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Abstract. The work is devoted to the study of the evolution of the rotational motion of the planet in the central
Newtonian field of forces. The planet is modeled by a body, consisting of a solid core and a viscoelastic shell rigidly
attached to it. A limited formulation of the problem is considered, when the center of mass of the planet moves along
a given Keplerian elliptical orbit. The equations of motion are derived in the form of a system of Routh equations using
the canonical Andoyer variables, which in the unperturbed problem are “action-angle” variables, and have the form of
integro-differential equations with partial derivatives. The technique developed by V.G. Vil’ke is used for mechanical
systems with an infinite number of degrees of freedom. A system of ordinary differential equations is obtained by
the method of separation of motions, which describes the rotational motion of the planet, taking into account the
perturbations caused by elasticity and dissipation. An evolutionary system of equations for the “action” variables
and slow angular variables is obtained by the averaging method. A phase portrait is constructed that describes the
mutual change in the modulus of the angular momentum vector G of the rotational motion and the cosine of the
angle between this vector and the normal to the orbital plane of the planet’s center of mass. A stationary solution of
the evolutionary system of equations is found, which is asymptotically stable. It is shown that in stationary motion the
angular momentum vector G is orthogonal to the orbital plane, and the limiting value of the modulus of this vector
depends on the eccentricity of the elliptical orbit. The constructed mathematical model can be used to study the tidal
evolution of the rotational motion of planets and satellites. The results obtained in this work are consistent with the
results of previous studies in this area.
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Pesiome. PaboTa nocesileHa nccnenoBaHmio 9BOSIOLUN BpawaTesibHOro ABM>XeHna njiaHeTbl B LEHTPa/IbHOM HblO-
TOHOBCKOM nosie cun. NnaHeta mogennpyeTcs TeNOM, COCTOSALLMM N3 TBEPAOro s4pa M XXECTKO MPUKPENAEHHON K
HEMY BASKOYMpPYrown 0060J104KMN. PaccmaTpurBaeTcs orpaHmMyeHHast NoCTaHOBKa 3a4a4um, KOraa LEeHTP Macce niaaHeThbl
OBUXETCH Mo 3a4aHHON KENNEPOBCKON 3AANNTUYECKON op6|/1Te. YpaBHeHUS OBUXEHNS BbIBOASATCS B GOpMeE cucTe-
Mbl ypaBHEHUI Payca ¢ NCnosb30BaHMEM KAHOHNYECKMX NEPEMEHHbIX AHAyale, KOTOPble B HEBO3MYLLIEHHOW 3aaa-
ye aBNSII0TCSH NEPEMEHHBIMU «OENCTBUE-YIrOf1» N UMEIOT BUA MHTErPO-anddepeHumanbHblX YPaBHEHNN C YHAaCTHBIMU
npon3BoaHbIMU. Ncnonb3yeTca MeToanka, pa3pa60TaHHa$| Bunbke B.I". ans mexaHnyeckmnx cuctem ¢ 6eCKoOHeYHbIM
4yncnom cteneHer ceoboapl. Metogom pasgeneHus ABMXKeHUN NonyyYyeHa cmctema 00blIKHOBEHHbIX anddepeHumanb-
HbIX YPaBHEHWI, ONUCbIBAIOLLLAS BPALLLATENbHOE ABMXKEHME NNaHEeTbl C YH4ETOM BO3MYLLEHMI, BbI3BAHHbIX YNPYrOCThiO
1 gnccemnaumen. Metogom ycpeoHeHns noslydeHa 9BOALMOHHASA CUCTEMA YPaBHEHNI OTHOCUTENIbHO NEPEMEHHbIX
«AENCTBME» N MEAJIEHHbIX YINOBbIX MePEMEHHbIX. [ToCTpoeH pa30BbIi MOPTPET, ONUCHIBAIOLLMIA B3aMHOE N3MEHE-
HME MOLYNS BEKTOPA KMHETUYECKOrO MOMeHTa G BpalLLaTeNbHOro ABMXKXEHUS N KOCUHYCA Yria Mexny 3TUM BEKTO-
POM N HOpMasnbiO K MNJIOCKOCTU Op6I/1TbI LLeHTpa Macc nnaHeTbl. HangeHo ctauMoHapHoOEe peLleHne 9BOSIIOLMOHHOM
CUCTEMBbI YPaBHEHNI, KOTOPOE ABMSIETCA aCUMNTOTUYECKN YCTOMYMBBIM. [ToKa3aHo, YTO B CTaLMOHAPHOM OBUXEHUMN
BEKTOP KMHETUYECKOro MomeHTa G OpTOroHasieH naockocTun Op6I/ITbI, a npepesibHoe 3Ha4YeHne Moayna 3Toro Bek-
TOpa 3aBUCUT OT 3KCLIEHTPUCUTETA SNIUNTUYECKON Op6MTbI. [MocTpoeHHas maTemaTnyeckas MoAeb MOXET OblTb
MCNoAb30BaHa A1 U3y4eHns NPUANBHOWM 3BOMIOLMM BPALLATENBHOIO ABMXKEHUS NNAHET U CAYTHUKOB. Mofy4eHHbIE B
pa60Te pes3ynbTaThl COrnacyloTcs ¢ pedyfibTataMm paHee NPOBEOEHHbIX MCCNEA0BAHNN B 3TON obnactu.

KnioueBble cnoBa: BA3KOyrnpyroe Teno, KennepoBckas anauntuyeckas opbuta, nepemeHHble AHayalie, MeTon,
yCcpeaHeHus, auccunaTmBHasa 3BONIOUMS ABUXEHUS, MEeTO, YCPeaHEHUS

e Moctynuna: 01.03.2021 » fopa6oTaHa: 29.03.2021 ¢ MpuHaTa k onyo6nukosaHuio: 12.07.2021

Ana umtnpoBaHua: LlatmHa A.B., CtapoctuHa A.B. 3Bonouus BpallatenbHOro OBUMXEHUs BASKOYNpPyrom nna-
HETbl C AOPOM Ha anauMnTu4eckom opbute. Russ. Technol. J. 2021;9(5):84-94. https://doi.org/10.32362/2500-
316X-2021-9-5-84-94

Mpo3payHocTb PUHAHCOBON AEATENbHOCTU: HNKTO M3 aBTOPOB HE MMeEeT PUHAHCOBOM 3aUHTEPECOBAHHOCTU B
npencTaBJIEHHbIX MaTepunasiax nin metogax.

ABTOPbI 3a5BNSIOT 06 OTCYTCTBUM KOHGMIMKTA MHTEPECOB.

INTRODUCTION

The motion of a spherically symmetric rigid
body relative to the center of mass, which moves in a
Keplerian orbit, is a uniform rotation about an axis
oriented constantly in an inertial coordinate system.
Because none of the bodies of the Solar System is a
rigid body, the interaction with the central body, around
which a planet revolves, forms bulges on the viscoelastic

body of the planet. These bulges tend to align with the
planet—central body line. Because of the internal viscous
friction, the tidal bulges lag behind and are shifted
at a certain angle to the above line. This gives rise to
gravitational torque. In addition, the planet is contracted
along the axis of rotation. All of this affects the rate of
rotation of the planet.

To describe the dynamics of a system, classical tidal
theory typically uses the models of rigid body and point
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particle. The theory is based on various assumptions of
the values of tidal bulges and lag angle [1].

To study the tidal evolution of the rotational
motion of celestial bodies, V.V. Beletskii proposed a
phenomenological model formula for tidal torque [2, 3]
based on the model of rigid body for a planet. Later,
this formula was confirmed in V.G. Vil’ke’s theory of a
viscoelastic sphere in a gravitational field [4].

An evolutionary system of equations of the rotational
motion of a viscoelastic sphere in a central Newtonian
force field in a circular orbit was obtained [5] by the
method of separation of motions and averaging [4].

Previously [6], an evolutionary system of equations
was derived for the translational-rotational motion of a
viscoelastic sphere in the spatial case in the Andoyer—
Delaunay variables. For the planets of the Solar System,
the rate of evolution of the angular velocity of the
proper rotation of a planet is 107—10° times higher than
the rate of evolution of the mean motion in the orbit
because their ratio is equal to the ratio of the squares of
the radii of the orbit and the planet [4]. In this work, a
restricted formulation of the problem was considered,
which enabled one to make a more detailed study of
the dissipative evolution of the rotational motion of a
planet.

In the 1980s—1990s, the rotational motion of a
solid body with elastic and dissipative elements was
investigated in many works [7-9]. More recently, the
tidal evolution of the rotational motion of celestial bodies
have been studied using various models of viscoelastic
bodies [10, 11].

1. FORMULATION OF THE PROBLEM.
EQUATIONS OF MOTION

Let us consider a problem of the motion of a planet
relative to the center of mass in a central Newtonian
gravitational field. The planet is modeled by a body
comprising a rigid core and a viscoelastic shell attached
rigidly to the core. In the absence of deformations, i.e.,
in the natural, undeformed state, the planet occupies
region V in the three-dimensional Euclidean space:

V=r,un, VO={reE3:|r|Sr0},
Vlz{reE3:r0<|r|Sr1},

where 7, and 7| are the inner and outer radii of the shell,
respectively. Let pjand p, be the densities of the core and
the viscoelastic shell, respectively, which are assumed to
be constant; and m and m are their respective masses.
Let the center of mass of the planet move in a given
elliptical orbit. We introduce inertial coordinate system
OXYZ with the origin at the attracting center coinciding
with one of the foci of the ellipse. Let the OX axis be
directed along the radius vector of the perigee; the OZ

axis, perpendicular to the plane of the orbit, and the
OY axis, so that the unit vectors of the fixed coordinate
systems form a right-hand system. To describe the
rotational motion of the planet, we introduce moving
coordinate system Cx x,x; and Konig system of axes
C¢,&,E; with the origin at the center of mass C of the
planet.

The position of point M on the planet in the inertial
coordinate system OXYZ is determined by the vector field

R, (r,t)=R(0)+T()(r +u(r,1)), (1.1)

R(?) = lJRM(r,t)pdx, J udx =0, _[ rotudx =0, (1.2)
"y 4 4

where R(?) is the radius vector of the center of mass of
the planet; I' = I'(¢) is the operator of transition from the
moving coordinate system Cx,x,x, to the Konig system
of axes C¢&,&;; u(r,fr) is the elastic displacement
vector, which is identically zero for points of the rigid
core Vi, m=my+m;and p=p,forr €V, (i=0,1).
Conditions (1.2) uniquely determine the radius vector of
the center of mass C of the deformed planet, and also the
moving coordinate system Cx,x,x;, relative to which the
viscoelastic planet does not rotate in the integral
sense [4]. In the coordinate system Cx x,x;,

u(r,t)= (ul(r,t), uz(r,t),u3(r,t)), r= (xl,xz,x3).

The problem is solved within a linear model of
elasticity theory. The functional of the potential energy
of elastic deformations has the form

6 = [s[u)dr, & [ul=oy(IF-0yl;). (1.3)
"

E(1-v)
Y= o o %2
20+ v)(1-2v)
o, >0, 0<a, <3,

_2(1-2v)
1-v

>

3
_ — 2
Ip=Ye;, llg= Z(ekkell _ekl)’
j=1 k<l
1[du, duy
ey == —+—|, dx=dxdx,dx,
2(dx; dx;
where E is Young’s modulus, and v is Poisson’s ratio of
the viscoelastic shell of the planet.
To describe the dissipative properties of the shall of
the planet, we use the Kelvin—Voigt model, i.e., assume

that the dissipative functional 9D is related to functional
(1.3) by the expressions
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D= [D[u]dr, Dla]=x6[u],

where y > 0 is the coefficient of internal viscous friction.

According to the considered restricted formulation of
the problem, the center of mass of the problem moves in a
Keplerian elliptical orbit, i.c., the radius vector R(#) of the
point C is a given function of time according to the relations

R = R(cos ¥;sin ¥;0), (1.4)
_a(l-¢€?) _a_ﬁl-_(1+ecos1‘})2
1+ecos®’ al (1-e2)¥2 7
n= L 1= n(t~1y). (1.5)
a

Here, U is the true anomaly; a is the semi-major
axis of the orbit; e is the eccentricity; n is the mean
motion of the center of mass C of the planet in the orbit;
[ is the mean anomaly; v is the standard gravitational
parameter (y = fM,), where f’is the universal gravitational
constant, and M is the mass of the attracting center);
and ¢, and 7 are the initial and current times, respectively.

The kinetic energy of the sphere is represented by
the functional

T:%J‘R%\lpdx: %I[F‘1R+mx(r+u)+fl]2 pdx, (1.6)
14 V

where 0 x (-) = TIT°(), @ is the angular velocity of the
rotation of the sphere (the coordinate system Cx,x,x;).
Under conditions (1.2), the functional of the kinetic
energy of the viscoelastic sphere takes the form

T= lmR2 +lj[m X (r +u)]2 pdx +
2 H
. (1.7)
+[ (@ x (r+w),u)pde+ EI u2p,dx.
" "

The potential energy of the gravitational field has
the form

pdx

m=—y| (1.8)
v J(R+T(r +u))

Because [R| > |r + u], the integrand in expression
(1.8) can be expanded into a series in powers of [r + u|/R.
Truncating the series after the terms of the second order
in |[r + ul/R and of the first order in |u|/R, we obtain

M= _%n + %g [(r,u) =3(&,r)(&, u)]p,dx,
1

E=T"'R/R. (1.9)

The configurational space of the mechanical system
is the direct product SO(3) X B, where
3
@ =Ju:ue (WZI(VI)) , J.udx =0, J. rotudx =0, u|‘r‘=r =0y,
4 4 ’

(Wzl (Vl))3 is the Sobolev space [4], and SO(3) is the
group of rotations of the three-dimensional Euclidean
space. The generalized coordinates ¢,q,q5, which
determine the group of rotations SO(3), can be, e.g., the
Euler angles.

The components of the angular velocity vector @ are
linear homogeneous functions of the generalized
velocities ¢; (i=1,2,3). Grouping the second-, first-,
and zero-degree term of the right-hand side of expression
(1.7) that contain the generalized velocities ¢; (i =1,2,3),
one can represent the kinetic energy functional in the
form

T=T,+T, +1T,, (1.10)

1= [lox(rrwl pdv, 7= [ (@x(r+w.i)pds,
14 "

(1.11)

Let us obtain the equations of motion of the
planet in the form of the Routh equations using the
canonical Andoyer variables (I, @) = (1}, 15, 15, ¢,
0,5, ¢3) [4, 12] to describe the rotational motion of the
coordinate system Cx,x,x, relative to the Konig axes
and the Lagrangian coordinates u(r, ), i = (1, 2, 3) to
characterize the deformations of the viscoelastic shell
of the planet.

The vector of the angular momentum of the planet
about the center of mass is

G=V, T=Julo+G,, (1.12)
Julo= J.(r+u)><[w ><(r+u)]pdx,
v
G, = [[(r+u)xi]pdx. (1.13)

n

Using expression (1.13), the term T, of the right-
hand side of formula (1.10) is expressed in terms of the
inertia tensor J[u] of the deformed planet as

T, = %(J[u]m,m). (1.14)
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Let us construct the kinetic momentum vector G at
the point C and also construct the plane CMN, which is
perpendicular to the vector G and intersects the plane
C¢E &, at the straight line CM and the plane Cxx, at
the straight line CN. The variable /, is the magnitude
of the vector G; and /, and I are its projections on the
Cxy and C&; axes, respectively. The transition from the
Kénig system of axes CE,&,&; to the moving coordinate
system Cx;x,x; in the Andoyer variables is performed
by five successive rotations by angles ¢, 6,, ¢,, 9,, and
¢, about the CE; axis, the CM axis, the vector G, the CN
axis, and the Cx; axis, respectively (Fig. 1).

The transition operator I" in the Andoyer variables is
represented as the product of five orthogonal matrices [12]:

=T33 (81)F3 ()l (62 5(0)),
cosd, =13/1,, cosd, =1,/1,,

cosp, —sing, 0
1"3((pk)= sing, cos@, 0|,
0 0 1

Fig. 1. Andoyer variables

In the coordinate system Cx x,x,,
G= (13~ 17 sinoy, BB - 17 cosop. 1} (115)

E= 1—‘_IR/R =I5(-o)T, (_82)r3 (=p,) X

X Ty (=8, )T5(—@5)(cos B,sin9,0)T.  (1.16)
It follows from expression (1.12) that
o=J""u](G-G,)). (1.17)

Then, from expressions (1.14) and (1.17), the
functional T’, can be represented as

1
T, =§(G—Gu,J‘1[u](G—Gu)). (1.18)
The Routh functional R, which depends on the
canonical variables I, ¢ and the Lagrangian variables
u,u, is defined by the expression

R=T, - Ty + 1+ &[u], (1.19)
where T, is given by formula (1.18); and in expression
(1.9) for the functional IT of the potential energy of the
gravitational field, the vector & is given by formula (1.16).

Using expressions (1.11) and (1.18), Routh
functional (1.19) can be written as

31 , 1
R=—=—— G,erupldx -—X
24 4| 75 242
1

X (Jl[u]G,G)—%mRZ +T+6[u]+R*, (1.20)

where A is the moment of inertia of the undeformed

planet about the diameter, and R* contains terms of the
second and higher orders in the coordinates of the
vectors u and u:

Ji[u]o = J.(rx[wxu]+u><[co><r])p1dx,
"

4= %[porg T (”15 15 )]

The equations of the rotational motion of the planet in
the elliptical orbit are written in the form of the canonical
equations in the Andoyer variables and in the form of the
d’Alembert—Lagrange variational principle [4]:

oR . IR

I-:——’ =—,
£ o, T,

k=123,  (1.21)

(—ivﬁ& +VuR+V D+ xl,e‘)u) +
dt
n
+ [ (r;.r0t8u)dr =0, Voue (W} (). (1.22)
"
Here, A, and A, are Lagrange’s undetermined
multipliers generated by conditions (1.2).

2. DEFORMATION OF THE VISCOELASTIC SHELL
OF THE PLANET

Let the stiffness of the deformable shell of the planet
be high; ie., the dimensionless parameter

£=0? (0)917”12E =1 be small (where ®(0) is the magnitude
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of the initial angular velocity of the planet). Choosing the
scales of the dimensional quantities in a certain manner,
one can introduce small parameter € = E!. As an
unperturbed problem, we consider a problem of the motion
of a spherically symmetric rigid-body planet in an elliptical
orbit. In this case, u(r, t) = 0, and the parameter ¢ is
assumed to be zero. The equations of the unperturbed
motion have the form.

I, =0, k=123, ¢;=0,¢0,=1,/4,¢9;=0. (2.1)

Equations (2.1) describe the uniform rotation of the
planet about one of the diameters at the angular velocity
¢®,=1,/A. At ¢ # 0, according to the method of
separation of motions [4], after the damping of the
natural vibrations of the viscoelastic sphere, the solution
u(r, t) is sought as a series of powers of the small
parameter &:

u(r,t) =eu(r,1) + e2uy (r,0) +--- (2.2)

Lagrange’s undetermined multipliers A, and A,
should also be sought as series of powers of ¢:

(@)= Ao () + A () +- -,

Ay (£) = Ry () + €Ny () +--- (2.3)

Using expressions (1.20) and (1.9), Eq. (1.22) for
the first-approximation function u,(r, 7) is transformed
to the form

1 Yp,r
7(vqu[ ulG,G) - 1

3vp
+R—31(§,r)§ + 1y }Sudx +

+ | (g xm)Budc - (v, [u; + iy 18wy, = 0. 2.4)
¥

The derivation of this formula included the use of
the divergence theorem in the form:

J. A5 rot Sudx = f (Bu X hyq)ndo,
" Ja

where 0V is the boundary of the region V|, and n is a
normal to V.

The variables (I, @) in Eq. (2.4) according to the
method of separation of motions are solutions of
unperturbed problem (2.1). Therefore, in Eq. (2.4),

%(G xr)=0. Further,

(V1 [ulG,G) =2p,I3r —2p,(r,G)G.  (2.5)

Successively substituting 6u =da x r and du = a, (da,
a € B3, into Eq. (2.4) and taking into account that
the work done by the elastic and dissipative forces at
infinitesimal rotations is zero, we obtain A, = 0 and
Ay, =0.

For the last term of the left-hand side of Eq. (2.4),
the following equality is valid [4]:

(Vu&[u],Su)V1 =
3
= JVé[u]Sudx+ I ZG,,I,- Suidx,
4 aVl i=1
E

Vé&[u]= (1 —12\/ grad divu + Au)

2(1 +V)

Evy;

+L du —+gradu,,
2(1+v){ ox, g

i:1,2,3,n:(yl,yz,y3).

divu +

Thus, the boundary-value problem to determine the
first-approximation function u,(r, 7) takes the form

eVe[u, +yu,]=

2 P

I3 pv pv
—pl—r—A— G)G-—Lr+—

Ers (2.6)

ulhr\:ro =0, 0 [ul]hr\:r] =0,i=(123). (2.7

Boundary conditions (2.7) mean that the movements
on the inner boundary of the viscoelastic shell of the
planet are zero, and so are the stresses on its outer
boundary. The solution of boundary-value problem
(2.6)—(2.7) has the form [13, 14]

U =up Fuyy U, (2.8)

21 2 ) as
Uy = Y 2p1 ayr +a2+r—3 r,

12 G
U =Py {p(rofl"’)[ﬁr PE —(G.r)

12 1 2
+q(r0,r1,v)|iér2 _E(G,r) :lr}
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3vp 3xR
1112 = _R_;[I-FT)X
X{p(FO”/i’ [ gar):|+

+q(r0,r1,v)[_r L) 2] }

_3XYpl {p(ro,rl, [

r)+g(Er)]+

R3
+4(r,7,v) (1) (&) 2.9)
L 1+v o alrlz(4x5+5k+6)
T 5(kv2) 2 43 +3k+2

o _allf15x3 ((3k+2)x2 —5k—6)
3 4x3 +3k +2

by b
(1. v)=byr? +b2+—3+ ‘5‘,
by b

q(ro,rl,\/)zb5 +r—5+r—;,

{8(9k +14)x10 +80x7 +24(k +1) X

X(5k+11)x3 = 5(k+2)(15k +16)x* +2(3k+8)(5k+4)},

1+v)r12{

b, _ 8(9k +14)x'2 +8(15k2 + 46k + 51)x7 —

0
— (63K + 114k +56)x> + 4(3k +8)(4k +3)},

2(1 553
(V)
A0
x {4027 —16(k +6)x7 +(21k +16)x> ~10(4k +3)},

b3 =

2014+ V) (k+ 1)K
4~ AO
= 2(3k +26) x5 +(15k +16)x2 — 6(4k +3)},
4(1+v)(k+1)><
A0
x{60x7 —12(2k +17)x° +5(3k +26) x> - 2(3k +8)},

X

x {24x7

b =—

bg = 3(k +1)by, b, = —5by,

Ao =8(2k +7)(9%k +14)x10 +200(3k2 + 8k + 7)x7 -
1008 (k +1)° x5 +25(27k2 + 56k +28) x> +
+2(3k +8)(19k +14).

In expression (2.9), the time differentiation is
performed on the strength of unperturbed system of
equations of motion (2.1), and the G and & values are
found from formulas (1.15) and (1.16).

3. PERTURBED SYSTEM OF EQUATIONS OF
MOTION

The found solution u = gu; = g(u;, + u;; + uy,)
describes the forced vibrations of the viscoelastic sphere.
According to the asymptotic method of separation of
motions, this solution should further be substituted into
the right-hand sides of Egs. (1.21) for the “slow”
variables after preliminary linearization of them in u
and u. This substitution with subsequent calculation of
the triple integrals over the spherical layer V| gives the
perturbed system of equations of the rotational motion

of the planet:
oG
3n— G,
+ XR][G% &}( &)+

6eyp? D
RN
6ex10D | 9G ) G ¢y4[ 26 ¢ _
MRS {[a(Pl,ﬁJ(Gsi)Jr[a(p ,ﬁJ(G,ﬁ)}

oo R
o RO e
jz_%[%,(;}(iﬁ)—
_18ex;Zp%D[aa§j g] =23, 3.1)
=R ) B

6exyp7 D
A2R3
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Here, D= %kl (5by + bs) + byksy + %k4(5b3 + bg),

ky :%(ﬁ7 =19 ks :%(715 —13

The variable ¢, is the fast angular variable, and

¢, =1,/A. The time differentiation on the right-hand

sides of the system of Egs. (3.2) is performed on the strength
of unperturbed system (2.1) and expressions (1.5); i.e.,

), and k, :2?71:(;”1 —rO)

R_a_Rﬁ_anesim‘}
Chy V1-e? ’
98 5, 98

9& . 9§ (1+ ecosV)?

_ 98 9§ Iy
39" 30,2790 (_y '

29, 4

&=

Here, the vector § is defined by formula (1.16) and
can be represented as

E=(€.8,.8,),

£, =d, cos, +d, sing,
éy =—d, sin@, +d,cosq,, E,=d._,

d, =cosQ, cos((p3 - 19) —sin@, cosd, sin ((p3 - 13),

dy =—sing@, cos((p3 —19)00562 -

—C0s (P, cos 9, sin((p3 - ﬁ)cosS2 +

+sind, sin((p3 - 9)5in62,

d_=sing, cos((p3 —f})sinﬁz +

+cos(, cosd,; sin((p3 - f})sinéi2 +

+sing, sin((p3 - ﬁ)cos d,.

4. EVOLUTIONARY SYSTEM OF EQUATIONS
OF MOTION

Next, let us average the right-hand sides of perturbed
system (3.1) over the fast angular variables—the
Andoyer variable ¢, and the mean anomaly /—
provided that there are no resonances. The averaging
procedure is the calculation of the integral

2w 2n
() 9 (27c)2 IJ‘ Ml =
2n2n
(1_ 2)3/2
(21:)2 J. '[ (1+ecosﬂ)2 L+ ocos o2 202D

This gives the evolutionary system of equations of
the dynamics of the rotational motion of the viscoelastic
planet with then rigid core in the form

fl = jz cos 9, ,

_ 18ypfeDn* [I,[1  3e?
[2——m 7 E —(1+2COS (p3)+

+é(l+4cos2 )+cos? d l+£(1+23in2 )+
16 s N2 4 s
et -, ncosd,
+E(1+4SIH (p3) W FZ(e) (41)

18yp?eDn*

. 1, n
IL=- —(1_ 297 { -cosd, - Fi(e) - —( _62)3/2.F2(e)},

¢’1 =0, ¢2 :Iz/A»

3pfeDl,n% cosd,  9xpieDn* (32 o*) |
P3=""3 2 T o292 — 7 [sin20;,
A“(1-e%) A(l—e”) 4

where Fl(e)=1+3e2+§e4, Fz(e)=1+?e +

45
B
8 16
It follows from the first equation of system (4.1) that
the angle between the kinetic momentum vector G and
the Cx; axis is conserved:

cosd, = ;—1 = ]Il(ﬁ
, 5 (0)

The method of separation of motions is based on the
physical assumption that the time of damping of the free
natural vibrations of the elastic medium at the lowest
frequency is longer than the period of these vibrations,
but much shorter than the characteristic time of the
rigid-body motion [7, 8]. Therefore, the product yn is
small (yn <« 1). Consequently, in the system of Egs.
(4.1), the angular variable @, can be considered fast, and
the averaging in @, can be performed. The averaging
transforms system (4.1) to the form

jl =i2 cos 9, ,
. 18ypieDn* [ 1, ncosd,
12 ——m Fi(e)(1+COS 61) W Fz(e)

18y preDn™ | 1,

. n
Iy=- (2)9/2{ -cosd, - Fi(e) - (62)3/2‘1:2(@)},

3pfeDl,n? cos§,

A2(1—62)3/2 (42)

¢, =0, ‘i’zzlz/A’ §3=-
Let us pass from the variables Iz, I; to the
dimensionless variables y = cos &, = I1/1,, ®, = I,/An.

Then, from the second and third equations of system
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(4.2), the closed autonomous system of differential
equations:

_(1_62)9/2' o,
o fow 0 0

where A= 9xp12A_1Dn4.
System (4.3) has an asymptotically stable stationary
solution:

Fz(e)

Re-a-eypr @9

y=19w3:

In the stationary motion, the kinetic momentum
vector G is orthogonal to the plane of the orbit, and
the limiting value of the angular velocity of the proper
rotation depends on the eccentricity of the elliptical
orbit. Stationary solution (4.4) was previously obtained
by Beletskii [2, 3], who modeled a planet by a rigid body
and represented the tidal torque by a phenomenological
formula.

g 4
8.0
7.2
6.4
5.6
4.8
4.0

3.2
2.4
1.6
0.8

070108 06 04 02 0 02 04 06 08 10 03551

®o

Fig. 2. Phase portrait of the evolutionary system of
equations of motion

Figure 2 presents the phase portrait of system (4.3),
which was constructed in the Octave environment at
e =10.05. The dashed lines are the loci of points at which
the integral curves have horizontal and vertical tangent
lines. All the integral curves collapse to the same point

(1, 0)3). One can distinguish three types of motion: (1)

monotonic decrease in the dimensionless angular
velocity to a stationary value and monotonic decrease in
the angle 6, to zero (when the integral curves do not
intersect the dashed lines); at points of the straight line
cos 6, = 0, there is a transition from the reverse to the
direct rotation; (2) monotonic decrease in the angle 3, to
zero and monotonic decrease in the dimensionless
angular velocity to a certain minimum value with
subsequent increase to a stationary value (when the
integral curves intersect the lower dashed line); and (3)
monotonic decrease in the dimensionless angular
velocity to a stationary value and monotonic increase in
the angle 3, to a certain minimum value with subsequent
decrease to zero (when the integral curves intersect the
upper dashed line).

Previously [15], the methods of separation of
motions and averaging were used to study the rotational
motion of a satellite with flexible viscoelastic rods in an
elliptical orbit.

CONCLUSIONS

In this work, a study was made of the rotational
motion of a planet modeled by a body comprising a rigid
core and a viscoelastic shell attached rigidly to the core.
A system of equations of motion was obtained within the
linear theory of elasticity as a system of integro-partial
differential equations in the form of Routh equations
using the canonical Andoyer variables. The asymptotical
method of separation of motions was used to derive a
system of sixth-order ordinary differential equations
describing the dynamics of the rotational motion of the
planet. The averaging method was used to obtain an
evolutionary system of equations of motion of the planet
in the nonresonance case. It was shown that the motion
of the planet tends to a stationary motion, in which the
kinetic momentum vector G is orthogonal to the plane
of the orbit, and its magnitude has a constant value
depending on the eccentricity of the elliptical orbit. At
zero eccentricity in the stationary motion, the angular
velocity of the proper rotation of the planet coincides
with the orbital angular velocity, and the axis of rotation
of the planet is orthogonal to the plane of the orbit.

The results of this work can be used to investigate
the tidal effects of the rotational motion of planets and
their satellites.

Authors’ contribution. All  authors

contributed to the research work.

equally

Russian Technological Journal. 2021;9(5):84-94

92



Evolution of the rotational motion of a viscoelastic planet
with a core on an elliptical orbit

Albina V. Shatina,
Anastasia V. Starostina

10.

REFERENCES

. Efroimsky M., Williams J.G. Tidal torques. A critical

review of some techniques. Celestial Mechanics and
Dynamical Astronomy. 2009;104:257-289. https://doi.
org/10.1007/s10569-009-9204-7

Beletskii V.V. Dvizhenie sputnika otnositel’no tsentra
mass v gravitatsionnom pole (Satellite motion relative
to the center of mass in a gravitational field). Moscow:
MGU; 1975. 308 p. (in Russ.).

Beletskii V.V. Ocherki o dvizhenii kosmicheskikh tel
(Essays on the motion of cosmic bodies). Moscow: LKI;
2009. 432 p. (in Russ.). ISBN 978-5-382-00982-7

Vil’ke V.G. Analiticheskaya mekhanika sistem s
beskonechnym chislom stepenei svobody: v 2-kh ch.
(Analytical mechanics of systems with an infinite
number of degrees of freedom: in 2 v.). Moscow: MGU,
mekhaniko-matematicheskii fakul’tet; 1997. V. 1. 216 p.,
V. 2. 160 p. (in Russ.).

Vil’ke V.G., Kopylov S.A., Markov Yu.G. Evolution
of the rotational motion of a viscoelastic sphere in a
central Newtonian field force field. Journal of Applied
Mathematics and Mechanics. 1985;49(1):24-30. https://
doi.org/10.1016/0021-8928(85)90122-4

[Vil’ke V.G., Kopylov S.A., Markov Yu.G. Evolution of
the rotational motion of a viscoelastic sphere in a central
Newtonian field force field. Prikladnaya matematika
i mekhanika = Journal of Applied Mathematics and
Mechanics. 1985;49(1):25-34 (in Russ.).]

Shatina A.V. Evolution of the motion of a viscoelastic sphere
in a central Newtonian field. Cosmic Research. 2001;39(3):
282-294. https://doi.org/10.1023/A:1017585722391

[Shatina A.V. Evolution of the motion of a viscoelastic
sphere in a central Newtonian field. Kosmicheskie
issledovaniya = Cosmic Research. 2001;39(3):303—-315
(in Russ.).]

. Chernous’ko F.L., Akulenko L.D., Leshchenko D.D.

Evolyutsiya dvizhenii tverdogo tela otnositel 'no tsentra
mass (Evolution of motion of a rigid body relative to the
center of mass). Moscow; Izhevsk: Izhevskii institut
komp’yuternykh issledovanii; 2015. 308 p. (in Russ.).
Chernous’ko F.L. On the motion of solid body with
elastic and dissipative elements. Journal of Applied
Mathematics and Mechanics. 1978;42(1):32—41. https://
doi.org/10.1016/0021-8928(78)90086-2

[Chernous’ko F.L. On the motion of solid body with
elastic and dissipative elements. Prikladnaya matematika
i mekhanika = Journal of Applied Mathematics and
Mechanics. 1978;42(1):34—42 (in Russ.).]

Sidorenko V.V. The dynamic evolution of a mechanical
system with a very rigid linear damper. Journal of Applied
Mathematics and Mechanics. 1995;59(4):533-539.
https://doi.org/10.1016/0021-8928(95)00062-3
[Sidorenko V.V. The dynamic evolution of a mechanical
system with a very rigid linear damper. Prikladnaya
matematika i mekhanika = Journal of Applied Mathematics
and Mechanics. 1995;59(4):562—568 (in Russ.).]

Frouard J., Efroimsky M. Precession relaxation of
viscoelastic oblate rotation. Monthly Notices of the Royal
Astronomical Society. 2018;473(1):728—746. https://doi.
org/10.1093/mnras/stx2328

10.

11.

12.

13.

14.

15.

CMUNCOK JINTEPATYPbI

. Efroimsky M., Williams J.G. Tidal torques. A critical

review of some techniques. Celestial Mechanics and
Dynamical Astronomy. 2009;104:257-289. https://doi.
org/10.1007/s10569-009-9204-7

. benenxuit B.B. /lsuowcenue cnymnuka ommuocumens-

HO yenmpa macc 6 epasumayuonnom noie. M.: N3n-Bo
MI'V; 1975. 308 c.

. beneukuit B.B. Ouepkxu o dsudscenuu xocmuueckux mei.

M.: U3n-Bo JIKI; 2009. 432 c. ISBN 978-5-382-00982-7

. Bumwke B.I. Ananumuueckan mexanuxa cucmem ¢ 6ecko-

HEUHbIM YUCIOM cmenenell c6oboowl: 6 2-x u. M.: U3n-Bo
MI'Y. Mex.-mat. ¢ak.; 1997.4. 1. 216 ¢., Y. 2. 160 c.

. Bunbke B.T., KonbsuioB C.A., Mapkos O.I. DBomonus

BpAIATEIFHOTO JIBIKCHHS BSI3KOYIIPYTOTo Inapa B ICH-
TPaJILHOM HBIOTOHOBCKOM II0JIe CHIL. [Ipukiaouas mame-
mamuxa u mexanuka. 1985;49(1):25-34.

. aruna A.B. DBosonyst ABHKEHUS BI3KOYIIPYTOro 1apa

B IIEHTPAJBHOM HBIOTOHOBCKOM TIONe CHII. Kocmuueckue
uccnedosanusi. 2001;39(3):303-315.

. Yepnoyceko ®.JI., Axynenxo JI.JI., Jlemenxo JI.JI. D60-

JTOYUS OBUNCEHUTI MBEPO02O Meld OMHOCUMENbHO YeH-
mpa macc. M.; Vxesck: VkeBCKAHT WHCTUTYT KOMITBIO-
TepHbIX HccnenoBanuii; 2015. 308 c.

. Yepnoyceko @.JI. O aBM>KEHUHU TBEPAOTO Tela C YIpyTH-

MU U JTUCCUIIATUBHBIMU dJIeMeHTaMu. [Ipuknaonas mame-
mamuxa u mexanuka. 1978;42(1):34—42.

. Cunopenko B.B. OO0 »sBomonuu JBHKEHUS MeEXaHH-

YECKOM CHUCTEMBI C JIMHEHHBIM JeMIIepoM OOJIBIIONM
KECTKOCTU. [Ipuxnaonas mamemamuxa U MeXaHUuka.
1995;59(4):562—568.

Frouard J., Efroimsky M. Precession relaxation of
viscoelastic oblate rotation. Monthly Notices of the Royal
Astronomical Society. 2018;473(1):728—=746. https://doi.
org/10.1093/mnras/stx2328

Haus E., Bambusi D. Asymptotic Behavior of an Elastic
Satellite with Internal Friction. Mathematical Physics,
Analysis and Geometry. 2015;18(1): Article No. 14.
https://doi.org/10.1007/s11040-015-9184-7

Bunbke B.I. Mexanuxa cucmem mamepuanvuvix mouex u
meepovix men. M.: ®usmariut; 2013. 268 c. ISBN 978-5-
9221-1481-3

Jleiioenson JI.C. Kpamxkuii kypc meopuu ynpyeocmu. M.-
JI.: Tocrexuznar; 1942. 304 c.

[Matura A.B., lllepctue E.B. JIBmkenue crmyTHHKa B
TPABUTAIIMOHHOM TI0JI€ BSI3KOYMPYTOM IIAHETHI C SAPOM.
Kocmuueckue uccneoosanus. 2015;53(2):173-180.
CanosuukoBa E.B., Illarnuna A.B. DBomronus Bpaiia-
TEJILHOTO JBMKEHUSI CITyTHHKA C THOKMMH BSI3KOYIIPYTH-
MU CTEP’KHAMH Ha IUIMITUYECKOH opOure. Poccutickuil
mexuonoeuveckuil cypran. 2018;6(4):89—104. https://
doi.org/10.32362/2500-316X-2018-6-4-89-104

Russian Technological Journal. 2021;9(5):84-94

93


https://doi.org/10.1007/s10569-009-9204-7
https://doi.org/10.1007/s10569-009-9204-7
https://doi.org/10.1093/mnras/stx2328
https://doi.org/10.1093/mnras/stx2328
https://doi.org/10.1007/s11040-015-9184-7
https://doi.org/10.32362/2500-316X-2018-6-4-89-104
https://doi.org/10.32362/2500-316X-2018-6-4-89-104
https://doi.org/10.1007/s10569-009-9204-7
https://doi.org/10.1007/s10569-009-9204-7
https://doi.org/10.1016/0021-8928(85)90122-4
https://doi.org/10.1016/0021-8928(85)90122-4
https://doi.org/10.1023/A:1017585722391
https://doi.org/10.1016/0021-8928(78)90086-2
https://doi.org/10.1016/0021-8928(78)90086-2
https://doi.org/10.1016/0021-8928(95)00062-3
https://doi.org/10.1093/mnras/stx2328
https://doi.org/10.1093/mnras/stx2328

Evolution of the rotational motion of a viscoelastic planet Albina V. Shatina,
with a core on an elliptical orbit Anastasia V. Starostina

11. Haus E., Bambusi D. Asymptotic Behavior of an Elastic
Satellite with Internal Friction. Mathematical Physics,
Analysis and Geometry. 2015;18(1): Article No. 14.
https://doi.org/10.1007/s11040-015-9184-7

12. Vil’ke V.G. Mekhanika sistem material nykh tochek i
tverdykh tel (Mechanics of systems of material points and
solids). Moscow: Fizmatlit; 2013. 268 p. (in Russ.). ISBN
978-5-9221-1481-3

13. Leibenzon L.S. Kratkii kurs teorii uprugosti (A Short
Course of the Elasticity Theory). Moscow — Leningrad:
Gostekhizdat; 1942. 304 p. (in Russ.).

14. Shatina A.V., Sherstnyov E.V. Satellite motion in the
gravitational field of a viscoelastic planet with a core.
Cosmic  Research. 2015;53(2):163—170. https://doi.
org/10.1134/S0010952515020082
[Shatina A.V., Sherstnyov E.V. Satellite motion in
the gravitational field of a viscoelastic planet with a
core. Kosmicheskie issledovaniya = Cosmic Research.
2015;53(2):173—180 (in Russ.).]

15. Sadovnikova E.V., Shatina A.V. Evolution of the rotational
movement satellite with flexible viscoelastic rods on the
ellipticorbit. Rossiiskii tekhnologicheskiizhurnal=Russian
Technological Journal. 2018;6(4):89—-104 (in Russ.).
https://doi.org/10.32362/2500-316X-2018-6-4-89-104

About the authors

Albina V. Shatina, Dr. Sci. (Phys.-Math.), Docent, Professor, Department of Higher Mathematics, Institute of
Cybernetics, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail:
shatina_av@mail.ru. https://orcid.org/0000-0001-5016-5899

Anastasia V. Starostina, Graduate Student, Senior Lecturer, Department of Higher Mathematics, Institute of
Cybernetics, MIREA — Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail:
starostina_a®@mirea.ru

06 aBTOpPax

LWaTtnHa Anb6uHa BuktopoBHa, a.¢.-M.H., OOUEHT, npodeccop, kadenpa Bbiclien maTeMmatukn MHCTuTyTa
knbepHeTnkn Gre0yY BO «MUP3A — Poccuiicknin TexHonormdyecknin yHmeepcutet» (119454, Poccus, Mocksa, np-T
Beprapckoro, g. 78). E-mail: shatina_av@mail.ru. https://orcid.org/0000-0001-5016-5899

CrapoctuHa AHacTtacusa BanepbeBHa, acnupaHT, cTapLumii npenogasaTens, kadeapa BbiCLLIE MaTEMATUKN
NHctutyta kmbepHetkn Grb0Y BO «MUPSA — Poccuiicknin TexHonormnyeckuii ynueepcutet» (119454, Poccus, Mo-
cKkBa, Np-T BepHagckoro, a. 78). E-mail: starostina_a@mirea.ru

Translated by V. Glyanchenko

Russian Technological Journal. 2021;9(5):84-94
94


https://doi.org/10.1007/s11040-015-9184-7
https://doi.org/10.1134/S0010952515020082
https://doi.org/10.1134/S0010952515020082
https://doi.org/10.32362/2500-316X-2018-6-4-89-104
mailto:shatina_av@mail.ru
https://orcid.org/0000-0001-5016-5899
mailto:starostina_a@mirea.ru
mailto:shatina_av@mail.ru
https://orcid.org/0000-0001-5016-5899
mailto:starostina_a@mirea.ru

