Russian Technological Journal. 2021;9(6):7-15 ISSN 2500-316X (Online)

Information systems. Computer sciences. Issues of information security

HNudopmannonnsie cucreMsbl. Uudopmaruka. [Ipodiaembl nHGopManMOHHONH 0€3011aCHOCTH

UDC 004.051
https.//doi.org/10.32362/2500-316X-2021-9-6-7-15 (@)Y |

REVIEW ARTICLE

Comparative analysis
of software optimization methods

in context of branch predication
on GPUs

Igor Yu. Sesin @,
Roman G. Bolbakov

MIREA - Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: isesin@protonmail.com

Abstract. General Purpose computing for Graphical Processing Units (GPGPU) technology is a powerful tool for
offloading parallel data processing tasks to Graphical Processing Units (GPUs). This technology finds its use in
variety of domains—from science and commerce to hobbyists. GPU-run general-purpose programs will inevitably
run into performance issues stemming from code branch predication. Code predication is a GPU feature that makes
both conditional branches execute, masking the results of incorrect branch. This leads to considerable performance
losses for GPU programs that have large amounts of code hidden away behind conditional operators. This paper
focuses on the analysis of existing approaches to improving software performance in the context of relieving the
aforementioned performance loss. Description of said approaches is provided, along with their upsides, downsides
and extents of their applicability and whether they address the outlined problem. Covered approaches include:
optimizing compilers, JIT-compilation, branch predictor, speculative execution, adaptive optimization, run-time
algorithm specialization, profile-guided optimization. It is shown that the aforementioned methods are mostly
catered to CPU-specific issues and are generally not applicable, as far as branch-predication performance loss
is concerned. Lastly, we outline the need for a separate performance improving approach, addressing specifics of
branch predication and GPGPU workflow.

Keywords: general-purpose computing for graphical processing units, optimizing compilers, predication

e Submitted: 22.03.2021 ¢ Revised: 26.05.2021 ¢ Accepted: 25.07.2021

For citation: Sesin L.Yu., Bolbakov R.G. Comparative analysis of software optimization methods in context of branch
predication on GPUs. Russ. Technol. J. 2021;9(6):7-15. https://doi.org/10.32362/2500-316X-2021-9-6-7-15

Financial disclosure: The authors have no a financial or property interest in any material or method mentioned.

The authors declare no conflicts of interest.

© I.Yu. Sesin, R.G. Bolbakov, 2021

https://doi.org/10.32362/2500-316X-2021-9-6-7-15
mailto:isesin@protonmail.com
http://I.Yu
https://doi.org/10.32362/2500-316X-2021-9-6-7-15

Comparative analysis of software optimization methods Igor Yu. Sesin,
in context of branch predication on GPUs Roman G. Bolbakov

OB30P

CpaBHHUTEJbHBIA AHAJIN3
METOIO0B ONTUMM3ALMH MPOTrPAMMHOI0 00ecCIeYeHus
IJIS 00PBLOBI € NpeAuKAIMe BeTBJICHUH
HA rpapuyecKuX mporeccopax

N.10. Cecun @,
P.lr. Bon6akos

MUP3A — Poccuiicknii TexHos1orn4ecknii yamsepceutet, Mocksa, 119454 Poccus
@ AsTOp AN nepenvcku, e-mail: isesin@protonmail.com

Peaiome. TexHonorus GPGPU (General Purpose computing for Graphical Processing Units — pacuyeTbl 06wwero
Ha3Ha4YeHUs Ha rpaduyecknx npoLeccopax) ABAsgeTcs MOLWHbIM MHCTPYMEHTOM 4S9 NepeHoca 3a4ay napari-
nenbHow obpaboTkm nHpopmaumm Ha GPU (Graphical Processing Unit — rpaduyeckuii npoueccop). 9T1a Tex-
HOJIOMMS HAXOAUT NPUMEHEeHMe npakTudeckn B nobol obnacTu, Tpebyowen NpoBeaeHNs Macchl napanniesb-
HbIX PACYeTOB, M NPUMEHSETCH Kak B Hay4HOW 1 KOMMEpPYeCKo, Tak 1 B NtobuTtenbckon cpene. PazpaboTtynkn
nporpamMmm obLLero HasHavyeHusl, 3anyckaembix Ha GPU, Hen3bexHo cTankmBalTcs C NageHnem npom3Boam-
TeNbHOCTW BBMAOY Npeankauum BeTBneHns koga. B ycnoBusx npegmkaumnm BETBEHUS UCNONHAOTCS 06e BEeTBU
YCJIOBHOIO orepaTtopa BHe 3aBUCMMOCTN OT UICTUHHOCTW YC/IOBUS!, HO NOCPEACTBOM MaCKMPOBaHUS BbIMOHS -
€MbIX MHCTPYKLWI NporpamMmma y4mTbiBaeT TONIbKO pe3ynbTaT paboTbl BEepHOI BeTBU. MI3-3a 9TOro nporpammel
obuiero HasHavyeHus1, nmetowme GonblUMe y4acTkM KoAa, CKPbITble 3a YCIIOBHLIMW OorepaTtopamMun, CTaHOBATCS
CYLLLECTBEHHO MeHee NPon3BOaUTENIbHbIMM Ha rpaduYeckmnx npoueccopax. B ctaTtbe paccmaTpurBaloTcs cyle-
CTBylOLIME B NpeaMeTHOM ob6nacTn MeToabl 1 noaxonbl K yBENMYEHUO NPOU3BOANTENIbHOCTU NMPOrpaMMHOro
obecrneyeHns B pamkax UxX NPMMEHMMOCTUN K peLlleHnio NpobnemMbl NnageHns Npon3BoaMTENbHOCTM Npu npe-
avkaumu. MpuBoguTCs onmcaHne MeToL0B, UX CUJIbHbLIX U cnabblX CTOPOH, a TakXke pamMokK UX MPUMEHUMOCTMH,
Ha 6a3e 4yero genaeTcs 3ak/lo4yeHrne O BO3MOXHOCTU UX ucnonb3oBaHus Ha GPU. B uncno paccMoTpeHHbIX
MeTO0B N NOAXO0A0B BOLAM Creaylolme: onTuMmnanpyiowme komnunatopsl, JIT-komannauns, npeackasartesb
nepexonoB, CNekynsaTMBHOE UCMNOJSIHEHWE, afanTuBHas ONTMMMU3auus, cneunanm3auns aaroputmva Bo Bpems
WCMOJIHEHUS, ONTUMM3aLNSA Ha OCHOBE NpodunnposaHus. NMokasaHo, 4TO yka3aHHbIe annapaTHble U NporpamMm-
Hble NOAX0Abl K YBENIMYEHUIO MPON3BOAUTENILHOCTU NPOrpaMMHOro obecrnevyeHns NpemMMyLLeCTBEHHO OPUEHTU-
poBaHbl Ha pelueHne npobnem crneundundHbix ang CPU (Central Processing Unit — ueHTpanbHbI Npoueccop) u B
LEeSIOM HEeENpUMEHMMbI A1 pa3peLleHmns noTepb NPOVU3BOANTENBHOCTM Npu Npeaukaummn Ha GPU. YkasbiBaeTcs
Ha HeobXx04MMOCTb CO3AaHNSA OTAENIbHOIrO NoAXxona, OPMEHTUPOBAHHOIO MMEHHO Ha pelleHne npobnemsbl npe-
ovkauum setsneHua Ha GPU.

KnioueBble cnoBa: pacyeTbl 06LLEro Ha3HaYeHNst Ha rpadUHeckrx NpoLeccopax, ONTUMU3MPYOLLME KOMIMUIATO-
pbl, Npeaukauuns

e Moctynuna: 22.03.2021 » flopa6oTaHa: 26.05.2021 ¢ MpuHaTa k ony6nukoeaHuio: 25.07.2021

Ansa uutnpoBaHus: CecuH W.10., Bonbakos P.I". CpaBHUTENbHbI aHANN3 MeTOA0B ONTUMN3ALMN MPOrPaMMHOro obe-
cnedveHus ans 60pbObl C Npeaukaumen BETBNEeHU Ha rpaduryecknx npoueccopax. Russ. Technol. J. 2021;9(6):7-15.
https://doi.org/10.32362/2500-316X-2021-9-6-7-15

MpospayHocTb PUHAHCOBON AeATeNbHOCTU: HMKTO M3 aBTOPOB He MMeeT PUMHAHCOBOW 3aUHTEPECOBAHHOCTU B
npencTaBfiEHHbIX MaTepuanax unm MeTogax.

ABTOpPbI 3a51BASAOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.

Russian Technological Journal. 2021;9(6):7-15

https://doi.org/10.32362/2500-316X-2021-9-6-7-15
mailto:isesin@protonmail.com

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

INTRODUCTION

Graphics processors, or Graphics Processing
Unit (GPU), are specialized hardware that performs
the processing of graphical information. Unlike a
central processing unit (CPU), graphics processors
are specialized for parallel processing of large
amounts of data, which causes certain differences
in their architectural design:

e CPUs have a small number of physical cores (from

1 to 32), GPUs have orders of magnitude more

physical cores (can be hundreds or thousands'- 2,

depending on the compromise between the number

of cores and their power chosen by the hardware

manufacturer);
e cores in the CPU have additional hardware
functionality, such as their own caches,

instruction pipelines, and branch prediction

modules. GPU kernels are very simple arithmetic

kernels focused on fast processing of floating-
point numbers. A number of modern GPUs also
include specialized cores for ray tracing and

tensor computing [1, 2];

e CPU is separated from random access memory;
GPUs have direct access to video memory located
on the same board,;

e GPU cores cannot write data in the memory area
allocated for the executable code;

e CPU falls into the Multiple Instruction, Multiple Data
(MIMD) classification, GPU falls into the Single
Instruction, Multiple Data (SIMD) classification
according to Flynn [3].

Using General Purpose Computing on Graphics
Processing Units (GPGPU) technology, it is possible
to run programs on GPUs other than highly specialized
shader programs. This technology finds application
in many areas—from mining crypto currencies to
calculating the protein folding?.

Applying the GPGPU technology, one has to deal
with certain peculiarities of the construction of programs
and their behavior in the conditions of execution on a
graphics processor. For example, in the course of writing
a GPGPU program, the authors of this article noticed a
downward trend in its performance as more functionality
was added. At the same time, the performance losses

1 Advanced Micro Devices, Inc, Graphics Specifications,
2021. URL: https://www.amd.com/en/products/specifications/
graphics. Accessed March 1, 2021.

2 NVIDIA. Comparison of specifications of RTX 30
video cards. URL: https://www.nvidia.com/ru-ru/geforce/
graphics-cards/30-series/compare/?section=compare-specs.
Accessed March 1, 2021.

3 Houston M. General Purpose Computation on Graphics
Processors (GPGPU). ATI HD 2000 Series. Launch, Tunis,
Tunisia; 2007. URL: https://graphics.stanford.edu/~mhouston/
public_talks/R520-mhouston.pdf. Accessed March 1, 2021.

were much more significant than could be assumed
based on the complexity of the algorithm of the added
functionality.

When looking into the above problem, it was found
that this happens due to the specifics of the SIMD
architecture of graphics processors: when the program
executes a conditional operator, both branches will be
executed, but the operations of the wrong branch will not
be applied. This feature is called predication [4, p. 168]
of branches of execution, and it is needed, first of all, to
replace the dependence on the flow of execution with the
dependence on data. The very need for such measures
is justified by the fact that most of the hardware part
of the GPU architecturally falls into the SIMD class of
Flynn’s taxonomy [3], and individual modules of the
system cannot have their own threads of execution and,
accordingly, cannot follow along various branches of the
conditional operator.

The degree of influence of the above feature on the
program differs from program to program and correlates
with the number of possible settings. So, if the program
is initially designed to solve one maximally specific task
without the possibility of customization (for example,
calculating a certain hash function), then the influence
of predication will be minimized.

Programs that perform more general tasks, and,
therefore, have a large list of plug-in or optional
functional that will be used in the process of the program
only with certain input data, are more susceptible to
performance degradation.

Letus take a 3D scene renderer as an example of such
a program. Rendering in the field of computer graphics
is a term used to describe the process of obtaining an
image from certain data characterizing the objects of
the displayed scene. A program that implements such a
process is called a renderer. Professional renderers can
include thousands of different options that change the
behavior of the program—ifrom adjusting the angle of
the camera’s field of view to the detailed configuration
of the bidirectional reflectance distribution function for
each surface.

Taking a renderer program as an example, imagine
a situation in which a certain scene is rendered with
a set of primitives that can only scatter or emit light,
but not reflect it. In this case, the code responsible for
calculating the reflections should not be called, but
its very presence will slow down the program due to
predication.

To enable or disable the desired program behavior,
in the vast majority of cases, one would use conditional
statements that depend on some input data of the program,
regardless of whether it just data or configuration
settings.

As program’s functionality grows, the number of
conditional statements will increase, and accordingly,

Russian Technological Journal. 2021;9(6):7-15

https://www.amd.com/en/products/specifications/graphics
https://www.amd.com/en/products/specifications/graphics
https://www.nvidia.com/ru-ru/geforce/graphics-cards/30-series/compare/?section=compare-specs
https://www.nvidia.com/ru-ru/geforce/graphics-cards/30-series/compare/?section=compare-specs
https://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf
https://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

the costs spent by the GPU on processing conditional
program branches will also increase, which, in turn,
leads to a certain ceiling of program complexity—after a
certain critical mass of branches, the program will slow
down so much that will trigger the internal protection of
the driver (if any) and abort the execution.

It should be noted that from a programmer’s point
of view, the mere presence of additional code slows
down the program, despite the fact that the code should
not be executed. This behavior is highly uncommon for
programs running on the CPU; Moreover, the correct
use of conditional jumps is often the key to writing more
efficient programs, thanks to the branch predicator built
into the cores of modern CPUs.

RESEARCH OF EXISTING SOFTWARE
AND HARDWARE FOR INCREASING
PERFORMANCE

Let us consider the existing technologies for
optimizing programs and increasing performance,
assessing their applicability for solving the described
problem.

It should be noted that within this article there will
be no attempts to numerically compare the methods
under consideration. This is due to the fact that almost
all methods of increasing software performance are
based on a certain characteristic of the optimized
program, hardware platform or programming
language. Techniques that work for some programs
may be useless or even harmful to others. The quality
of implementation of a particular method also has a
direct impact on the result obtained, and the same
approach, implemented in different ways, can give
strikingly different results. The specific metric of the
success of the application of methods depends on
many factors, both quantitative and qualitative, which
cannot be excluded from the study without jeopardizing
the reproducibility of the study itself. On the other
hand, the inclusion of these factors will narrow the
study down to comparing particular cases, namely,
comparing specific programs on specific hardware in a
specific configuration, which is not representative for
describing the overall picture.

In view of the above, the authors analyze
mainly the qualitative characteristics to determine
applicability of methods in lieu of software
performance improvement.

Optimizing compilers continue to play a leading
role in improving software performance. In general,
an optimizing compiler is any compiler that performs
special operations on compiled code to improve its
performance.

Initially, this meant replacing certain operations
with equivalent, but more efficient ones, such as

replacing multiplication or integer division by numbers
that are powers of two, with bit shift operations, but
with the development of the scientific field, software
development methodologies, and hardware capabilities,
compilers have acquired an extensive arsenal of
optimization techniques.

They are usually divided into low-level and high-
level optimizations.

Low-level optimizations involve changing the
generated machine code to make the best use of hardware
platform features. This includes the use of more
efficient machine code constructs, including the use of
special commands available in the target architecture,
vectorization of operations, function inlining, etc.

High-level optimizations operate at the level
of abstract algorithmic elements that make up a
program—Ioops, branches, and basic blocks. They use
data about the structure of the program to transform the
intermediate representation of the program into a more
efficient form.

In practice, the line between these groups is blurred,
since many methods involve elements of both high-level
code analysis and low-level control over the generation
of machine instructions.

Optimizations widely used by compilers include:

e constant folding—if a certain expression consists
only of constants, then it is calculated at the
compilation stage and its result is substituted instead
of the original expression;

e climinating the “dead code” [5], i.e., code sections
that cannot be reached by the program;

e climinating the dead stores [6], i.e., removal of
operations storing value in the variable that goes
unread further in the code;

e optimizing the register allocation [7] reorganizes
the code in such a way as to minimize the
number of memory accesses during the program
operation by keeping the most frequently used
variables in certain general-purpose registers of
the processor;

e operation parallelization—changing the order of
operations so that they can be run in parallel at the
level of threads, memory or instructions;

o strength reduction—replacing slow operations
with equivalent, but faster ones on the target
architecture;

o loop optimization—a wide group of methods focused
on working with loops, including such approaches
as moving invariants out of the loop, inversion of
loops, loop unrolling, dividing and merging loop
bodies, removing conditional statements from the
loop, etc.;

e instruction selection [8] allows the compiler to pick
the most efficient machine code combination for the
target processor;

Russian Technological Journal. 2021;9(6):7-15

10

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

e Instruction Scheduling [9, 10]—reorganization
of instructions so as not to cause downtime of the
central processor pipeline as a result of long memory
accesses, exhaustion of processor resources, or
branching.

Most of the traditional methods of program
optimization used in optimizing compilers can be
excluded from consideration, since they are focused on
CPU features that are not inherent in arithmetic cores
used in graphics processors. The methods that can be
applied are either already implemented by compilers
of programs for GPUs, or do not solve the presented
problem.

Letus consider more dynamic methods for increasing
the performance.

JIT-compilation technology [11] (just-in-time)
improves the performance of programs in languages
that are compiled into the bytecode. The bytecode is
called an intermediate representation of the program
code [12—14], which is executed by a virtual machine,
which is its key difference from machine code executed
directly by the processor.

In the framework of the JIT-compilation technology,
the bytecode of programs is compiled into machine code
as needed, right at the time of the program execution®.
This allows you to speed up the work of programs in
several ways at once:

e the startup delay, which without this technology is
caused by lengthy processing of the source code, is
significantly reduced; compilation from source code
to bytecode is significantly slower than compilation
from the bytecode to machine code;

o using the features of specific hardware to improve
the performance;

e optimizing the program using data obtained during
program operation;

o the ability to dynamically link libraries without the
overhead inherent in compiled languages.

However, the use of the JIT compilation within
programs running on a GPU currently does not appear
to be feasible due to architectural restrictions on
dynamically changing the executable machine code on
GPUs.

In addition, embedding compilation into the
operation cycle of the GPU itself will require a lot of
both hardware and software changes, and, in general,
will not give the same performance gain as on the central
processor; it is because there is no problem of connecting
libraries on the GPU (due to the static compilation of
programs), and the intermediate representation of the
program will be fully compiled into machine code in
the process of transferring the program to the GPU. In

4 Croce L. Just in Time Compilation. Columbia
University. URL: http://www.cs.columbia.edu/~aho/cs6998/
Lectures/14-09-22 Croce JIT.pdf. Accessed March 1, 2021.

general, these problems make the use of JIT impractical
on the GPU.

One of the key elements ensuring the performance
of modern CPUs is the branch predictor’. A branch
predictor allows a pipelined processor to begin loading
instructions from one of the branches of a branching
statement into the pipeline before a condition is
determined to be true.

This plays an important role in improving
performance due to the parallel execution of
instructions operating on mutually independent data.
In the general case, without a predictor, the processor
pipeline will not know which instructions from which
branch should be used, and will be able to start loading
them only after evaluating the truth of the condition in
the conditional statement, which would entail pipeline
stalling for each of the conditions. This can be avoided
by predicting the result of the condition and starting
loading instructions from the corresponding branch
into the pipeline in advance. If the predictor fails,
the pipeline will idle until the correct instructions are
loaded.

The branch prediction itself is carried out
heuristically [15—17], commonly, based on the statistics
of the execution of a given section of the code. The time
cost of a predictor error is inevitable due to imperfect
prediction mechanisms, but with a sufficiently accurate
prediction mechanism, the time loss from incorrect
predictions becomes insignificant compared to the gain
from correct predictions.

The branch prediction approach was developed in the
form of speculative execution®—in addition to loading
instructions onto the pipeline; the predicted branch is
also executed before the condition is established. In
case of an error, time losses increase, because you need
to flush the entire pipeline and load the correct branch
instructions into it.

The branch prediction and speculative execution
approaches are implemented in hardware and
are completely transparent to the programmer.
Nevertheless, with certain program constructions, it is
possible to get performance degradation, which is most
noticeable in the case when the program consistently
forces the module to mispredict the branch. The
existing practice of optimizing low-level programs for

5> Fog A. The microarchitecture of Intel, AMD and
VIA CPUs. An optimization guide for assembly programmers
and compiler makers. Technical University of Denmark. URL:
https://www.agner.org/optimize/microarchitecture.pdf. Accessed
March 1, 2021.

6 Gabbay F. Speculative execution based on value
prediction. Research Proposal towards the Degree of Doctor
of Sciences. Technion-Israel Institute of Technology (IIT),
Department of Electrical Engineering. 1996. 65 p. URL: http://
citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397 &re
p=repl&type=pdf. Accessed March 1, 2021.

Russian Technological Journal. 2021;9(6):7-15

11

http://www.cs.columbia.edu/~aho/cs6998/Lectures/14-09-22_Croce_JIT.pdf
http://www.cs.columbia.edu/~aho/cs6998/Lectures/14-09-22_Croce_JIT.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

better interaction with the branch predictor is a direct
consequence of the imperfection of the used prediction
methods.

The very presence of a branch prediction and
speculative execution mechanism has also opened
the way for a whole class of hardware vulnerabilities
that allow a program to gain unauthorized access
to information. A specially designed program can
determine the contents of memory cells using side
channels (typically access latency) arising from
erroneous branch predictions [18-20].

The authors of this article believe that predicting
transitions to the GPU does not make sense due to
the absence of a pipeline on its cores, as well as the
absence of branches in the executable machine code
in their typical understanding due to predication.
Instead, the code is structured linearly and no
conditional statements are executed when executing
conditional statements’ “jumps” of the instruction
counter register.

Even if we assume that this obstacle will be
overcome, implementing the prediction module into
the GPU would be extremely difficult due to the
complexity of such a module. A typical GPU includes
a large number of weak arithmetic cores, orders of
magnitude larger than the number of cores on a typical
market CPU. Adding a predictor to each of them
will increase their size and power consumption to
unacceptable levels.

The adaptive optimization method [21] relies
on a special toolkit, similar to JIT compilers, to
recompile the program code while it is running. This
method applies different optimization techniques
to a program depending on the productivity of
the code. For example, adaptive optimization will
apply more aggressive optimization techniques in
bottlenecks where the code is spending the most CPU
time. Such aggressive optimization techniques are
time-consuming and wasteful to apply to the entire
program. Therefore, sections of the program that are
rarely called will be optimized with more primitive,
but faster methods, allowing you to save time in
general, albeit at the expense of the fact that this code
will run slower.

The application of the above approach to GPUs is
impossible for a reason similar to JIT; for it to work, the
program requires the ability to rewrite its code, which is
not supported by modern GPUs.

Let us consider the run-time algorithm
specialization, an approach that comes from the field
of automatic theorem proving [22]. This approach
implies the creation of specific implementations of
complex functions for certain inputs, for which it is
possible to represent the original function in a simpler
form. This can sometimes translate into creating table

values for the function and caching individual results
for frequently repeated values. In more complex cases,
several code variants can be generated corresponding to
particular variants of the function, where, for example,
part of the calculations is excluded due to specific
values of the input data.

The aforementioned approach and methods similar
to it [23] require not only writing to the memory
area of the executable code, but also a large amount
of additional memory for the code of the obtained
specializations, which makes its application within the
GPGPU technology impossible.

Let us consider now the profile-guided
optimization technology. It is an approach to
program optimization in which the optimization
process is controlled by the performance results of
the program [24, 25]. This approach often requires
the use of a special compiler, which takes on the task
of instrumentation and taking measurements of the
program execution time. Such a special compiler
translates, builds, and runs the program many times,
analyzing during these test runs the frequency of use
of various sections of the program and the speed of
their invocation. Using this data, the compiler applies
various optimization strategies to code sections that
showed poor results during test runs. These strategies
include selecting the optimal register allocation,
function embedding, as well as a lot of techniques
tied to the successful grouping of executable code
in memory pages to speed up the work of caches
at several levels at once—from the mechanism for
managing virtual memory at the operating system
level to the CPU instruction cache.

Due to the fact that the statistics collected by such
a compiler is representative only of those actions that
were performed by the program during the testing
process, a typical set of tests should include the most
common scenarios for working with the program. It
could be much easier implemented for GPU programs,
due to their lack of interactivity.

The authors of the article believe that the use of
this method for GPU programs is impractical, since in
the conditions of working with a GPU it is extremely
difficult or even impossible to instrument the code and,
accordingly, to obtain measurements of the performance
of individual sections of the code necessary for the
method to work.

From the analysis of existing technologies for
increasing performance, it is clear that the problem of
loss of performance with increasing functionality, which
is typical for graphics processors, is atypical and non-
trivial.

None of the approaches discussed solve the problem
of'branch predication on GPUs, but they are an important
starting point in the process of finding a solution.

Russian Technological Journal. 2021;9(6):7-15

12

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

On the one hand, to solve the problem, the use of
dynamic methods is required to maintain the flexibility
of the program functionality for the GPU, but on the
other hand, the considered existing solutions applied
on the CPU cannot be used in the context of GPU in
practice due to the particular features of the architecture
focused on massively parallel calculations. Changes
to the established GPU architecture are obviously
impractical due to a number of factors, including a
multiple increase in production costs and an inevitable
decrease in performance.

By virtue of the stated provisions, it can be
established that there is a need to find an approach to
optimizing programs for GPU that is compatible with
the limitations of graphic processors, but at the same
time flexible enough to ensure the preservation of the
program’s functionality.

CONCLUSIONS

The article discussed the problem of decreasing
the performance of programs for general-purpose
calculations on GPU, which arises in the course of
increasing their functionality. The connection of this
problem with branching predication—an essential
feature of the organization of the hardware platform of
graphics processors—was established.

A number of existing approaches and technologies
for increasing the performance of programs on the
CPU were considered and the low degree of their
applicability to programs using the GPGPU technology
was shown.

It was noted that the existing methods, even though
their direct application is impossible, are an important
starting point for further research.

Further development of the problems outlined in the
article implies the development of a specialized method
for optimizing programs for GPU.

Authors’ contribution. All authors

contributed to the research work.

equally

REFERENCES

1. Markidis S., Chien S.W.D., Laure E., Peng [.B.,
Vetter J.S. NVIDIA Tensor Core Programmability,
Performance & Precision. In: 2018 [EEE
International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). Vancouver, BC,
Canada; 2018, p. 522-531. https://doi.org/10.1109/
IPDPSW.2018.00091

2. Sanzharov V.V.,, Gorbonosov A.l, Frolov VA,
Voloboy A.G. Examination of the Nvidia RTX. CEUR
Workshop Proceedings. 2019;2485:7—12. http://dx.doi.
org/10.30987/graphicon-2019-2-7-12

10.

I1.

12.

13.

14.

15.

. Flynn M.J. Very high speed computing

systems.
Proceedings of the IEEE. 1966;54(12):1901-19009.
https://doi.org/10.1109/PROC.1966.5273

. Fisher J.A., Faraboschi P., Young C. Embedded computing:

A VLIW approach to architecture, compilers, and tools.
Elsevier; 2004. ISBN: 978-1-55860-766-8. URL: https://
www.researchgate.net/publication/220690439 Embedded
computing_a VLIW _approach to_architecture compilers
and_tools

. Knoop J., Riithing O., Steffen B. Partial dead code

elimination. In: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and
implementation (PLDI ‘94). 1994, p. 147—158. https://
doi.org/10.1145/178243.178256

. Fink S., Knobe K., Sarkar V. Unified analysis of array

and object references in strongly typed languages. In:
Palsberg J. (Ed.). Static Analysis. SAS 2000. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer. 2000.
V. 1824. P. 155—174. https://doi.org/10.1007/978-3-540-
45099-3 9

. Runeson J., Nystrom S.-O. Retargetable graph-coloring

register allocation for irregular architectures. In: Krall
A. (Ed.). Software and Compilers for Embedded
Systems (SCOPES 2003). Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer. 2003. V. 2826.

P. 240-254. https://doi.org/10.1007/978-3-540-
39920-9 17
. Blindell G.H. [Instruction Selection: Principles,

Methods, & Applications. Springer; 2016. 171 p. ISBN
978-3-319-34017-3. http://dx.doi.org/10.1007/978-3-

319-34019-7

. Gibbons P.B., Muchnick S.S. Efficient instruction
scheduling for a pipelined architecture. ACM
SIGPLAN Notices. 1986;21(7):11-16. https://doi.

org/10.1145/13310.13312

Su Ch.-L., Tsui Ch.-Y., Despain A.M. Low power
architecture design and compilation techniques for
high-performance processors. In: Proceedings of
COMPCON °94. 1994, p. 489—498. https://doi.org/10.1109/
CMPCON.1994.282878

Aycock J. A brief history of just-in-time. ACM
Comput. Surv. 2003;35(2):97-113. https://doi.
org/10.1145/857076.857077

Ogihara M. Fundamentals of Java Programming.
Springer; 2018. 532 p.

Sage K. The Origins of Programming. In: Concise Guide
to Object-Oriented Programming. Undergraduate
Topics in Computer Science. Springer, Cham.; 2019,
p. 1-9. https://doi.org/10.1007/978-3-030-13304-7 1
Saabith A.S., Fareez M.M.M., Vinothraj T. Python
current trend applications-an overview. IJAERD.
2019;6(10):6—12. URL: http://ijaecrd.com/papers/
finished_papers/IJAERDV0611085481.pdf

McFarling S. Combining Branch Predictors. Digital
Western Research Lab (WRL). Technical Report, TN-36.
1993. 29 p. URL: https://www.hpl.hp.com/techreports/
Compaq-DEC/WRL-TN-36.pdf

Russian Technological Journal. 2021;9(6):7-15

13

https://doi.org/10.1109/PROC.1966.5273
https://www.researchgate.net/publication/220690439_Embedded_computing_a_VLIW_approach_to_architecture_compilers_and_tools
https://www.researchgate.net/publication/220690439_Embedded_computing_a_VLIW_approach_to_architecture_compilers_and_tools
https://www.researchgate.net/publication/220690439_Embedded_computing_a_VLIW_approach_to_architecture_compilers_and_tools
https://www.researchgate.net/publication/220690439_Embedded_computing_a_VLIW_approach_to_architecture_compilers_and_tools
https://doi.org/10.1145/178243.178256
https://doi.org/10.1145/178243.178256
https://doi.org/10.1007/978-3-540-45099-3_9
https://doi.org/10.1007/978-3-540-45099-3_9
https://doi.org/10.1007/978-3-540-39920-9_17
https://doi.org/10.1007/978-3-540-39920-9_17
http://dx.doi.org/10.1007/978-3-319-34019-7
http://dx.doi.org/10.1007/978-3-319-34019-7
https://doi.org/10.1145/13310.13312
https://doi.org/10.1145/13310.13312
https://doi.org/10.1109/CMPCON.1994.282878
https://doi.org/10.1109/CMPCON.1994.282878
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
https://doi.org/10.1007/978-3-030-13304-7_1
http://ijaerd.com/papers/finished_papers/IJAERDV06I1085481.pdf
http://ijaerd.com/papers/finished_papers/IJAERDV06I1085481.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
http://dx.doi.org/10.30987/graphicon-2019-2-7-12
http://dx.doi.org/10.30987/graphicon-2019-2-7-12

Comparative analysis of software optimization methods
in context of branch predication on GPUs

Igor Yu. Sesin,
Roman G. Bolbakov

16.

17.

18.

19.

20.

Skadron K., Martonosi M., Clark D.W. A Taxonomy
of branch mispredictions, and alloyed prediction as a
robust solution to wrong-history mispredictions. In:
Proceedings of the 2000 International Conference on
Parallel Architectures and Compilation Techniques.
Philadelphia. 2000. https://doi.org/10.1109/
PACT.2000.888344

Vintan L.N., Iridon M. Towards a high performance
neural branch predictor. In: IJCNN’99. International
Joint Conference on Neural Networks Proceedings. 1999.
https://doi.org/10.1109/IJCNN.1999.831066

Kocher P, Horn J., Fogh A., Genkin D., et al. Spectre
attacks: Exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy (SP). 2019. 19 p.
https://doi.org/10.1109/SP.2019.00002

Bhattacharyya A., Sandulescu A., Neugschwandtner
M., Sorniotti A., et al. SMoTherSpectre: exploiting
speculative execution through port contention.
In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications
Security (CCS ’19). 2019, p. 785-800. https://doi.
org/10.1145/3319535.3363194

Chen G., Chen S., Xiao Y., Zhang Y., Lin Z., Lai T.H.
SgxPectre: Stealing intel secrets from SGX enclaves
via speculative execution. In: 2019 IEEE European

About the authors

21.

22.

23.

24.

25.

Symposium on Security and Privacy (EuroS&P).
IEEE. 2019, p. 142—-157. https://doi.org/10.1109/
EuroSP.2019.00020

Arnold M., Fink S., Grove D., Hind M., Sweeney
PF. Adaptive optimization in the Jalapeno JVM. In:
Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications. 2000, p. 47-65. https://doi.
org/10.1145/353171.353175

Riazanov A. Implementing an Efficient Theorem Prover.
PhD thesis. The University of Manchester; 2003. 210 p.
URL: https://www.researchgate.net/publication/2906405
Implementing_an_Efficient Theorem Prover

Grant B., Mock M., Philipose M., Chambers C.,
Eggers S.J. Annotation-directed run-time specialization
in C. ACM SIGPLAN Not. 1997;32(12):163—178. https://
doi.org/10.1145/258994.259016

Pettis K., Hansen R.C. Profile guided code positioning.
of the ACM SIGPLAN 1990
conference on Programming language design and
implementation (PLDI ‘90). 1990, p. 16—27. https://doi.
org/10.1145/93542.93550

Wicht B., Vitillo R.A, Chen D., Levinthal D. Hardware
Counted Profile-Guided Optimization. 24 November
2014. URL: https://arxiv.org/pdf/1411.6361.pdf

In: Proceedings

Igor Yu. Sesin, Postgraduate Student, Department of the Tool and Applied Software, Institute of Information
Technologies, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail:
isesin@protonmail.com. https://orcid.org/0000-0002-7323-9595

Roman G. Bolbakov, Cand. Sci. (Eng.), Associate Professor, Head of the Department of the Tool and Applied
Software, Institute of Information Technologies, MIREA — Russian Technological University (78, Vernadskogo pr.,
Moscow, 119454 Russia). E-mail: bolbakov@mirea.ru. https://orcid.org/0000-0002-4922-7260

14

Russian Technological Journal. 2021;9(6):7-15

https://doi.org/10.1109/PACT.2000.888344
https://doi.org/10.1109/PACT.2000.888344
https://doi.org/10.1109/IJCNN.1999.831066
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/353171.353175
https://www.researchgate.net/publication/2906405_Implementing_an_Efficient_Theorem_Prover
https://www.researchgate.net/publication/2906405_Implementing_an_Efficient_Theorem_Prover
https://doi.org/10.1145/258994.259016
https://doi.org/10.1145/258994.259016
https://doi.org/10.1145/93542.93550
https://doi.org/10.1145/93542.93550
https://arxiv.org/pdf/1411.6361.pdf
mailto:isesin@protonmail.com
https://orcid.org/0000-0002-7323-9595
mailto:bolbakov@mirea.ru
https://orcid.org/0000-0002-4922-7260

Comparative analysis of software optimization methods Igor Yu. Sesin,
in context of branch predication on GPUs Roman G. Bolbakov

06 aBTOpax

CecuH Uropb IOpbeBUuY, acnupaHT, kadeapa NHCTPYMEHTANIbHOIO 1 NPUKIAAHOro NporpaMMHoOro obecneye-
HUs MIHCTUTyTa MHGOopMaumnoHHbIX TexHosornin reQyY BO «MUP3A — Poccuiickinii TEXHONOMMYECKWiA yHUBEPCUTET»
(119454, Poccus, Mockea, np-T BepHaackoro, a. 78). E-mail: isesin@protonmail.com. https://orcid.org/0000-0002-
7323-9595

Bon6akoe PomaH FeHHagbeBUY, K.T.H., JOLEHT, 3aBenylolwmin kadenpoi MHCTPYMEHTANIbHOrO 1M NPUKNaa-
HOro nporpamMmMHoro obecnedyeHus MHcTUTyTa MHGOpMaUMOHHbIX TexHonornii GreQy BO «-MUPSBA — Poccuiickuii
TexHonormnyeckmin ynmeepcutet» (119454, Poccusa, MockBa, np-T BepHaackoro, a. 78). E-mail: bolbakov@mirea.ru.
https://orcid.org/0000-0002-4922-7260

Translated by E. Shklovskii

Russian Technological Journal. 2021;9(6):7-15
15

mailto:isesin@protonmail.com
https://orcid.org/0000-0002-7323-9595
https://orcid.org/0000-0002-7323-9595
mailto:bolbakov@mirea.ru
https://orcid.org/0000-0002-4922-7260

