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Abstract

Objectives. The paper deals with the equivalence of program schemes. According to A.A. Lyapunov and
Yu.l. Yanov, the founders of this theory, a program scheme is understood as a program model wherein
abstraction from contensive values of operators and expressions is performed. In this case, the program
structure containing symbolic notation of operators and expressions remains unchanged while maintaining their
execution sequence. The programming language model presented in the paper contains basic constructs of
sequential languages and is the core of the existing sequential programming languages. The paper aimed at
developing an effective algorithm for studying equivalence (nonequivalence) of program schemes of sequential
programming languages.

Methods. An algebraic approach to specifying semantics of programming languages was used for studying the
equivalence of program schemes.

Results. A process semantics being the new algebraic approach to specifying the formal semantics of sequential
programming languages was proposed. The process semantics was specified by matching programs (program
schemes) with a set of computation sequences. The computation sequence was understood as the execution
sequence of actions (commands and tests) of the program. Two types of concatenation operations (test—-command
and command-command) and the merge operation, which properties are given by axiomatic systems, were defined
in the introduced semantic domain. The finiteness of the semantic value representation in the form of systems of
recursive equations was proved. The algorithm for proving the equivalence (nonequivalence) of systems of recursive
equations characterizing semantic values for a pair of program schemes was proposed, which implies the equivalence
(nonequivalence) of programs in the strong sense.

Conclusions. The paper demonstrates the efficient use of the proposed algorithm for proving the equivalence of
sequential program schemes excluding side effects when calculating expressions, i.e., sequential computation of the
expression more than once does not change anything. The example of proving the equivalence of program schemes
by two methods—the well-known de Bakker—Scott fixed-point induction method and the method proposed by the
author—is given. Comparison of the above methods testifies not only to the new method s effectiveness but also
to its significant simplicity, proved in practice by students who performed corresponding tasks when studying the
Semantics of Programming Languages at the Institute of Information and Computing Technologies at the National
Research University Moscow Power Engineering Institute (Moscow, Russia).
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HAYHYHAA CTATbA
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CEMAHTHKH A3bIKOB NMPOTrPAMMMHPOBAHUS
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Pe3slome

Lenu. Ctatbs NnocesLleHa BONpocaM 9KBMBaNIEHTHOCTW cxeM nporpamMmm. B cootBeTcTBUM ¢ pabotamum A.A. JisnyHoBa
1 0.1, AHoBa — OCHOBOMOJIOXHUKOB AAHHOW TEOPUK, NOA CXEMO NPOrpaMmMbl MOHUMAETCS ee MOAESb, B KOTOPOM
ocylecTensgeTca abcTparnpoBaHme OT CoaepXKaTeflbHbIX 3HA4YEHUIN ONepaTopoB U BbipaxXeHni. MNpy 9TOM HEN3MEH-
HOI OCTaeTcsl CTPYKTypa NporpaMmbl, BKOHaOLWAA CUMBOIMYECKMe 0003HaA4YEHMSI ONEPaTOPOB U BbipaXXEHN Npu
COXpaHeHU NOCNeaoBaTebHOCTU UX BbIMONHEHMS. [peacTaBneHHas B cTaTbe MOAESb s3blka NPOrpaMMmMpoBaHns
COLEPXUT OCHOBHbIE KOHCTPYKLMW MOCNEeA0BaTeNbHbIX A3bIKOB 1 ABNSETCS AA00M MMEIOLLIMXCA 3bIKOB MocieaoBa-
TeNbHOro NporpamMmmupoBanus. Llenb padoTel — padpadoTka apPeKTUBHOO anropntMa UccieaoBaHns BONpPOCOB 3K-
BWBAJIEHTHOCTU (HE3KBMBANEHTHOCTM) CXEM MPOrpaMm rnocneanoBaTesbHbIX A3bIKOB MPOrpaMMnUPOBaHUS.

MeTogabl. Micnonb3yeTtcsa anredbpanyeckuin noaxon K 3aaaHnio CEMaHTUKM A3bIKOB NPOrpaMMMPOBaHMs Ans uccne-
[,0BaHUS BOMPOCOB 3KBUBAJIEHTHOCTU CXEM MPOrpamm.

PesynbTaTthl. [peanoxeH HOBbIN anrebpanyeckmini Noaxom K 3agaHnio GopmasnibHOM CEMAHTUKN S3bIKOB Mocse-
[0BaTe/IbHOro NPorpaMMnUpoBaHnsa — NPOLIECCHass cemMaHTuka. NpoueccHas ceMaHTuka 3a0aeTcs NocpeacTBOM
COMNOCTaB/IEHNS NporpamMmam (cxemam NporpamMm) MHOXECTBA BbIHUCUTENbHbIX NOceaoBaTensHocTen. oa, Bbl-
YNCNUTENbHOW MOCNea0BaTeNbHOCTBLIO MOHMMAETCS NOCNeA0BaTeIbHOCTb BbINONHEHUS AENCTBUIA (KOMaHa, 1 Tec-
TOB) NporpamMmbl. Ha BBEAEHHOW CeMaHTMYecko 061acT (MHOXECTBE BbIYUCINTENbHbBIX NOCNea0BaTelbHOCTEN)
onpefeneHbl onepaunn KoHKaTeHaumm AByX BUOOB (TeCT-KOMaHaa 1M KoMaHaa-koMaHaa) v onepaums oobeamHe-
HUS, CBOMCTBA KOTOPbIX 3aJaHbl CUCTEMaMKM akCMOM. JlokazaHa KOHEYHOCTb NPeACTaBIEHNS CEMAHTUYECKUX 3HA-
YEeHU B BUAE CUCTEM PEKYPCUBHbIX YpaBHEHWUIA. [TpeanoxeH anropuTm AokasaTebCTBa 9KBUBANIEHTHOCTU (HEJK-
BVBANIEHTHOCTN) CUCTEM PEKYPCUBHbIX YPABHEHUN, XapakTEPUIYIOLLIMX CEMAHTUYECKME 3HAYEHUS OIS Napbl CXEM
nporpamMm, OTKyaa BbITEKAET 3KBMBAJIEHTHOCTb (HESKBMBANEHTHOCTM) NPOrpaMm B CUIIbHOM CMbICHIE.

BbiBoAbl. [MokaszaHa 3pPEKTUBHOCTb MPUMEHEHUSA NPEOI0OXKEHHOI0 anropmTMa a1 AokasaTtenbCTBa 9KBUBASIEHT-
HOCTM CXeM NocfiefoBaTeNbHbIX MPOrpamMm, B KOTOPbIX OTCYTCTBYET NOOOYHbLIN 3PPEKT NPU BbIYNCIIEHUN Bblpaxe-
HUI, T.e. NocneaoBaTesibHOE BblYNCIEHME BbipaXeHus 6onee, 4eM OAMH pas, HUYEro He MeHsieT. B cTaTbe NnpuBeaeH
[NEMOHCTPALMOHHbIM NpUMep gokasaTenbCTBa 9KBUMBANEHTHOCTU CXEM MporpaMm AByMsi METOAaMU: U3BECTHbLIM
METOA0M MHAYKUMN PUKCUPOBAHHOM ToYkM Ae bakkepa — CkoTTa 1 NpeasioXXeHHbIM B cTaTbe MeToaoM. CpaBHeHne
npuBeaeHHbIX METOA0B CBUAETENbCTBYET HE TONIbKO 00 3D PEKTUBHOCTM HOBOrO METOAA, HO U €ro CYLLLECTBEHHOM
MpPOCTOTE, 4TO ObISIO NOATBEPXAEHO Ha NPAKTUKE NP BbIMOJIHEHUM COOTBETCTBYIOLLIMX 3a0aHWNIN CTYAEHTaMU CneLmn-
anbHOCTU «[puknagHaa mateMaTnka n MHpopmaTuka» HaumoHanbHOro nccneanoBaTenbckoro yHusepcuteta MU
B MNPOLIECCE U3YHEHUS ANCLUMUMIINHBI «CeMaHTMKa 13bIKOB MPOrpaMMnUpPOBaHnNS».

KnioueBble cnoBa: cxema nporpamMmbl, CEMaHTU4eCKne obnactu, npoueccHaa ceMaHTka, 3KkBaunOHaJIbHaaA Xa-
pakTepusaumg ceMaHTUYeCKUX 3HaYEHWIN NPOorpamMm, SKBUBASIEHTHOCTb CXEM NPOrpamMm
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npOSpa‘IHOCTb d)MHaHCOBOﬁ neaTesibHOCTU: ABTOp HEe nMmeet d)I/IHaHCOBOI‘/JI 3anHTEepPeCOBaHHOCTW B nNpencTaBJiEH-

HbIX MaTepunasiax nin MmetTogax.

ABTOp 3asBNseT 06 OTCYTCTBUN KOH(INKTA UHTEPECOB.

INTRODUCTION

Program equivalence is an extremely important
aspect of the theory and practice of programming
languages underlying such problems as program
correctness [1-10], program completeness
(incompleteness), and equivalent transformations of
programs for optimizing them [11-13] in one way
or another. It is clear that to solve these problems,
appropriate formal methods for specifying semantics
of programming languages should be developed.
Propositional logic-based methods have been among
the first to be developed, the most known being Floyd’s
inductive assertion method [5] and Hoare’s axiomatic
method [6]. The use of these methods allows proving
partial correctness and completeness (incompleteness)
of a sufficiently large class of programs limited in size.
The denotational approach [7] allows more opportunities
for solving the problem of program equivalence using
methods based on fixed point properties, in particular,
the de Bakker—Scott fixed-point induction method [4, 7].
In the paper, the algebraic method for specifying the
process semantics of programs, matching programs with
a set of computation sequences (execution paths) of a
program as semantic values, is proposed. The algorithm
for analyzing the equivalence of program schemes based
on the idea of representing semantic values in the form
of finite systems of recursive equations with further
analysis for equivalence (non-equivalence) of the
obtained systems of recursive equations developed by
the author in his thesis! and [14] is proposed. In contrast
to the method proposed for proving the equivalence of
program schemes!, the recursive equations obtained in
the systems have a more complex form and require more
detailed analysis. The effectiveness of this method for
proving the program scheme equivalence is shown.

1. FORMAL MODEL
OF PROGRAMMING LANGUAGE

We shall specify the syntax and semantics of
language L used as a programming language model.

I Korablin Yu.P. Semantic methods of analysis of distributed
systems. Dr. Thesis (Eng.). Moscow: MEI; 1994. 40 p. (in Russ.).

1.1. Syntax of Language L

The alphabet of the language consists of the
following:

e the set of elementary commands Com with typical

element a;

e the set of Boolean expressions Exp with typical

element b.

Typical elements of sets may be indexed. In
addition, the following three constants may be
defined: skip is empty command; tt and ff are
identically true and identically false Boolean values,
respectively.

The set of Cmd commands with a typical element ¢
may be defined as follows:

c=skip |a[[ge] | * [ge],

where gc is a typical element of the set of protected
Gcom commands with the following syntax:

gcu=g—clgei{ogey,
gu=tt|ff|b

Parentheses are used to denote zero or more iterations
of the construct enclosed in brackets. A typical element
of the set of protections G is denoted by g.

The symbol o connects alternative program
components, i.e., such constructs are analogous
to switch branching statement in programming
languages.

The set of programs with typical element pr may be
defined as follows:

pr:=c|pr;c.

1.2. Algebraic semantics: mathematical
foundations and semantic equalities

The semantic function matches the program written
in L language with a set of computation sequences (CS)
that may be used for executing that program.

To specify the program semantics, the principle
of constructing semantic value of the entire program
based on semantic values of that program components
is proposed.
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Assuming that any program may be, in turn, a
component of another program, a priori semantics of the
entire program may always be obtained by composing
semantic values of program components.

1.2.1. Semantic domains

1. The set of values of elementary commands ACom
with typical element A.

2. The set of values of Boolean expressions Bexp
with typical element B.

3. The Const set containing the constants 1 (identity
transformation), T (identically true value), and F
(identically false value).

Typical elements of semantic domains may be indexed.

We shall define the set of computation sequences
CPath with typical element cp.

Two additional sets being the Test set with typical
element 3 and the Action set with typical element o may
be predefined, as follows:

B:=T|F|B,
an=T|A,
cp=a|B cp|cpl ocp2,

where cp= is finite CS while cpo is infinite CS. We shall
introduce the set SP = P(CPath) with typical element sp,
i.e., SP is the power set defined as the set of all subsets
of the CPath set.
Then, operations of the set—theoretic union

(spl + sp2), sequential composition (spl o sp2), and the
least fixed point (sp*) are defined in the SP set.

Before determining the value for sp™, two auxiliary
definitions should be introduced.

Definition 1. CS cp is called empty and denoted by ¢ if:

ep=1;

2Dep=T"e.

Infinite sequence of the form gw is denoted by LOOP
(looping).

Definition 2. € € sp if:

Sp=¢;

sp = spl + sp2 and ¢ belongs to at least one of the
sets spl or sp2;

sp = spl o sp2 and & belongs to both spl and sp2
simultaneously.

We shall define sp* as the least fixed point of the
operator F(sp), i.e., sp" = uF(sp), where F(sp) may be
written in the following form:

F(sp) =Agq.sp ° g + Vv, where v =1.

1.2.2. Semantics of language L
The semantic function may be defined as follows:

C[skip] =1,
Cla] = A,

C[tt — pr] = E[tt] * C[[pr],
C[ff — pr] = E[ff] ~ C[pr],
C[b — pr] = E[b] ~ C[pr],

where function E: Exp — TEST defines semantic values
of the expressions.

C[*{ge}] = (ClgeD)™,
Cllgel o ge2] = C[gel] + Clge2],

Clprl; pr2] = Cflpr1] o Cpr2].

Then, the semantic function for the following
expressions may be defined:

E: Exp — TEST,
E[tt] =T,
E[ft] =F,
E[b] =B.

1.3. Axiomatization of semantic
domain properties

The properties of operations on elements of the
semantic domain SPc =P (CPathc) may be described using
an axiomatic system (axiom schemes) and inference rules.
The axiomatic system may be defined as a set of blocks,
each describing certain properties of semantic objects.

The ACTION v TEST set with typical element d’
may be denoted by D’. Metavariables X, Y, and Z may
be used for denoting elements of the semantic domain.

Axioms defining basic properties of operations “o”
“A” and “+” may be written as follows:

(Al) X+X=X,

(A2) X+Y=Y+X,

(A3) X+ +Z2)=X+Y)+Z,
(A4d) X+Y)eZ=XoZ+YoZ,
(AS5) (XoY)oeZ=Xo(Yo2Z),
(A6) T10X=X,

(A7) Xot=X,

(A8) LOOP o X =LOOP,

(A9) ©X=0,

(A10) X+0=X,
(All) (BAX)oY=B"(XoY),
(A12) FAX=0,
(A13) 0~"X=0.

2. EQUATIONAL CHARACTERIZATION
OF A PRIORI SEMANTIC VALUES

In this section, the possibility of representing the
program semantic values in the form of finite systems of
recursive equations is described.

Definition 3. Let o € ACT = ACTION \ {1, @} and
(B € TES = TEST \ {F, @} and PREF = ACT U TES.
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The partial functions prefix: SP — PREF and suffix:
SP — SP may be defined using Table 1:

Table 1. Defining prefixes and suffixes of computation
sequences (sp)

sp prefix (sp) suffix (sp)
ooX o X
To0X prefix (X) suffix (X)
prX B X

It should be noted that prefix and suffix may be not
defined for the expression sp=F "~ X, since F * X =0
(axiom A12).

Definition 4. The CS set of P € SPc may be
equationally characterized if there exists the finite set
P1,P2, ..., Pn € SP such that P=P1 forany i (1 <i < n):

=Y 0 0b+ > By "B +3(R), (%)
jeN keN

where N= {1, 2, ..., n}, o, € ACT, B, € TES,

Vi 8(Pi) < P(ACT' U {LOOP}), where ACT' =
ACTION \ {1},

Vi Vj 3l € N, that Pij =PI,

Vi Vk 3r € N, that Pik = Pr.

Theorem 1. Every SP set matched as a semantic
value with a program may be equationally characterized
using a finite system of equations of the form (¥*).

Proof. The proof'is by induction method for structure P.

Basis. The equational characterization for p = d’,
where d’' € D’ follows trivially.

Inductive step. Let P1 = SP and P2 = SP be
equationally characterizable. Then it is necessary
to prove that P1 o P2, B ~ P1, P1 + P2, and P1" are
equationally characterizable.

We shall prove the expression P=P1 o P2.

By the induction hypothesis, there exist sets P11,
P12, ..., Pln and P21, P22, .... P2m such that P1 = P11
and P2 = P21, and

Pli= Y o 0Pl + 3 By ~Ply +8(Pli), i=1Ln, ()
jeN keN

and

P2i= Y o, 0P2, + ¥ B " P2, +8(P2i), i=1,m, ()
reN PpEN

We shall denote

n,vl,..,vr)=Pl, oP2+P2 +..+P2 ,
1 r (1)

(u=0,n,r20,1$vi£m,i=1,_r).

We shall write P100P2+P2le +"'+P2Vr instead
of P2, +..+P2 .

The number of expressions (1) is finite. By the
inductive hypothesis, the following may be written:

n,vl,...,vr) =

=| X, 0, 0Pl + D B Pl +8(Plu) [0 P2+
JjEN keN

+> o, oP2, ;+ S Bok P2, +8(P2v) + ..+
JeN keN

+, 0, ;0P2, i+ DB, AP2,  +8(P2v,).
jen " ken :

Then, applying axioms Al, A2, A3, and AS, the
following may be written:

nu,vl,...,vr) =

= > &, 0Pl oP2+ Y B, (P, oP2)+
JjEN keN

+> o, ;oP2, ;+ D Buk " P2y g+t
jEN keN

+Y o, ;oP2, i+ D B, P2, +
JeN keN

+ O0(Plu) o P2+ 6(P2v,) +...+ 8(P2v,).

If 8(Plu)= Y 5,,, where duieD', then axiom
JjEN
A4 is applied again replacing summand 6(P1u) o P2 with
expression 2 8, °P2, in n(u, vi,
JjEN

8,; =T, then P2 is replaced by its representation for
P21 from (***).

Then, applying axioms Al, A2, A3, and AS5, the
following may be written:

.., vr), and if

N, vi,...,vr) = z o, © Puj + z By "Pui+
JjeN keN

+Y Z(xqjqu/.+Z ZquAqu+

qeN jeN qeN keN
+ d(u,vl,...,vr),

where all expressions PP, P ;. and P ; are included
in(1). Sincen(1,1)=P1 o P2, then P1 o P2 is equationally
characterizable.

P=pB~P1. This is a trivial case. In this case, only
one equation P =P1 = ~ P11 is added to the finite
system of equations for P1 = P11, which implies
the equational characterizability of the expression
B~PIL.
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Proving the equational characterization of the
expression P=P1 + P2 is analogous, where the following
set is used as a finite set:

E(u,v) = Plu+P2v, u=0,n;v=0,m. )

For proving the equational characterization of the
expression P = P17, the set

CQul,...,ur) = (Pluy +...+ Plu, ) o P17,

r20,1<ui<n, i=1r. 3)

may be used.

The number of expressions (3) is finite.

Thus, the set of execution paths for a program, i.e.,
process semantics allowing studying various program
properties, may be defined as the semantic value of a
program. In particular, as described below, this approach
allows studying the equivalence of program schemes in
a strong sense.

3. COMPARISON OF PROMRAM SCHEMES
IN LANGUAGE L

We shall define a method for comparing systems
of recursive equations of the form (*), thus allowing
obtaining a formal method for comparing program
schemes in language L.

The significant factor of the considered method is
the uniqueness of prefixes of any recursive equation
being achieved through applying the axiom of the
form X o (Y + Z) =X oY + X o Z. The result of
applying this axiom is that any recursive equation
is reduced to the form where all a,; are pairwise
distinct. ‘

Thus, proving the equivalence (or non-equivalence)
of two systems of recursive equations in each step is
reduced to proving the equivalence of expression pairs
having the same prefixes in the considered recursive
equations.

The comparison process ends when new expression
pairs stop appearing, or there is a mismatch of prefixes
or expression sets 6 for a certain expression pair in a
certain step.

The first case of completing the comparison
process implies the equivalence of two systems of
recursive equations, while the second case implies their
noncomparability, and therefore non-equivalence of two
systems of recursive equations.

Let there be two systems of recursive equations of
the form (*) to be tested for equivalence. These systems
contain recursive equations for expressions P1, P2, ..., Pn
u P1’, P2, ..., Pm’, respectively. We shall denote the set
of expressions {P1, P2, ..., Pn} by P, {P1’, P2’, ..., Pm'}

by P’, and the sets of all subsets of P and P’ by P(P) and
P(P’), respectively.

We shall consider the equations for P1 and P1". Here,
the following cases are possible:

a) 8(P1) = 8(P1") and Vj € N Jk € N are such that
alj = alk’ and vice versa, and also Vk e N3p € N
is such that f1k = Blp’ and vice versa. In this case,
the process of writing out equations for all pairs
(P, P ;) having the same prefixes of type o as well
as for all pairs (P,,, P, p) having the same prefixes of
type B should be continued.

b) At least one of the conditions given in paragraph a)
is not satisfied. This is the case of noncomparability
of the prefix set or that of noncomparability of
absolute terms of equations (8(P1) = d(P1"),
whence it follows that computation sequence sets
(CSSs) given by systems of recursive equations are
noncomparable.

The above process of writing equations should be
proceeded for the resulting pairs until obtaining one of
the following results:

e two systems of recursive equations equivalent up to
notations (with only case a) occurred in each step)
are set up. In this case, CSSs given by systems of
recursive equations are comparable, and thus, the
program schemes matched with these expressions
are equivalent;

o the condition given in paragraph a) is not satisfied.
In this case, CSSs given by systems of recursive
equations are not equivalent, and thus, the program
schemes matched with these expressions are not
equivalent.

We shall analyze the effectiveness of the proposed
method for proving the equivalence of program
schemes. In particular, an example of proving the
following statement applying the extensively used
method of fixed-point induction [4] may be firstly
considered:

C [while B do C1 od; while B do C2 od ]| = C [[while B
do Cl od].

Solution. We shall introduce the following notations:
E [E]=w; C [C1] =v1; C [C2] =v2.

C [while E do C1 od;] = fix(Ay.Ac.000c — yylo,0) =
= fix H1 =y1/,

where fix H1 stands for taking the least fixed point of the
operator H1=Ay.Ac.06 — y-yl0o,0.

C [while E do C2 od;] = fix(Ay.Ac.000 — y¥206,0) =
= fix H2 =y2/,

where H2 = Ay.A6.00 — yy20,0.
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The left-hand side (LHS) of the equation is given as
follows:

LHS =C [while E do C2 od;]] - C [while E do C1 od;] =
=y2"yl".

The right-hand side (RHS) of the equation is,
respectively, of the following form:

RHS =v1".

Thus, it is required to prove that: y2" y1'=y1".
For proving, the method of fixed-point induction is
applied.

Letg(x)=v2"-x=x.

lL.g(L)y=y2'-1=1

2. Let g(x) =v2'- x =x is valid.

We shall show that q(H1(x)) = vy2'- Hl(x) = Hl(x)
is valid.

LHS =72"- H1(x) =72" - (Ac.wc — xylo,0) = (left
factoring)

=Ac.06 — y2'- x - ylo, y2'c = (assuming validity
of g(x))

= A0.0G — X *
property)

=A0.06 — x - ylo, H2(y2")o =

=A0.06 — x * ylo, (Ac.0w0c — y2' - y26,6)0 =

=A0.06 — x - ylo, (Ao.wc — y2' - y20,06) = (by the
conditional operator property)

=A0.00 — x - ylo, o.

vlo, y2'c = (by the fixed point

RHS =HI(x) =Ac.0c — x - ylo, o

It follows from paragraphs 1 and 2 that g(fix H1) =
= q(y1l") is valid, and thus,

v2"-y1'=vy1’, as required.

This statement way be written using the proposed
notation, as follows:

*[b— cl]; *[b — c2] =*[b — cl].

Using the above algorithm, the validity of the
following statement may be proved:

Cl*b—cll*b—c2]]=C [*[b—cl]].

We shall denote C [ *[b — cl1]; *[b — ¢2] ] by P1,
and C [ *[b — c1] ] by P2.

Pl =(B"Cl)" o (B~ C2),
P2 =(B"Cl)".

Then, P1 and P2 may be represented by systems of
recursive equations according to the program scheme
comparison algorithm given above. Let P11 = P1 and
P21 =P2. Then:

Pl1=10o(B"C2)"+(B"Cl)o(B"Cl)" o (BAC2)"=

=1+(B" "C2o (B "CH'+(B Cl)e (BACl)" o
o(BANC2)" =

=1+B*{C2o(B*C2)"+Clo(BACl)' o (B C2)"} =

=t+B~"PI2.

P2l=1t+ B~ Cl)o B ACDH*=1+B " {Clo
o(BACl)"}=t+B"P22.

It can be easily seen that the set P12 contains CSs
starting at C2 while the set P22 does not contain CSs
starting at C2, whence it follows that P12 # P22.

At first glance, this result seems contradicting what
obtained above. However, the crux of the problem is
that obtaining this result, the lack of side effects while
calculating expressions (conditions for execution of
protected commands) has been assumed. It follows from
this assumption directly that recalculation of the same
expression would always give the same result. In our
case, however, recalculating the same expression may
give, in general, different results. This may be illustrated
by the following example. Let be a program enabling
side effects, i.e., value changes in variables when
calculating expressions,

x:=1*x:=2xx=4—>cl];[x:=2xx=4—c2].

The initial calculation of the expression x: =2 x x = 4
results in a false value, and thus in breaking out of
the loop *[x: =2 X x =4 — c1] and in proceeding to
calculations of the next instruction. In this case, the
value of variable x before executing is equal to 2.
Recalculating the expression x: = 2 x x = 4 results in
the true value. Obviously, the presence of side effects
is usually an undesirable situation. Therefore, it would
be advisable to create a formalism allowing analyzing
programs excluding side effects. To that end, a number
of notions introduced previously should be redefined, as
well as axioms characterizing their properties should be
added.

We shall first expand the test set by adding negation
and difficult tests.

B:=...]18|B1 * P 2, where the ellipsis stands for
the predefined test sets.

The new test set is characterized by the following
block of axioms:

(G1) P1 * p2 =2 * 1,

(G2)B * 1B =F,
(G3)F+B=F,
(G4H O =0,
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(G5) T+ p=B,
(GO)p =B =P,
(G7) P1 = (B2x B3) = (B1* B2) * B3,
(G8) P17~ (B2 C) = (B1 * p2)~ C.

The expansion of multiple tests results in the need to
modify the predefined notions of prefix and suffix.

Definition 5. The partial functions prefix: SP — PREF
and suffix: SP — SP are defined by Table 2 being the
extension of Table 1:

Table 2. Defining prefixes and suffixes of computation
sequences (sp)

Sp prefix (SP) suffix (SP)
oo X o X
10X prefix (X) suffix (X)
B1 e X1, Bl X1
where X1 # 32~ X2,
and X1 #1 o X,
and X1 = X2*
BL~(P21X) prefix (31 * $2) ~ | suffix (B1 * p2)~
A X) A X)
B~ (teX) prefix (B " X) suffix (B~ X)

It should be noted that when sp = $1 ~ X1 and
X1 =X2%, it would be essential to use first the property
of the least fixed point up to the appearance of one of
the constructs which the suffix and prefix defined for in
Table 2.

Then, the following statement given above should
be proved:

C[*b— cl]; *[b—c2]]=C[*b—cl]].

We shall show that (B~ C1)" o (B~ C2)"=(B"C1)".
Denoting, as before, the left-hand side of this statement
by P1 while the right-hand side by P2, we shall set up
systems of equations using the new formalism.

Then, the value v should be modified. Taking into
account new definition of tests, the value v for expression
of the form (B1 ~ C1 + B2~ C2 +.. .+ Bn " Cn)" may
be defined as v = *t, where = 1B1 * 1B2+. .. * 1Bn.

Thus, the systems of equations may be written in the
following form:

PI1=PI1=(BACl)o(BACl) o (BAC2)" +(1B~1)o
o (BAC2)" =
=BAClo(BACl) o(BAC2)" +(1B~T)o(BAC2)o
o(BAC2)"+(BBAt)o(BAT)=
=BAPI2+1BA(BAC2)o(BAC2)" +1B 1=
=BAPI2+(IB*B)"C20(BAC2)" +1B 1=
=BAPI2+F~C20(B"C2)"+1B~PI3=
=BAPI2+Q+1BAPI3=B~PI12+1B"PI3,

P12=Cl1 o P11,

P13 =T,
P21=P2=B"*Cl)o (B "Cl)+1B" 1=
=BAClo(BACl)"+1IB" 1=

=B P22+ 1B " P23,

P22 =Cl1 0o P21,

P23 =n1.

The following two systems of recursive equations
may be written:

P11 =B~ P12+ 1B~ P13,
P12=C1 o P11,
P13 =T,

and

P21 =B~ P22+ 1B " P23,
P22 =ClI1 o P21,
P23 =1.

The resulting systems of equations coincide with
the accuracy of variable denoting, which implies the
equivalence of expressions P1 and P2.

We shall consider another example of applying the
proposed method to proving another statement. Suppose
we need to prove the following statement:

C [[while E do C1 od; while E do C2; while E do C2
odod] =

C [if E then C1; while E do C1 od; while E do C2
od else e fi].

In our formalism, the above statement may be
written in the following form:

#[b— clJ:4b — e2;*[b — c2]] = (b — [cl;*[b— cl]:*
*[b—c2])o b — skip].

Let: B=E[blp, B=E[} Jp, C1=C[cl]p, C2=C[c2]p.

Pl = C[LHS]p = P11 = (B ~ C1)" o (B » (C2 o
o (BAC2))'=(BACl)o(BACI)'+ BA1)o (B
A(C20(BAC2)) =BAPI2+@+BAPI3=B~API2+
+[B A P13,

P12=Cl o (B~ Cl) o (B"(C20 (B"C2)"))" =
=Cl o P11,

PI3=1.

Thus, the following may be written:
PI11=B~ P12+ B~ P13,

P12 =Cl1 o P11,
P13 =1,
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P2 = C[RHS]p = P21 =B ~ (Cl o (B ~ C1)" o
o (B~ C2)")+ BA1=B~P22+IB~ P23,

P22=Cl o (B~ Cl)" o (B~ C2)"=Cl o P11,

P23 =1.

Thus, the following may be written:

P21 =B~ P22+ [B ~ P23,
P22=C1 o P21,
P23 =1.

The resulting systems of equations coincide with
the accuracy of variable denoting, which implies the
equivalence of expressions P1 and P2.
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