tex 0bnacTsx, rae HeobxoaMMo nosydeHne Hanbonee TOYHOM U KOMMAKTHOM KOHbUrypauum ma-

LLUMHbI 9KCTPEMAsIbHOIr0 00Yy4eHUS.

KniouyeBble cnoBa: HEMPOHHbIE CETU, MALLUMHbI 3KCTPEMASIbHOIO O6y‘-IeHl/I9I, 6VIOMHCI'IVIpVIpOBaHHbIe aJiIr OPUTMbI,
reHeTUYeCKMn anropuTM, anropuTM Pos HacTuL,, anropmTM NOMCKa KOCSKOM pbl6, MallnHHOE o6yHeHme, perpeccnoH-

HbIl aHann3

e Moctynuna: 29.11.2021 ¢ Jopa6oTaHa: 22.12.2021 ¢ MpuHaTa k ony6nukoBanuio: 01.03.2022

Ona uutupoeanusa: Oemuposa J1.A., FopyakoB A.B. MprumeHeHre GUONHCMIMPUPOBAHHBLIX airfOPUTMOB T1I06asbHOW
oNTUMM3aLUMM 01K NOBbILIEHNS TOYHOCTU MPOrHO30B KOMMAKTHBIX MaLLIMH 9KCTPemManbHoro odyydenus. Russ. Technol. J.
2022;10(2):59-74. https://doi.org/10.32362/2500-316X-2022-10-2-59-74

Mpo3payHocTb GUHAHCOBOW AEATENIbHOCTU: ABTOPLI HE UMEIOT PUHAHCOBOW 3aMHTEPECOBaHHOCTM B NPeACTaB/EeH-

HbIX MaTepunanax nin Mmetogax.

ABTOPbI 3a9BNSAIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.

INTRODUCTION

Due to the digitalization of the economy, an
increasing number of enterprises are integrating
intelligent modules into their products and enterprise
information systems in order to automate and accelerate
business processes. These modules often comprise
decision support systems, expert systems, and prediction
systems that use machine learning algorithms. Such
algorithms are used to automate the discovery of hidden
relationships in datasets to make predictions without
human intervention. Due to the increasing amounts of
data being processed by intelligent systems, there is a
need to increase the efficient performance of machine
learning algorithms while preserving the accuracy of
automated decisions.

In studies of classification, regression analysis, and
prediction of time series, a variety of efficient machine
learning approaches have been proposed, e.g., k-nearest
neighbors [1], support vector machines [2], various
hybrid versions [3], random forests [4], and artificial
neural networks [5], which allow a high decision
accuracy to be achieved.

A widely used and efficient supervised machine
learning approach wuses artificial neural networks
(ANN), which can automate decision-making via the
evolution of a complex nonlinear system [6]. Numerous
ANN architectures and training methods have been
developed, which demonstrate high efficiency in
solving classification problems using deep learning,
convolutional layers, and dropout layers [7], as
well as solving regression layers using hybrids of
population- and gradient-based algorithms of ANN
learning [8, 9]. To find the optical hyperparameters
of ANNSs, bio-inspired algorithms are often used. For

example, the particle swarm optimization algorithm
was used to optimize the hyperparameters of a recurrent
network with long short-term memory to predict time
series [10].

The ANN training problem reduces to a problem of
minimizing a certain ANN loss function on a training
dataset. Researchers and practitioners conventionally
train ANNSs using an iterative backpropagation method
and algorithms based on stochastic gradient descent
[11, 12]. However, with increasing amounts of analyzed
data, the time required for the convergence of gradient
methods increases, especially when using deep ANN
architectures. In order to accelerate ANN training,
Google researchers proposed a distributed stochastic
gradient descent algorithm [13], in which subsets of
the training dataset are placed at several slave nodes
of the computational network. At each iteration, slave
computational nodes compute multidimensional
gradient matrices for the proper data subset. A master
node receives the computed multidimensional gradient
matrices from the slave nodes, subtracts the gradients
from the ANN weight matrix, and then sends the
updated multidimensional weight matrix to the slave
nodes, after which the process is repeated until the
stopping criterion is satisfied. However, even when
using distributed ANN training methods, the training
may take a long time: from several hours to several
days.

To accelerate ANN training, Huang et al. [14]
proposed a novel ANN architecture referred to
as an extreme learning machine (ELM). An ELM
comprises a single-hidden-layer ANN in which the
weights of connections among input-layer neurons
and hidden-layer neurons, as well as the hidden-
layer shift vector, are initialized randomly, whereas
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the weights of connections among hidden-layer
neurons and output-layer neurons are computed
using a generalized Moore—Penrose pseudoinverse
operation [15]. Besides, the hidden-layer activation
function should be infinitely differentiable [14]. By
using an ELM, it is possible to eliminate the iterative
process of optimizing the ANN loss function from
the process of preparation of an ANN model capable
of making accurate decisions, thus significantly
reducing the computational effort to train the ANN.
The absence of an iterative training process does
not prevent the ELM from demonstrating good
generalization performance in a number of applied
problems [16—18].

However, the random initialization of the weights
of connections among input-layer and hidden-layer
neurons along with the hidden-layer shift vector
does not guarantee the optimal configuration of an
ELM. Instead, the problems of intelligent refinement
of input weights and hidden-layer shift vector of
ELMs may be solved using bioinspired optimization
algorithms [16, 19]. Such algorithms are heuristic
methods of global optimization that process several
solutions at each iteration without using information
on the derivative of the function for their optimization;
this simplifies the launch of these algorithms in parallel
and distributed modes [20]. Widely used bioinspired
algorithms included the genetic algorithm (GA) [21],
the particle swarm optimization (PSO) [22], the fish
school search (FSS) [23, 24], and others. Cai et al.
[16] used particle swarm optimization to obtain the
optimal ELM configuration for traffic flow forecasting.
Song et al. [19] carried out a comparative analysis
of the classical realization of ELM and the ELM, in
which the intelligent selection of input weights was
performed using the genetic algorithm, demonstrating
the high efficiency of the ELM configuration obtained
via GA.

In the present work, the efficiencies of various
bioinspired algorithms were studied, including the
genetic algorithm, the particle swarm algorithm, the
standard fish school search algorithm, as well as a
chaotic fish school search algorithm with exponential
step decay, which were used in the problem of choosing
the optimal weights of connections among input-layer
and hidden-layer neurons, as well as the hidden-
layer shift vector. Regression estimation problems
were considered on three datasets; the generalization
performances were compared between the classical
ELM [14] and the ELMs in which the intelligent
adjustment of input weights was made using bioinspired
algorithms. Additionally, landscapes optimized using
bioinspired loss function algorithms were studied in
the course of the refinement of the input weights and
shifts in the ELMs.

EXTREME
LEARNING MACHINE

In a supervised machine learning problem, a set of
objects, X = X; U X, is given, where X is a learning
dataset, and X is a test dataset; also given are a set of
possible answers, Y, and an unknown objective
function, i X — Y, which maps the set of objects to
the set of possible answers. The f'values are known for
each object in the set X. The set X; is used during the
training of the model, and the trained model quality is
evaluated on the set X . The learning dataset X; has
the form {X|,X,,..,X }, where s is the number of
objects in X ; each (ith) object X; € X[ is represented
as a set of features, 5c'l. =(h,hy,....,h,), which
characterize the object X;; and the ), values are
known for each (ith) object X, and are equal to f'(X,).
In the course of the training, the machine learning
algorithm constructs the function a: X — Y to
sufficiently approximate the unknown objective
function fon X = X; U X,.

An extreme learning machine (ELM) is a supervised
machine learning algorithm, which, similarly to an
ANN, can make decisions by automatically configuring
a complex nonlinear system for a certain problem. It
comprises a single-hidden-layer feedforward neural
network with an infinitely differentiable activation
function in the hidden layer [14] where the weights
of connections among input-layer neurons and
hidden-layer neurons, as well as hidden-layer shifts,
are initialized randomly, whereas the weights of
connections among hidden-layer neurons and output-
layer neurons are computed. Figure 1 presents the
structure of the ELM.

Onm

Fig. 1. Extreme learning machine

Elements of the matrix @ of the weights of
connections among input-layer neurons 4, A,, ... h, and

hidden-layer neurons k,, k,, ... k, having the form

R \where n is the number of the input-layer

neurons, and d is the number of the hidden-layer neurons,
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are initialized randomly; shifts b, b,, ... b, of the
hidden-layer neurons are also initialized randomly,

while the vector of the shifts has the form R¢. The
matrix f of the weights of connections among the

hidden-layer neurons k,, k,, ... k; and output-layer

neurons o,, 0,, ... 0,,, which has the form RA*™M  \where

m 1is the number of the output-layer neurons, is
calculated as

p= HY ,where HT = (HTH)"'HT, H = g(X  aT +b).(1)

Here, X| is a matrix having the form RS*7 " in
which the rows code s objects in the learning dataset
X, with each object being represented as a set of n
features {h, h,, ... h,}. al is the transposed matrix of
the weights of connections among neurons of the form
R where n is the number of the input-layer
neurons and d is the number of the hidden-layer

neurons. b is a matrix of the form R*? that is
obtained by the transformation of the vector of shifts

of the hidden-layer neurons of the form R? to a

matrix of the form R™? in which the first row is

repeated s times. g is an infinitely differentiable
activation function, which is applied element-by-
element to each element of the matrix. H is the output

matrix of the hidden-layer neurons of the form R**¢.
H' is the Moore—Penrose pseudoinverse of the matrix

H [15] of the form R7*s. Y, is the matrix of answers

of the form R, in which the row code answers
correspond to objects in the learning dataset X, , each
answer having the form {o, o,, ... o,}. Thus, the
matrix B of the weights of connections among d
hidden-layer neurons and m output-layer neurons has
the form R For the hidden-layer activation
function g in ELMs, the sigmoid activation function is

often used [25]:

o(x)=

)

l—e’

Here, x is an element of the hidden-layer output

matrix of the form R**?, which is obtained by the
multiplication of the matrix X; and the matrix al with
the subsequent addition of the matrix b.

The number d of the hidden-layer neurons, which
is an ELM hyperparameter, should be adjusted to
the problem to be solved. The number n of features
of each object in the learning dataset is determined
according to the specificity of the domain of the
problem being solved. In solving the regression
estimation problem using the ELM considered in
this work, the number m of output-layer neurons is
taken to be 1.

INTELLIGENT SELECTION
OF INPUT WEIGHTS USING
BIOINSPIRED ALGORITHMS

The random initialization of the weights a of
connections among input-layer neurons and hidden-
layer neurons, as well as the hidden-layer shifts b, does
not guarantee the optimal ELM configuration [16, 19].
Studies have been carried out in which particle swarm
optimization was used to obtain the optimal ELM
configuration in traffic flow forecasting problems
[16], with a genetic algorithm being applied in
regression estimation problems [19]. In these works,
the root mean square error (RMSE) was selected as
the objective function for the bioinspired algorithms:

RMSE = \/Ez; (@)= y,)%, 3)

where X; is the ith object in the learning dataset X
comprising s objects, y; is the answer for the ith object, and
a(x;) is the prediction of the ELM for the ith object X;.

The generalization performance of a trained ANN
model is often evaluated using the mean absolute error
(MAE) function:

1 ,
MAE=_% " [aGi) -], )

where X; is the ith object in the learning dataset Xy
comprising s objects, y; is the answer for the ith object,
and a(X;) is the prediction of the ELM for the ith object.
The mean absolute error function was used [16] to
evaluate the ELM model quality.

When solving the problem of selecting the optimal
values of the input weights given by the matrix a of the
form R and the hidden-layer shift vector
(b, by, ..., b} of the form R? (Fig. 1), each (ith) agent
in the population of bioinspired algorithms can be
represented as the vector {0({1,0({2,...,0&{”,0&31,0(52,...,
0, s O 00 oty BE DY B Y

The genetic algorithm used in the problem of
intelligent selection of the input weights and hidden-
layer shifts in the ELM [19] is a heuristic population
optimization algorithm inspired by evolutionary
processes occurring in biological nature. Algorithm 1
determines the pseudocode of the genetic algorithm.
The selection, crossover, and mutation operators are
sequentially applied to the agents in the population at
each iteration using various selection strategies, e.g.,
tournament selection and truncation selection [21].

The particle swarm optimization (PSO) algorithm
used in the problem of selecting the optimal values of the
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input weights and hidden-layer shifts in the ELM [16] is
the well-known global optimization algorithm proposed
by Kennedy and Eberhart [22], which was inspired by the
coordinated flight of bird flocks. Algorithm 2 determines
the pseudocode of the particle swarm algorithm.

The fish school search (FSS) algorithm is a global
optimization algorithm inspired by the behavior of fish
schools swimming in search of food. The algorithm,
which was proposed by Bastos Filho et al. [23], has
found application in solving numerous problems,
including image reconstruction [26] and distribution of
weights in ANN [27].

The modification of the fish school search algorithm
proposed by Demidova and Gorchakov [24], which

1.0

o o o
N e ) I ¢ ¢

Generated states

o
(V)

o
o

1.2 1.4 16 18
Chaotic mapping parameter

(a)

converges faster than FSS, is called tent map-based fish
school search with exponential step decay (ETFSS). The
ETFSS pseudocode is determined by Algorithm 3.

In Algorithm 3, uniformly distributed random numbers
for the vectors 7 and 7, are generated by the mapping
tent using a dynamic system in a chaotic state. The dynamic
system is described by time set 7, state set S, and mapping
M: T x § — S, which characterize the evolution of the
dynamic system. The mapping tent is defined as

Y, +1=kmin(y,, 1 -y ), where p=1.9999. (5)

Here, the number p is a bifurcation parameter, and
,, determines the state of the dynamic system at time ¢.

--- Linear decay
N —— Exponential decay

Step size
I
N

o
N

o
o

0 20 40 60 80 100
No. of iteration

(b)

Fig. 2. (a) Bifurcation diagram of the dynamic system of mapping (5)
and (b) the comparison of the linear and exponential step decays in FSS and ETFSS, respectively

Algorithm 1. Genetic algorithm

Start: P

crossover

1: define fitness function (f)
set the number of a generation to be 0 (= 0)

is the crossover probability, P ..

calculate the f'value for each agent in P,
until the stopping criterion is satisfied, do
t=t+1

N A A T

_.
e

calculate the f'value for each agent in P,

[u—
—_—

: complete cycle

—_
[\

. return the best evolved solution

change agents in P, using the crossover operator with the probability P
change agents in P, using the mutation operator with the probability P

is the mutation probability.

randomly generate agents in the initial population P,

select agents for the population P, from the population P,

crossover

mutation

Algorithm 2. Particle swarm algorithm*

Start: w, ¢, ¢y, V00

1: define fitness function (f)
2: set the number of a generation to be 0 (¢ = 0)

3: randomly generate agents in the initial population P,
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4: randomly generate the velocities V, of agents in the range [-v,

max’ ¢

]
max
. calculate the f'value for each agent in P,

1 select agent Pypeg €, such that Vp,, € F 1 f(Pgpes ) < (B ,)

5
6
7: for each particle p;, € F,, set the best position ﬁpbest,i to be equal to p; ,
8: until the stopping criterion is satisfied, do

9

t=t+1
10: for each agent p;, € F,, do
11: randomly generate 7 and 7, the components of which €[0,1]
12: ‘_;i,t = W‘_;i,t—l + cla(ﬁgbest - ﬁi,t) + 02?2 (ﬁpbest,i - ﬁi,t)
13: restrict \7,-7, to the range [V, o Vi o)
14: ﬁi,t = 13,-,,_1 + ‘71‘,1
15: calculate the f'value for the agent ﬁi,z
16: if f(ﬁi,t) < f(ﬁpbest,i)’ then ﬁpbest,i = ﬁi,t
17: complete cycle
18: select agent Pypeg, € By, such that Vb, , € B2 f(Pgpest,) S /(Pr)
19: if f(ﬁgbest,t) < f(ﬁgbest)’ then ﬁgbest = ﬁgbest,t

20: complete cycle

21: return the best found solution ﬁgbest

*gbest is the global best solution at iteration # in terms of particle swarm optimization algorithm and pbest is the best solution found
by a certain agent (personal best) at iteration ¢ in terms of particle swarm optimization algorithm.

Algorithm 3. Chaotic fish school search algorithm with exponential step decay*
Start: step;, g initiar> S1€Pyolnitial> ¥ =

1: define fitness function (f)

. set the number of a generation to be 0 (¢ =0)

: randomly generate agents in the initial population P,

: select agent Pypeq € £, such that Vp; , € B2 f (Dygpes ) < /()

2

3

4: calculate the f'value for each agent in P,

5

6: until the stopping criterion is satisfied, do
7

tr=t+1
il (O
8: S1€Pind s = S1ePing jnigial " ™
.
9: S1EP o1 = €D o initial® < "
10: for each agent p;, € F}, do
11: randomly generate 7; and 7, the components of which €[0,1]
12: Z)i,t = ﬁi,t—l + StePind,t’_’i
13: calculate the fvalue for p; ,
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14: if f(ﬁi’t) 2 f(ﬁi,t_l) , then ﬁi,t = ﬁi,t—l
15 Y
: Wit =Wig1 T
T max(4 )
16: complete cycle
n - -
17- 7= Z,-=1 (pi,tn_ pi,t—l)Afi,t
i i
18: for each agent 1_5,',1 €l ,do ﬁi,, = 1_51-,, +f,
n -
B zizlpi,zwi,t
n
19: 2P
20: for each agent p;, € F}, do
) 5=y -»ﬁi,t_BHl_ L. . n n ) . ..
21: Diy = Di, Estep g 1 ‘ 5 B ;the sign is minus, 1le_:1 W, > zi:l w; ;15 otherwise, the signis plus
it~ Pr+l
22: complete cycle
23: select agent Pypeg, » Such that Vp, , € By @ [ (Pgpese,) < /(P; )
24: if f(ﬁgbest,t) < f(ﬁgbest)’ then ﬁgbest = ﬁgbest,t

25: complete cycle

26: return the best found solution Pypeq

*step,, 4 is the maximum step size of the individual movement in terms of the fish school optimization algorithm, step,, is the
maximum step size of the collective-volitive movement in terms of the fish school optimization algorithm, ifer is the number of iterations,
and iter,  is the maximum allowable number of iterations in the algorithm.

Figure 2a presents the bifurcation diagram of
system (5).

Figure 2b compares the exponential step decay used
in the ETFSS algorithm and the linear step decay used in
the original fish school search algorithm. The efficiency
of using a chaotic pseudorandom number generator (5)
and exponential step decay (Fig. 2b) in the fish school
search algorithm has been previously shown [24].

COMPUTATIONAL EXPERIMENT

To study the efficiencies of the algorithms GA, PSO,
FSS, and ETFSS in the problem of distribution of input
weights and shifts in the ELM and compare the obtained
ELM configurations with the classical realization of
ELM, in which the input weights and shifts are initialized
randomly, three earlier described [28, 29] open datasets
were considered. The first set, which contained Central
Processing Unit (CPU) Performance data, comprised
209 rows and 10 columns. Each row was used to
code 9 features; these could potentially affect the 10th
feature, which quantitatively characterized the processor
performance. The second set, which contained auto
imports data, comprised 206 rows and 26 columns. Each
row coded 25 features of an object, which could affect

the 26th feature: car price. The third dataset contained
Boston Housing data and comprised 506 rows and 14
columns. Each row coded 13 features of objects, which
potentially affected the 14th feature.

To solve the regression estimation problem for the
above datasets using the ELM, a sigmoid activation
function (2) in the hidden layer was used. In the classical
realization of ELM, each of the datasets was divided 10
times into learning dataset X, which contained 70% of
the total number of objects in the set X, and test dataset
X, which contained 30% of objects of the set X. The
classical realization of ELM was trained 10 times on the
set X; by formula (1) and estimated 10 times on the set
X by formula (4) in order to select the optimal number
of neurons in the hidden layer. Figure 3 illustrates the
process of selection of the number of neurons, while the
selected numbers of neurons are given in Table 1.

Table 1. Selected number of hidden-layer neurons
in the classical ELM

Dataset CPU Auto Boston
Performance Imports Housing
Number of 30 20 60
neurons
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The number of neurons in the ELM trained by
the bioinspired algorithms was selected in a similar
fashion. It was shown [16, 19] that compact ELM (in
which the number of hidden-level neurons is relatively
small) can achieve better generalization performance
in the case of using bioinspired algorithms for selection
of input weights and shifts. For this reason, the upper
bound of the number of hidden-level neurons was set
according to Table 1. In a preliminary study in which
cross validation was carried out over 10 blocks at
various numbers of hidden-level neurons in the ELM,
with the input weights and the hidden-level shifts
being distributed by the bioinspired algorithms, it was
determined that models with the best generalization
performance can be obtained using ETFSS. Table 2
and Fig. 4 present the results of the selection of the
number of neurons for the ELM optimized by ETFSS
(ETFSS-ELM).

Table 2. Selected number of neurons
in the ELM adjusted by the ETFSS algorithm

Dataset CPU Auto Boston
Performance Imports Housing
Number of 10 10 30
neurons

As Figs. 3 and 4 show, if the selected number of
neurons is too small or too large, the ELM prediction
accuracy decreases as a consequence of underfitting or
overfitting of the model, respectively. The ETFSS-ELM
requires fewer neurons to achieve better accuracy on the
test data than the classical ELM.

Figure 5 presents the convergence curves of the GA,
PSO, and ETFSS algorithms in the optimization of root-
mean-square loss function (3) of the compact ELM on
learning datasets at the values of the parameters of the
bioinspired algorithms that are given in Table 3. Table 2
presents the numbers of hidden-layer neurons in the
compact bioinspired ELM.

Table 3. Values of the parameters
of the bioinspired algorithms

Algorithm Selected parameter values
GA Pcrossover - 0'9’ Pmutation =0.1
PSO Vinax = 9> ¢; =0.8,¢,=0.5,w=0.8
FSS, ETFSS St€Ping initial = 07> S1€P o1 initial = 0-7
All algorithms 300 iterations, 100 population agents

It is evident from the curves in Fig. 5 that the
ETFSS algorithm, which is an improved version of the
FSS algorithm, can find better solutions to the problem
of searching for the optimum of loss function (3) in
comparison with the GA, PSO, and FSS algorithms.
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Fig. 3. Selection of the optimal number of neurons
in ELM. The shaded areas represent the scatter

of the values of function (4) on X; in 10-block cross-
validation; the lines represent the averaged values of

function (4) for the (a) CPU Performance,
(b) Auto Imports,
and (c) Boston Housing datasets
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The generalization performances of the models
GA-ELM, PSO-ELM, FSS-ELM, and ETFSS-ELM
obtained by refining the weights by the algorithms GA, PSO,
FSS, and ETFSS, respectively, were estimated using the
box-and-whisker plots of the values of mean average error
(MAE) function (4) (Fig. 6). Table 4 presents the average
MAE values on the test subsets of the considered datasets.
The comparison also included the classical realizations of
ELM with random initialization of input weights and shifts
with the numbers of neurons given in Table 1 and 2.

Table 4. Average values of MAE (4)

on the test subsets of the considered datasets,
which are obtained by 10-block cross validation
of ELM-1 with the numbers of hidden-level
neurons given in Table 2; ELM-2 with the numbers
of hidden-level neurons given in Table 1, GA-ELM,
PSO-ELM, FSS-ELM, and ETFSS-ELM

Dataset ELM-ELM-| GA- | PSO- | FSS- | ETFSS-
1 2 ELM | ELM | ELM | ELM
CPU 132 | 104 | 94 8.8 10.3 6.2
Performance
Auto
2657 | 2354 | 2155 | 2199 | 2522 2124
Imports
Boston
. 347 | 2.89 | 2.69 2.86 3.11 2.64
Housing

Figure 6 and Table 4 show that the ETFSS-ELM
model has the best generalization performance among
the studied models. GA-ELM, PSO-ELM, FSS-ELM,
and ETFSS-ELM, in which intelligent adjustment of
weights and shifts was carried out, demonstrate the
best generalization performance for all the datasets
in comparison with the classical ELM with the same
number of hidden-layer neurons. The ELM with the
increased numbers of hidden-layer neurons as given in
Table 1 is superior to the compact classical ELM and
inferior to the compact ELMs that were adjusted by the
bioinspired algorithms and have the numbers of hidden-
layer neurons as indicated in Tables 2 and 4.

VISUALIZATION
OF THE LANDSCAPES
OF THE OPTIMIZED LOSS FUNCTION

Landscapes of objective function (3) were visualized
to illustrate the process of the search for the optimal
values of input weights @ of dimension R?*”, where d
is the number of hidden-layer neurons in the ELM, and
n is the number of input-layer neurons and shifts of
dimension R<. Objective function (3) in this problem
of intelligent adjustment of the input weights and shifts
in the ELM inputs multidimensional; vector w of the
form RY, where ¢ = d x n + d. Table 5 presents the ¢
values for each of the considered datasets.
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Table 5. Dimensions of the vector W of weights
and shifts in the ELM

CPU Boston
Dataset Performance Auto Imports Housing
Dimension 100 260 420
of w

As Table 5 shows, the dimension of objective
function (3) is high enough in each of the analyzed
problems, but the landscapes can be visualized only for
two-dimensional functions. There are a number of
approaches to visualizing multidimensional functions in
a three-dimensional rectangular coordinate system. For
example, it was proposed [30] to define two orthogonal

vectors, d and b, the dimension of which coincides
with the dimension of W, and then define function u to
be visualized as

u(ouP) = f(w+0d +Pb). 5)

Here, fis the initial function, W is a multidimensional

vector, o and P are scalar parameters, ¢ and b are
orthogonal unit vectors the dimension of which coincides
with that of vector

(6)

In the problem under consideration, the function f'is
defined by formula (3); the vector W contains the input
weights and shifts in the optimal ELM configuration;
da=10,1,0,1,...}; b= {1,0,1,0,...}; and the dimensions
of the vectors Ei,g, and w coincide. For each of the
considered datasets, the landscapes of function (3) near
the found optimum W were visualized (Figs. 7, 8). The
scalar parameters o and P were varied during the
visualization in the range [—1, 1] at an interval of 0.02.

To visualize the process of convergence of the
ETFSS algorithm in spaces containing many local
extrema shown in Figs. 7 and 8, the changes in the
position of a randomly selected agent of the ETFSS
algorithm at every 25th iteration were determined. For
each position p of the agent, the nearest point was
chosen in the grid constructed during the landscape
visualization by varying the scalars o and p. The
proximity of the vector P to the point {o, B} was
determined by calculating the Manhattan distance with a
shift with respect to the vector W, near which the
visualization is performed:

dist(5,0,;,B ;) =| (5= )~ (e, + B ;)| =

= ZZzl\(pk —w) = (0ay + ijk)"

(6)

Fig. 7. Visualization of landscapes of multidimensional loss functions near the found optimum
for the (a) CPU Performance, (b) Auto Imports, and (¢) Boston Housing datasets
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Fig. 9. Changes in the position of a randomly selected agent of the ETFSS algorithm near the found solution
for the (a) CPU Performance, (b) Auto Imports, and (c) Boston Housing datasets

Here, n is the dimension of the agent position vector
p; this dimension coincides with that of the vector W,
which codes the input weights and shifts in the found
optimal ELM coordination. The dimension of the agent
position vector p also coincides with that of the

mutually orthogonal vectors d and b , a=10,1,0,1,...},

b= {1,0,1,0,...}, where o, and B, are the coordinates of a
visualization grid point.

Figure 9 presents the visualizations of the change in
the position p of the randomly selected agent of the
ETFSS algorithm at every 25th iteration in the process
of the search for the optimal values of the input weights
and shifts in the ELM by optimizing loss function (3)
near the found solution .

It can be seen from Figure 7 and 8 that function
(3) in the considered problems has a large number
of extrema, which are successfully passed by the
bioinspired optimization algorithms in the search for
the optimal values of the input weights and hidden-layer
shifts in the ELM. The trajectories in Fig. 9 suggest that
the ETFSS algorithm improves the solutions obtained
by the population of agents at each iteration until the
completion of the execution of the algorithm.

CONCLUSIONS

In this work, the efficiency of bioinspired algorithms
was studied in the problem of intelligent selection of the
weights of connections among input-layer neurons and
hidden-layer neurons and also the hidden-layer shifts
in extreme learning machines in regression estimation
problems.

Generalization performances between the classical,
compact classical, and compact ELMs were compared,

in which the intelligent adjustment of input weights
and hidden-layer shifts was made using the genetic
algorithm (GA-ELM), the particle swarm optimization
(PSO-ELM), the fish school search (FSS-ELM), and the
chaotic fish school search with exponential step decay
(ETFSS-ELM). It was determined that the compact
ELM in which the input weights are adjusted by the
bioinspired algorithms achieves a better generalization
performance using fewer hidden-layer neurons. The
chaotic fish school search with exponential step decay
(ETFSS) [24] can ensure the best ELM configurations in
the considered problems.

The  constructed  visualizations  of  the
multidimensional loss function landscapes in the three-
dimensional rectangular coordinate system near the
found solution demonstrate the presence of numerous
extrema, which makes it expedient to use bioinspired
algorithms in the search for the global optimum. The
obtained visualization of the trajectory of a randomly
selected agent of the ETFSS algorithm shows that,
iteration by iteration, the algorithm improves the
solutions found by the population.

Further studies may be aimed at exploring the
possibility of using ETFSS to refine the weights of an
online extreme learning machine capable of further
learning as new data are received without iterative
retraining [31] Analysis of the dependence of the
results obtained using bioinspired algorithms on their
hyperparameters is also a promising research direction.
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