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Abstract. General Purpose computing for Graphical Processing Units (GPGPU) technology is a powerful tool for 
offloading parallel data processing tasks to Graphical Processing Units (GPUs). This technology finds its use in 
variety of domains—from science and commerce to hobbyists. GPU-run general-purpose programs will inevitably 
run into performance issues stemming from code branch predication. Code predication is a GPU feature that makes 
both conditional branches execute, masking the results of incorrect branch. This leads to considerable performance 
losses for GPU programs that have large amounts of code hidden away behind conditional operators. This paper 
focuses on the analysis of existing approaches to improving software performance in the context of relieving the 
aforementioned performance loss. Description of said approaches is provided, along with their upsides, downsides 
and extents of their applicability and whether they address the outlined problem. Covered approaches include: 
optimizing compilers, JIT-compilation, branch predictor, speculative execution, adaptive optimization, run-time 
algorithm specialization, profile-guided optimization. It is shown that the aforementioned methods are mostly 
catered to CPU-specific issues and are generally not applicable, as far as branch-predication performance loss 
is concerned. Lastly, we outline the need for a separate performance improving approach, addressing specifics of 
branch predication and GPGPU workflow. 
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ОБЗОР

Сравнительный анализ  
методов оптимизации программного обеспечения  

для борьбы с предикацией ветвлений  
на графических процессорах

И.Ю. Сесин @, 
Р.Г. Болбаков

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: isesin@protonmail.com

Резюме. Технология GPGPU (General Purpose computing for Graphical Processing Units – расчеты общего 
назначения на графических процессорах) является мощным инструментом для переноса задач парал-
лельной обработки информации на GPU (Graphical Processing Unit – графический процессор). Эта тех-
нология находит применение практически в любой области, требующей проведения массы параллель-
ных расчетов, и применяется как в научной и коммерческой, так и в любительской среде. Разработчики 
программ общего назначения, запускаемых на GPU, неизбежно сталкиваются с падением производи-
тельности ввиду предикации ветвления кода. В условиях предикации ветвления исполняются обе ветви 
условного оператора вне зависимости от истинности условия, но посредством маскирования выполня-
емых инструкций программа учитывает только результат работы верной ветви. Из-за этого программы 
общего назначения, имеющие большие участки кода, скрытые за условными операторами, становятся 
существенно менее производительными на графических процессорах. В статье рассматриваются суще-
ствующие в предметной области методы и подходы к увеличению производительности программного 
обеспечения в рамках их применимости к решению проблемы падения производительности при пре-
дикации. Приводится описание методов, их сильных и слабых сторон, а также рамок их применимости, 
на базе чего делается заключение о возможности их использования на GPU. В число рассмотренных 
методов и подходов вошли следующие: оптимизирующие компиляторы, JIT-компиляция, предсказатель 
переходов, спекулятивное исполнение, адаптивная оптимизация, специализация алгоритма во время 
исполнения, оптимизация на основе профилирования. Показано, что указанные аппаратные и программ-
ные подходы к увеличению производительности программного обеспечения преимущественно ориенти-
рованы на решение проблем специфичных для CPU (Central Processing Unit – центральный процессор) и в 
целом неприменимы для разрешения потерь производительности при предикации на GPU. Указывается 
на необходимость создания отдельного подхода, ориентированного именно на решение проблемы пре-
дикации ветвления на GPU.

Ключевые слова: расчеты общего назначения на графических процессорах, оптимизирующие компилято-
ры, предикация
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INTRODUCTION

Graphics processors, or Graphics Processing 
Unit (GPU), are specialized hardware that performs 
the processing of graphical information. Unlike a 
central processing unit (CPU), graphics processors 
are specialized for parallel processing of large 
amounts of data, which causes certain differences 
in their architectural design:

•	 CPUs have a small number of physical cores (from 
1 to 32), GPUs have orders of magnitude more 
physical cores (can be hundreds or thousands1,  2, 
depending on the compromise between the number 
of cores and their power chosen by the hardware 
manufacturer); 

•	 cores in the CPU have additional hardware 
functionality, such as their own caches, 
instruction pipelines, and branch prediction 
modules. GPU kernels are very simple arithmetic 
kernels focused on fast processing of floating-
point numbers. A number of modern GPUs also 
include specialized cores for ray tracing and 
tensor computing [1, 2];

•	 CPU is separated from random access memory; 
GPUs have direct access to video memory located 
on the same board;

•	 GPU cores cannot write data in the memory area 
allocated for the executable code;

•	 CPU falls into the Multiple Instruction, Multiple Data 
(MIMD) classification, GPU falls into the Single 
Instruction, Multiple Data (SIMD) classification 
according to Flynn [3].
Using General Purpose Computing on Graphics 

Processing Units (GPGPU) technology, it is possible 
to run programs on GPUs other than highly specialized 
shader programs. This technology finds application 
in many areas—from mining crypto currencies to 
calculating the protein folding3.

Applying the GPGPU technology, one has to deal 
with certain peculiarities of the construction of programs 
and their behavior in the conditions of execution on a 
graphics processor. For example, in the course of writing 
a GPGPU program, the authors of this article noticed a 
downward trend in its performance as more functionality 
was added. At the same time, the performance losses  
 

1	 Advanced Micro Devices, Inc, Graphics Specifications, 
2021. URL: https://www.amd.com/en/products/specifications/
graphics. Accessed March 1, 2021.

2	 NVIDIA. Comparison of specifications of RTX 30 
video cards. URL: https://www.nvidia.com/ru-ru/geforce/
graphics-cards/30-series/compare/?section=compare-specs. 
Accessed March 1, 2021.

3	 Houston M. General Purpose Computation on Graphics 
Processors (GPGPU). ATI HD 2000 Series. Launch, Tunis, 
Tunisia; 2007. URL: https://graphics.stanford.edu/~mhouston/
public_talks/R520-mhouston.pdf. Accessed March 1, 2021.

were much more significant than could be assumed 
based on the complexity of the algorithm of the added 
functionality.

When looking into the above problem, it was found 
that this happens due to the specifics of the SIMD 
architecture of graphics processors: when the program 
executes a conditional operator, both branches will be 
executed, but the operations of the wrong branch will not 
be applied. This feature is called predication [4, p. 168] 
of branches of execution, and it is needed, first of all, to 
replace the dependence on the flow of execution with the 
dependence on data. The very need for such measures 
is justified by the fact that most of the hardware part 
of the GPU architecturally falls into the SIMD class of 
Flynn’s taxonomy [3], and individual modules of the 
system cannot have their own threads of execution and, 
accordingly, cannot follow along various branches of the 
conditional operator.

The degree of influence of the above feature on the 
program differs from program to program and correlates 
with the number of possible settings. So, if the program 
is initially designed to solve one maximally specific task 
without the possibility of customization (for example, 
calculating a certain hash function), then the influence 
of predication will be minimized.

Programs that perform more general tasks, and, 
therefore, have a large list of plug-in or optional 
functional that will be used in the process of the program 
only with certain input data, are more susceptible to 
performance degradation.

Let us take a 3D scene renderer as an example of such 
a program. Rendering in the field of computer graphics 
is a term used to describe the process of obtaining an 
image from certain data characterizing the objects of 
the displayed scene. A program that implements such a 
process is called a renderer. Professional renderers can 
include thousands of different options that change the 
behavior of the program—from adjusting the angle of 
the camera’s field of view to the detailed configuration 
of the bidirectional reflectance distribution function for 
each surface.

Taking a renderer program as an example, imagine 
a situation in which a certain scene is rendered with 
a set of primitives that can only scatter or emit light, 
but not reflect it. In this case, the code responsible for 
calculating the reflections should not be called, but 
its very presence will slow down the program due to 
predication.

To enable or disable the desired program behavior, 
in the vast majority of cases, one would use conditional 
statements that depend on some input data of the program, 
regardless of whether it just data or configuration 
settings.

As program’s functionality grows, the number of 
conditional statements will increase, and accordingly, 

https://www.amd.com/en/products/specifications/graphics
https://www.amd.com/en/products/specifications/graphics
https://www.nvidia.com/ru-ru/geforce/graphics-cards/30-series/compare/?section=compare-specs
https://www.nvidia.com/ru-ru/geforce/graphics-cards/30-series/compare/?section=compare-specs
https://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf
https://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf
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the costs spent by the GPU on processing conditional 
program branches will also increase, which, in turn, 
leads to a certain ceiling of program complexity—after a 
certain critical mass of branches, the program will slow 
down so much that will trigger the internal protection of 
the driver (if any) and abort the execution.

It should be noted that from a programmer’s point 
of view, the mere presence of additional code slows 
down the program, despite the fact that the code should 
not be executed. This behavior is highly uncommon for 
programs running on the CPU; Moreover, the correct 
use of conditional jumps is often the key to writing more 
efficient programs, thanks to the branch predicator built 
into the cores of modern CPUs.

RESEARCH OF EXISTING SOFTWARE  
AND HARDWARE FOR INCREASING 

PERFORMANCE

Let us consider the existing technologies for 
optimizing programs and increasing performance, 
assessing their applicability for solving the described 
problem.

It should be noted that within this article there will 
be no attempts to numerically compare the methods 
under consideration. This is due to the fact that almost 
all methods of increasing software performance are 
based on a certain characteristic of the optimized 
program, hardware platform or programming 
language. Techniques that work for some programs 
may be useless or even harmful to others. The quality 
of implementation of a particular method also has a 
direct impact on the result obtained, and the same 
approach, implemented in different ways, can give 
strikingly different results. The specific metric of the 
success of the application of methods depends on 
many factors, both quantitative and qualitative, which 
cannot be excluded from the study without jeopardizing 
the reproducibility of the study itself. On the other 
hand, the inclusion of these factors will narrow the 
study down to comparing particular cases, namely, 
comparing specific programs on specific hardware in a 
specific configuration, which is not representative for 
describing the overall picture.

In view of the above, the authors analyze 
mainly the qualitative characteristics to determine 
applicability of methods in lieu of software 
performance improvement.

Optimizing compilers continue to play a leading 
role in improving software performance. In general, 
an optimizing compiler is any compiler that performs 
special operations on compiled code to improve its 
performance.

Initially, this meant replacing certain operations 
with equivalent, but more efficient ones, such as 

replacing multiplication or integer division by numbers 
that are powers of two, with bit shift operations, but 
with the development of the scientific field, software 
development methodologies, and hardware capabilities, 
compilers have acquired an extensive arsenal of 
optimization techniques.

They are usually divided into low-level and high-
level optimizations. 

Low-level optimizations involve changing the 
generated machine code to make the best use of hardware 
platform features. This includes the use of more 
efficient machine code constructs, including the use of 
special commands available in the target architecture, 
vectorization of operations, function inlining, etc.

High-level optimizations operate at the level 
of abstract algorithmic elements that make up a 
program—loops, branches, and basic blocks. They use 
data about the structure of the program to transform the 
intermediate representation of the program into a more 
efficient form.

In practice, the line between these groups is blurred, 
since many methods involve elements of both high-level 
code analysis and low-level control over the generation 
of machine instructions.

Optimizations widely used by compilers include:
•	 constant folding—if a certain expression consists 

only of constants, then it is calculated at the 
compilation stage and its result is substituted instead 
of the original expression;

•	 eliminating the “dead code” [5], i.e., code sections 
that cannot be reached by the program;

•	 eliminating the dead stores [6], i.e., removal of 
operations storing value in the variable that goes 
unread further in the code;

•	 optimizing the register allocation [7] reorganizes 
the code in such a way as to minimize the 
number of memory accesses during the program 
operation by keeping the most frequently used 
variables in certain general-purpose registers of 
the processor;

•	 operation parallelization—changing the order of 
operations so that they can be run in parallel at the 
level of threads, memory or instructions;

•	 strength reduction—replacing slow operations 
with equivalent, but faster ones on the target 
architecture;

•	 loop optimization—a wide group of methods focused 
on working with loops, including such approaches 
as moving invariants out of the loop, inversion of 
loops, loop unrolling, dividing and merging loop 
bodies, removing conditional statements from the 
loop, etc.;

•	 instruction selection [8] allows the compiler to pick 
the most efficient machine code combination for the 
target processor;
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•	 Instruction Scheduling [9, 10]—reorganization 
of instructions so as not to cause downtime of the 
central processor pipeline as a result of long memory 
accesses, exhaustion of processor resources, or 
branching.
Most of the traditional methods of program 

optimization used in optimizing compilers can be 
excluded from consideration, since they are focused on 
CPU features that are not inherent in arithmetic cores 
used in graphics processors. The methods that can be 
applied are either already implemented by compilers 
of programs for GPUs, or do not solve the presented 
problem.

Let us consider more dynamic methods for increasing 
the performance.

JIT-compilation technology [11] (just-in-time) 
improves the performance of programs in languages 
that are compiled into the bytecode. The bytecode is 
called an intermediate representation of the program 
code [12–14], which is executed by a virtual machine, 
which is its key difference from machine code executed 
directly by the processor.

In the framework of the JIT-compilation technology, 
the bytecode of programs is compiled into machine code 
as needed, right at the time of the program execution4. 
This allows you to speed up the work of programs in 
several ways at once:

•	 the startup delay, which without this technology is 
caused by lengthy processing of the source code, is 
significantly reduced; compilation from source code 
to bytecode is significantly slower than compilation 
from the bytecode to machine code;

•	 using the features of specific hardware to improve 
the performance;

•	 optimizing the program using data obtained during 
program operation;

•	 the ability to dynamically link libraries without the 
overhead inherent in compiled languages.
However, the use of the JIT compilation within 

programs running on a GPU currently does not appear 
to be feasible due to architectural restrictions on 
dynamically changing the executable machine code on 
GPUs.

In addition, embedding compilation into the 
operation cycle of the GPU itself will require a lot of 
both hardware and software changes, and, in general, 
will not give the same performance gain as on the central 
processor; it is because there is no problem of connecting 
libraries on the GPU (due to the static compilation of 
programs), and the intermediate representation of the 
program will be fully compiled into machine code in 
the process of transferring the program to the GPU. In 

4	 Croce L. Just in Time Compilation. Columbia 
University. URL: http://www.cs.columbia.edu/~aho/cs6998/
Lectures/14-09-22_Croce_JIT.pdf. Accessed March 1, 2021.

general, these problems make the use of JIT impractical 
on the GPU.

One of the key elements ensuring the performance 
of modern CPUs is the branch predictor5. A branch 
predictor allows a pipelined processor to begin loading 
instructions from one of the branches of a branching 
statement into the pipeline before a condition is 
determined to be true.

This plays an important role in improving 
performance due to the parallel execution of 
instructions operating on mutually independent data. 
In the general case, without a predictor, the processor 
pipeline will not know which instructions from which 
branch should be used, and will be able to start loading 
them only after evaluating the truth of the condition in 
the conditional statement, which would entail pipeline 
stalling for each of the conditions. This can be avoided 
by predicting the result of the condition and starting 
loading instructions from the corresponding branch 
into the pipeline in advance. If the predictor fails, 
the pipeline will idle until the correct instructions are 
loaded.

The branch prediction itself is carried out 
heuristically [15−17], commonly, based on the statistics 
of the execution of a given section of the code. The time 
cost of a predictor error is inevitable due to imperfect 
prediction mechanisms, but with a sufficiently accurate 
prediction mechanism, the time loss from incorrect 
predictions becomes insignificant compared to the gain 
from correct predictions.

The branch prediction approach was developed in the 
form of speculative execution6—in addition to loading 
instructions onto the pipeline; the predicted branch is 
also executed before the condition is established. In 
case of an error, time losses increase, because you need 
to flush the entire pipeline and load the correct branch 
instructions into it.

The branch prediction and speculative execution 
approaches are implemented in hardware and 
are completely transparent to the programmer. 
Nevertheless, with certain program constructions, it is 
possible to get performance degradation, which is most 
noticeable in the case when the program consistently 
forces the module to mispredict the branch. The 
existing practice of optimizing low-level programs for 

5	 Fog A. The microarchitecture of Intel, AMD and 
VIA CPUs. An optimization guide for assembly programmers 
and compiler makers. Technical University of Denmark. URL: 
https://www.agner.org/optimize/microarchitecture.pdf. Accessed 
March 1, 2021.

6	 Gabbay F. Speculative execution based on value 
prediction. Research Proposal towards the Degree of Doctor 
of Sciences. Technion-Israel Institute of Technology (IIT), 
Department of Electrical Engineering. 1996. 65 p. URL: http://
citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&re
p=rep1&type=pdf. Accessed March 1, 2021.

http://www.cs.columbia.edu/~aho/cs6998/Lectures/14-09-22_Croce_JIT.pdf
http://www.cs.columbia.edu/~aho/cs6998/Lectures/14-09-22_Croce_JIT.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.29.5397&rep=rep1&type=pdf
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better interaction with the branch predictor is a direct 
consequence of the imperfection of the used prediction 
methods.

The very presence of a branch prediction and 
speculative execution mechanism has also opened 
the way for a whole class of hardware vulnerabilities 
that allow a program to gain unauthorized access 
to information. A specially designed program can 
determine the contents of memory cells using side 
channels (typically access latency) arising from 
erroneous branch predictions [18–20].

The authors of this article believe that predicting 
transitions to the GPU does not make sense due to 
the absence of a pipeline on its cores, as well as the 
absence of branches in the executable machine code 
in their typical understanding due to predication. 
Instead, the code is structured linearly and no 
conditional statements are executed when executing 
conditional statements’ “jumps” of the instruction 
counter register.

Even if we assume that this obstacle will be 
overcome, implementing the prediction module into 
the GPU would be extremely difficult due to the 
complexity of such a module. A typical GPU includes 
a large number of weak arithmetic cores, orders of 
magnitude larger than the number of cores on a typical 
market CPU. Adding a predictor to each of them 
will increase their size and power consumption to 
unacceptable levels.

The adaptive optimization method [21] relies 
on a special toolkit, similar to JIT compilers, to 
recompile the program code while it is running. This 
method applies different optimization techniques 
to a program depending on the productivity of 
the code. For example, adaptive optimization will 
apply more aggressive optimization techniques in 
bottlenecks where the code is spending the most CPU 
time. Such aggressive optimization techniques are 
time-consuming and wasteful to apply to the entire 
program. Therefore, sections of the program that are 
rarely called will be optimized with more primitive, 
but faster methods, allowing you to save time in 
general, albeit at the expense of the fact that this code 
will run slower.

The application of the above approach to GPUs is 
impossible for a reason similar to JIT; for it to work, the 
program requires the ability to rewrite its code, which is 
not supported by modern GPUs.

Let us consider the run-time algorithm 
specialization, an approach that comes from the field 
of automatic theorem proving [22]. This approach 
implies the creation of specific implementations of 
complex functions for certain inputs, for which it is 
possible to represent the original function in a simpler 
form. This can sometimes translate into creating table 

values for the function and caching individual results 
for frequently repeated values. In more complex cases, 
several code variants can be generated corresponding to 
particular variants of the function, where, for example, 
part of the calculations is excluded due to specific 
values of the input data.

The aforementioned approach and methods similar 
to it [23] require not only writing to the memory 
area of the executable code, but also a large amount 
of additional memory for the code of the obtained 
specializations, which makes its application within the 
GPGPU technology impossible.

Let us consider now the profile-guided 
optimization technology. It is an approach to 
program optimization in which the optimization 
process is controlled by the performance results of 
the program [24, 25]. This approach often requires 
the use of a special compiler, which takes on the task 
of instrumentation and taking measurements of the 
program execution time. Such a special compiler 
translates, builds, and runs the program many times, 
analyzing during these test runs the frequency of use 
of various sections of the program and the speed of 
their invocation. Using this data, the compiler applies 
various optimization strategies to code sections that 
showed poor results during test runs. These strategies 
include selecting the optimal register allocation, 
function embedding, as well as a lot of techniques 
tied to the successful grouping of executable code 
in memory pages to speed up the work of caches 
at several levels at once—from the mechanism for 
managing virtual memory at the operating system 
level to the CPU instruction cache.

Due to the fact that the statistics collected by such 
a compiler is representative only of those actions that 
were performed by the program during the testing 
process, a typical set of tests should include the most 
common scenarios for working with the program. It 
could be much easier implemented for GPU programs, 
due to their lack of interactivity.

The authors of the article believe that the use of 
this method for GPU programs is impractical, since in 
the conditions of working with a GPU it is extremely 
difficult or even impossible to instrument the code and, 
accordingly, to obtain measurements of the performance 
of individual sections of the code necessary for the 
method to work.

From the analysis of existing technologies for 
increasing performance, it is clear that the problem of 
loss of performance with increasing functionality, which 
is typical for graphics processors, is atypical and non-
trivial.

None of the approaches discussed solve the problem 
of branch predication on GPUs, but they are an important 
starting point in the process of finding a solution.
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On the one hand, to solve the problem, the use of 
dynamic methods is required to maintain the flexibility 
of the program functionality for the GPU, but on the 
other hand, the considered existing solutions applied 
on the CPU cannot be used in the context of GPU in 
practice due to the particular features of the architecture 
focused on massively parallel calculations. Changes 
to the established GPU architecture are obviously 
impractical due to a number of factors, including a 
multiple increase in production costs and an inevitable 
decrease in performance.

By virtue of the stated provisions, it can be 
established that there is a need to find an approach to 
optimizing programs for GPU that is compatible with 
the limitations of graphic processors, but at the same 
time flexible enough to ensure the preservation of the 
program’s functionality.

CONCLUSIONS

The article discussed the problem of decreasing 
the performance of programs for general-purpose 
calculations on GPU, which arises in the course of 
increasing their functionality. The connection of this 
problem with branching predication—an essential 
feature of the organization of the hardware platform of 
graphics processors—was established.

A number of existing approaches and technologies 
for increasing the performance of programs on the 
CPU were considered and the low degree of their 
applicability to programs using the GPGPU technology 
was shown.

It was noted that the existing methods, even though 
their direct application is impossible, are an important 
starting point for further research.

Further development of the problems outlined in the 
article implies the development of a specialized method 
for optimizing programs for GPU.
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