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Abstract. Inthe article, computer design of routes of linear structuresis considered as a spline approximation problem.
A fundamental feature of the corresponding design tasks is that the plan and longitudinal profile of the route consist
of elements of a given type. Depending on the type of linear structure, line segments, arcs of circles, parabolas of the
second degree, clothoids, etc. are used. In any case, the design result is a curve consisting of the required sequence
of elements of a given type. At the points of conjugation, the elements have a common tangent, and in the most difficult
case, a common curvature. Such curves are usually called splines. In contrast to other applications of splines in the
design of routes of linear structures, it is necessary to take into account numerous restrictions on the parameters of
spline elements arising from the need to comply with technical standards in order to ensure the normal operation of
the future structure. Technical constraints are formalized as a system of inequalities. The main distinguishing feature
of the considered design problems is that the number of elements of the required spline is usually unknown and must
be determined in the process of solving the problem. This circumstance fundamentally complicates the problem and
does not allow using mathematical models and nonlinear programming algorithms to solve it, since the dimension
of the problem is unknown. The article proposes a two-stage scheme for spline approximation of a plane curve.
The curve is given by a sequence of points, and the number of spline elements is unknown. At the first stage, the
number of spline elements and an approximate solution to the approximation problem are determined. The method of
dynamic programming with minimization of the sum of squares of deviations at the initial points is used. At the second
stage, the parameters of the spline element are optimized. The algorithms of nonlinear programming are used. They
were developed taking into account the peculiarities of the system of constraints. Moreover, at each iteration of the
optimization process for the corresponding set of active constraints, a basis is constructed in the null space of the
constraint matrix and in the subspace - its complement. This makes it possible to find the direction of descent and
solve the problem of excluding constraints from the active set without solving systems of linear equations. As an
objective function, along with the traditionally used sum of squares of the deviations of the initial points from the spline,
the article proposes other functions taking into account the specificity of a particular project task.
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Pe3iome. B ctatbe KOMMbOTEPHOE NPOEKTUPOBAHNE TPACC JIMHENHbLIX COOPYXEHUI paccMaTpuBaeTCcs Kak 3a-
[aya cnnanH-annpokcumMauum. NprHuMnuanbHOM 0CO6EHHOCTLIO COOTBETCTBYIOLLMX MPOEKTHbLIX 3a4a4y ABNAET-
CS TO, 4TO NJaH M NPOLOJIbHBIN NPOPUIIb TPACChl COCTOAT U3 3NIEMEHTOB 3a24aHHOro Buga. B 3aBucumocTn ot
TUNa NMHENHOr0 COOPYXEHUS UCMOJb3YIOTCA OTPE3KU NPSAMbIX, Oy OKPYXXHOCTEeN, napabon BTOPOWN CTENEeHMU,
knotoua v ap. B niobom cnydae pe3ynbTatoM NPOEKTUPOBAHUSA SBASIETCS KPUBaAs, COCTOALLANA U3 HYXHOW Mo-
CNnefoBaTeNIbHOCTU 3IEMEHTOB 334aHHOro Buaa. B Touykax CONpPsSKeHUsa SNeMeHTbl, Kak MpaBuio, MMeT 06-
LLYIO KacaTenbHYl0, @ B HAanbosiee CNOXHOM ciydae — 1 00LLyto KpnBU3HY. [Moa06HbIE KPUBbIE MPUHATO HA3blBaTh
cnnamHamun. B otanymve ot 4pyrux npUMEHEeHNM CnaanHoB B NPOEKTUPOBAHUN TPACC JIMHENHBIX COOPYXEHUN Npun-
XOAUTCH YYUTbIBATb MHOMOYUCIIEHHBIE OFPAHNYEHNS HA NapaMeTPbl 9/1IEMEHTOB CrnlariHa, BO3HMKAOLWME N3 HeoO-
XOANMOCTU CODONMOAEHNS TEXHNYECKNX HOPMATUBOB C LIeNblo 06ecneyeHns HOpMasnbHOM aKcnayaTauum 6yayuiero
COOPYXeHUs. TexHMYeckne orpaHnyeHns GopmanmnadyioTcs B BUAE CUCTEMbI HEPABEHCTB. [1aBHas OTNYUTENb-
Has 0COOEHHOCTb pacCMaTPMBAEMbIX MPOEKTHbIX 3a4a4 COCTOUT B TOM, YTO YACIIO 9/1IEMEHTOB MICKOMOIO CrlanHa
HEN3BECTHO M A0MKHO ObiTb ONpeaeNneHo B NPOLECCe pelleHns 3aaaqm. 1o 06CTOATENBCTBO NPUHLUMUATIBHO
YCNOXHAET 3aa4y 1 He NMO3BOSISET NPUMEHUTb /19 €€ peLleHnd MaTeMaTn4eckue MO4ENU U anropuTMbl HENN-
HEMHOro NPOrpaMMmMpoOBaHNS, Tak Kak HEM3BECTHA Pa3MeEPHOCTb 3aa4a4un. B cTtaTbe npennaraetcs AByxaTanHas
cxema crnaarH-annpokCcuMaumn naoCKom KPUBOW, 3a4aHHOW NOCNenoBaTeNbHOCTbIO TOYEK, MPU HEU3BECTHOM
4yucsie 3N1IEMEHTOB CrnJlaiHa U HanMyYMm OrpaHUYeHn Ha napamMeTpbl ero 3N1eMeHToB. Ha nepBomM aTane onpene-
JINETCS YMCNO SNEMEHTOB CraiHa 1 NpUOAMXKEHHOE peLleHne 3a4a4un annpokcumaumm. Micnonb3yeTcsa MeToq,
OMHAMUYECKOro nNporpamMmMmpoBaHns. Ha BTOPOM 3Tane BbIMOJIHAETCA ONTUMU3aLnsa napamMeTpoB 3/1EMEHTOB
cnnanHa. lcnonb3yloTcs anropuTMbl HEJIMHEMHOIO NPOrpaMMmnpPoBaHuns, paspaboTaHHbIe C YHEeTOM 0COOEHHO-
CTeln cucTemMbl orpaHnyeHuin. MNpm 3ToOM Ha Kaxnowm utepaunm npouecca onTuMnu3aumn ong CoOoTBETCTBYIOLWENO
Habopa akTUBHbIX OFPAHNYEHUIA CTPOUTCA 6Aa3MC B HY/b-NMPOCTPAHCTBE MATPULLbl OFPaHNYEHMIA. DTO NO3BONSET
HaWTX HanNpaBfeHne Crycka 1 pPeLnTb BONPOC 06 MCKIIIOYEHUM OrPaHUYEHUIn N3 akTUBHOro Habopa 6e3 pelue-
HUS CUCTEM NIMHEVHBIX YPAaBHEHU BOOOLLE, a B HAMOOIee CNOXHbIX CNy4asx — peLlas MMHENHbIE CUCTEMbI MO
pasmepHoCTU. B kavyecTBe LeneBor GyHKUMM Hapsaay ¢ TPaAULMOHHO UCMNOJIb3YyEMOWM CYMMOW KBaApaTOB OTKJI0-
HEHWUI annNPOKCUMUPYEMbBIX TOYEK OT CrJjiaHa B cTaTbe npennaralnTcsa apyrve QyHKUMmM ¢ y4eToM creundukm
KOHKPETHOW NPOEKTHOM 3a4au4u.

KnioueBble cnoBa: Tpacca, niaH 1 NpoaosibHblii Npodusb, cniaiH, AMHaMUYeckoe NporpaMMmnMpoBaHue, Lienesas

dYHKUMS, OrpaHNYeHns
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Mpo3pavyHocTb PUHAHCOBOWM AEATENIbHOCTU: HUKTO 13 aBTOPOB He MmeeT GUHAHCOBOW 3aMHTEPECOBAHHOCTU B
NpPeacTaBAEHHbIX MaTepuanax uiM MetTogax.

ABTOpPbI 3aBASOT 06 OTCYTCTBMM KOHDIMKTA MHTEPECOB.
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INTRODUCTION

A linear structure is a structure the ground position
of which is determined by the axis of the structure, which
is called the route. Among linear structures are roads and
railways, pipelines of various purposes, channels, water
conduits, etc. A route is a three-dimensional curve, which
is conventionally represented by two plane curves: the
plan and the longitudinal profile.

The plan of a route is its projection on the XOY
plane, and the longitudinal profile is the graph of the
function Z(s), where s is the length of the curve in plan
as calculated from a given initial point. The longitudinal
profile is a developed view of the vertical surface passing
through the route.

Design of the longitudinal profile of a structure
of any type can be considered as the construction of
a spline consisting of elements of a given shape. This
spline should have the minimum (in a given meaning)
deviation from the initial broken line, which is the
ground profile in the case of design of new structures
and is the profile of the existing structure in the case of
design a reconstruction.

The simplest spline of the first order is the grade
line of the longitudinal profile of a railway. In this case,
the problem is to convert the initial broken line (ground
profile) to another broken line that satisfies a variety of
constraints: on the slopes of elements and the differences
of the slopes of neighboring elements, on the minimum
length of elements, and on the height at some points
and in some zones [1, 2]. Because the design slopes
are small, the length of an element and the difference
of the abscissas of its ends virtually coincide; therefore,
the difference of the slopes of neighboring elements
is equated with the angle of rotation, and the slope is
identified with the angle between the element and the
abscissa axis.

Meanwhile, the number of elements of the sought
spline is unknown. This fact and also numerous constraints
distinguish significantly the considered design problem
of spline approximation from problems solved in spline
theory and its applications [3—5], where the number of
spline knots and their abscissas are considered to be
given, and constraints are typically absent.

In a simplified formulation, the problem of seeking
the optimal spline as a broken line at an unknown
number of elements under constraints was solved in the
last century as applied to the design of the longitudinal
profile of new railways [6, 7].

The problem was solved in two stages. At the first
stage, the initial ground profile was converted to a broken
line comprising short elements under all the constraints,
except the constraint on the length of an element. The
developers of the first designing algorithms called such
a profile the chain [6].

At the second stage, the chain was converted to the
grade line under all the constraints, including those on
the length of elements.

In a realistic formulation as applied to design
under rugged terrain and complex geology conditions,
the problem was solved on a BESM-4 computer by
nonlinear programming. The corresponding program
gained a wide practical use despite a long computational
time because of the extremely low computational speed
of this and subsequent computer models (Minsk 32,
ES 1020, and others) of the last century [1].

In CAD systems, highly popular in Russia, which
were developed by international companies [8—10],
and their Russian [11] and Belarusian [12] analogs, the
computer is used to solve auxiliary problems, rather
than to elaborate the optimal design solutions. In these
systems, a spline approximation problem is solved
“through the eyes”; i.e., the designer should specify some
information that completely determines a sought line.
At best, he or she considers several of the theoretically
infinitely many possible solutions.

At the present time, the mathematical model,
algorithm, and previously developed designing programs
should be improved because of changes in the technical
specifications for design of high-speed railways. The first
order spline should be replaced by a spline comprising
line segments and circular arcs, the number of which
remains unknown.

A similar spline is also used in designing big-inch
pipelines.

In designing the longitudinal profile of roads, a
problem arises to seek a parabolic spline of the second
order [13] with the above specific features. This problem
was solved by nonlinear programming [13].

A spline with circular arcs is used as an alternative
to a spline with parabolas in designing the longitudinal
profile of roads and also the plane of the routes of various
linear structures [14].

The study aimed to analyze the above design
problems from a single theoretical standpoint as
problems of spline approximation and to present
the key stages and specific features of their solution
algorithms.

1. FORMULATION OF A PROBLEM OF CIRCULAR
ARC SPLINE APPROXIMATION AND ITS
FORMALIZATION

Let us consider a problem of designing a longitudinal
profile using straight-line elements conjugated to circular
arcs.

In the case of redesigning, the initial profile is the
profile of the existing structure. If a new structure is
designed, the initial profile is the ground profile. The
chain longitudinal profile (Fig. 1, dashed line), which
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can be constructed using the existing designing programs
[14], is used to find the number of spline elements. The
lengths of elements of the chain need not be equal, but
the abscissas of its knots and the abscissas of the knots
of the initial broken line coincide.

Ground profile
«Chain» z(s)

Spline Z(s)

Fig. 1. Spline with circular arcs

Thus, we have the broken line z(s), which should be
converted with minimum deviations to the spline Z(s)
consisting of line segments conjugated to circular arcs
(Fig. 1).

There are the following constraints:

(1) on the slopes I, of the straight-line spline elements:

yin <1 < Imax,] 1,2, ..., N—1, where N is
the number of spline knots (Vertices of the sought
broken line, hereinafter referred to as control
vertices (CVs)). Actually, this is a constraint on the

first derivative of the function Z(s);

(2) on the radii (curvature) of the convex and concave
inscribed curves: 1/R_ . < 1/R SR, eaver S = 1s
2,.., N, Rconvex <0, and Rconcave 0;

(3) on the lengths of'the circular arcs (BC, DE in Fig. 1):

arc arc mm;

(4)on ﬁjﬁe lengths of the straight-line inserts between the
curves (CD in Fig. 1): Lms, > Lms’mm.

Additional constraints can be imposed on the
ordinates of some points (height constraints at points of
intersection of water conduits, other communications,
and so on).

Objective function

Equal deviations in different directions from the
initial line can often be nonequivalent. Therefore, the
conventional minimization of the sum of the squared
deviations at given points (also with different weights)
is inappropriate.

In designing new roads, the total cut-and-fill
quantity can be taken to be the objective function
at this stage. The construction costs can be taken to
be the objective function if the cut and fill does not
give rise to a relationship between elements, which
arises if the earth removed from cuts is used to
construct fills and requires one to consider the grade
line as a whole [14] as in nonlinear programming.

At the stage of the conversion of the initial broken
line (the chain or the existing profile) to a spline of
a necessary type, the ordinate deviations (working
marks) are small (about 0.5 m [14]), which allows
one to use simplified efficiency criteria because the
purpose of this stage is to determine the number
of elements and their approximate positions, i.e.,
construct the initial approximation for nonlinear
programming.

In redesigning of the longitudinal profile of a
road, at this stage, it is expedient to use modeling
functions, which take into account specific features
of a problem.

For example, in designing the longitudinal profile
during redesigning railways by straight-line elements
without taking into account circular curves, which were
inscribed into the found line, smooth modeling function
F(h) (a spline of the second order with the defect 1) was
successfully used (Fig. 2). Here, 4 is the working mark,
i.e., the difference of the ordinates of the sought and
initial splines: h(s) = Z(s) — z(s). The &, and A values
and the parameters of the elements of F(4) were found
from the existing and designed depths of ballast (H, and
H,,, respectively), and the rail and tie heights.

A=max(0, H_ — Hj,), and the portions of the graph
of F(h) represent (/ ) filling up of ballast, (2) cutting of
ballast, and (3) cutting of roadbed.

At A= 0, portion 2 of the graph of F(%) is absent. If
the existing and designed heights of rails and toes are
equal, we have i, = 0.

Fa

2

.

1
I
ho-A  hy

o

Fig. 2. Modeling function

The F(h;) values were calculated at the knots of the
initial spline, and the objective function had the form

k
min®(h) = ZViF(hi), (1)

1

where the coefficients v; are equal to the half-sums of
the lengths of its adjacent elements. Similar modeling
functions were used in redesigning the longitudinal
profile of roads using parabolic splines [13].

If the objective function is the cut-and-fill
quantity, then F(h,)—the cross-sectional area at the ith
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point—remains piecewise quadratic and corresponds to
the calculation of the volume as an integral using the
trapezoidal rule.

2. SPLINE APPROXIMATION BY DYNAMIC
PROGRAMMING

Dynamic programming under a number of conditions
[15-20] makes it possible to create algorithms of
several-step construction of the optimal route of motion
of a certain system from a given initial state to a final
state by solving same-type problems at each of the steps,
which are simpler than the initial problem [21]. Variants
of reaching one and the same state by various ways are
considered to be comparable, and in each state, only the
best (according to a chosen criterion) variant remains.

Z&
CVs variants \
by 5 1 2
B, 0N
o
. "‘\?::--: \“‘h"‘-

s HIIH"‘:*‘H:HXH A =

"‘-.."-u o

- Lmin s "
0 4

Fig. 3. First step of algorithm

The key concept of dynamic programming is the
state of a system, which, for our problem, we define as a
pair of two items: one is a point in a straight-line element
of a spline, such that beginning with this point a circular
arc can be constructed or a straight line can be continued,
and the other is the angle between this element and the
OS (abscissa) axis. The initial state (point 4 and slope /,
in Fig. 3) is considered to be given.

With respect to the knots of the initial spline (the
broken line z(s)), a variation grid at a given step is
constructed (points in verticals / and 2 in Fig. 3). At
each of these points, proceeding from the slope of the
initial spline, angles with the OS axis (search sector)
are assigned. The step of assignment of points and
angles in the verticals, and the numbers of steps in the
vertical and angular directions at each of the points are
the initial parameters of an algorithm of seeking the
design spline and are specified before calculation. If
necessary, the calculation can initially be performed at
large increments and then, using the obtained solution,
at smaller increments. This is a common trick to reduce
the computational time in dynamic programming,
which was successfully used in parabolic spline
approximation [13, 14].

The first vertical was chosen to be the one spaced
apart from the initial point 4 (in abscissas) at distance

L., which is given under constraints 3 and 4 on the
lengths of curves and straight-line inserts. In addition,
distance L .. is given as the sum of the maximum
length of the curve and the length of the straight-line
insert. Dynamic programming is performed using the
angles of rotation (Fig. 1) and the coordinates of their
vertices.

In seeking the first curve of the design spline, the
left-hand side of the angle is given (the point 4 and the
angle 7). The points in each vertical within the range
from L, to L . together with the directions assigned
at each of the points constitute the possible variants of
the right-hand side of the first angle of rotation (Fig. 3)
and determine the corresponding variants of the first
CV. For each variant, using the minimum radius of a
convex or concave curve (depending on the sign of the
angle of rotation), the possibility of satisfying all the
constraints is analyzed, and only the variants for which
all the constraints are met are retained. Further, it is
considered whether or not the radius of the inscribed arc
can be increased without violation of constraints using
the difference of the slopes of the adjacent elements
of the initial spline that are within the angle under
consideration. The radius is chosen such that the value
of the objective function for the corresponding CV is
minimum.

At the first step of comparing paths and rejecting
variants, one and the same state is not reached. Each
of the allowed states of the first step together with the
corresponding values of the objective function (the cost
to reach the initial state), the CV coordinates, the radius,
and the angle of rotation are stored in memory.

General step of algorithm

The knots of the initial spline are considered such
that the abscissas (and the corresponding verticals) of
which are within the range from S, +2L_. toS—L_. .
where S is the abscissa of the end of the profile. For
each vertical, a sequential analysis is made of all the
preceding knots that are no less than L, and no more
than L apart from the vertical and of the straight lines
passing through them. For each intersection, the same
operations as at the first step are sequentially performed.
The difference is that, in the considered state (the right-
hand side of the angle, line BC in Fig. 4), there may be
many intersections with the sides of the preceding angles
that originate from one or different CVs (the points 4,
and 4, ,, in Fig. 4). As at the first step, only the joints
that satisfy the constraints are considered and compared.
As a result, each state in each vertical (the point C and
the angle) is reached by either one variant, or none. For
each of such variants, additionally stored in memory are
the point and the direction (the point 4; and the angle
A;B with the abscissa axis in Fig. 4) corresponding to
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the left-hand side of the angle; i.e., for each new state,
the relationship with the best of the preceding states is
memorized.

Fig. 4. Comparison and rejection of variants

Last step of algorithm

At the last step, the right-hand side of the angle of
rotation is known. These are the final point and the angle
determining the final direction. The same operations as
at the general step are carried out, and a comparison
of the allowable joints determines the minimum value
of the objective function. The optimal spline and its
parameters are restored by a turn over memorized ties,
which is typical for dynamic programming [21, 22].

Of course, one can also consider several final
directions and points and perform the same operations
for each of them with subsequent selection of the best
variant.

The use of the algorithm encountered difficulties
in handling long line segments. This gave rise to small
angles of rotation. Depending on a specific problem,
either such angles are not allowed at all, or curves
are not inscribed in them (e.g., in designing low-type
roads). In the former case, instead of two intersecting
straight lines, one straight line can be formed (using
the terminal points) in the course of the exhaustion of
variants. But because the algorithm is intended only
for the construction of the initial assumption, such
transformations were made only for the obtained spline
to avoid excessive complications. This is also justified
by the fact that not nearly all such intersections at small
angles are contained in the final solution.

3. OPTIMIZATION OF SPLINE PARAMETERS

The design line is completely determined by the
coordinates of the vertices of the angles of rotation and
the radii of the inscribed circles, which are found by
dynamic programming (Fig. 5).

To start with, we consider the CV abscissas
constant, i.e., analyze the possibility of optimization of
the position of the spline by moving CVs along fixed
verticals. Because the slopes are small (no more than
several tens of permille), the lengths of the sides of each

angle are considered to be equal to the difference of the
CV abscissas, which are invariable. Since the initial
and final points and the directions at them are given,
the ordinates of the first and last CVs cannot change.
Therefore, the variables are only Z, j = 1, 2, ..., n,
the ordinates of the CVs being varied (their number is
n=N — 2), and the radii R ; of the inscribed curves. The
given boundary conditions are taken into account by the
calculation of the limiting values of the slopes, /; and 7,
and then the ordinates, Z, and Z, [14].

To obtain a nonlinear programming problem with
objective function ®(h) (1), one should express in terms
of these variables the working marks at the knots of the
initial broken line, i.e., the difference of the ordinates
of the design spline and the initial broken line (B'B" in
Fig. 5), and all the constraints.

In designing the longitudinal profile of new roads,
the objective function corresponds to the minimum cost
of construction of subgrade and artificial structures. The
corresponding models are the same as in the case of
using parabolic splines in codesigning the longitudinal
and transverse profiles with taking into account the earth
mass distribution [14].

If there are such expressions, the calculation of the
gradient of objective function (1) reduces to the simple
recalculation of derivatives [14] because the ordinates of
the points (D and B in Fig. 5) in straight-line elements
depend linearly on the CV ordinates. Because the slopes
are small, the angle of rotation is considered to be equal
to the difference of the adjacent slopes (Alj in Fig. 5).

This enables one to express, with sufficient
accuracy, the deviations of the points of the curve from
the corresponding points of the straight lines (CC" and
BB"in Fig. 5), i.e., the corrections to the working marks
calculated from the sides of the angle or rotation (“of a
boom”).

Z4

0 s
Fig. 5. To the recalculation of derivatives in the presence
of circular arcs

In Fig. 5, CC" = §, = RAI*/8; BB" = §; =
=0 — 1pAl/2 + th/(ZRj), where 1, = [s. — s, is the
difference of the abscissas of the CV and the point in
the curve; AI] = 'I].H - Ij, where I] = '(Zj - Zj_l)/Sj, ZJ
are unknown design marks of the vertices of the angles
of rotation, and S] are the differences of the abscissas,
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which differ insignificantly from the lengths of the sides
of the angles; and s — 5, = SJ ~AC.

Instead of the constraints on the difference of the
slopes, there are constraints on the minimum lengths of
the curves, R jAIj L. min> and on the minimum length of

the straight-line insert, i.e., the sum CE + FG (Fig. 5),
should meet the condition

RAI/2+R AL, 2+L.

AL . (2)

ins, min — %H’J 1

Here, L i, 1s @ given minimum length of the
straight-line inset, and 7 is the number of CVs.

At small AL to change the length of the straight-line
insert by 10 m, it is required to change the radius by 1000 m
and more, which can hardly be done by optimizing a spline
constructed by dynamic programming. Therefore, condition
(2) can be simplified by eliminating the relationship
between the variables for the adjacent CVs using the spline
obtained at the first stage as the initial approximation.

This can be done by making the following operations:

1. Calculate all the 7} = RJ.AI]./Z (in design practice, they
are called tangents).

2. Calculate all the straight line inserts
d S—(T +T)] 2,. nandc—d Ly min
( store”) ’

3.If d ms mins then T _, and T are fixed as the

maxrmum values of R AI /2 and RAI /2. The
fixed values are not further changed

4. Sequentially consider the straight-line inserts in
ascending order, beginning with the smallest d,. The
values T, + T, can be increased by ¢, = d,, Llns min
without rlsklng a violation of the constralnt on the
straight-line insert at the neighboring elements. If
the maximum values of R, |Al, /2 and R,Al/2
are not yet fixed, then 7, , + ¢,/2 and T} + ¢,/2,
respectively, are taken as their maximum values.
The values ¢;_, and ¢, | are decreased by c,/2. If the
value T} _, is fixed, then max(R,Al,/2) = T} + ¢, and
¢,y are decreased by c,. If the value T} is fixed, then
max(R, | Al,_,/2)=T, | +c¢,.

5. Let us proceed to step 3 and continue the process
until there are unfixed maximum values of R.AZ/2.
If necessary, the positions of the initial and final
points of the profile are taken into account, and
the maximum values of R Al;/2 and R Al /2 are
corrected (decreased).

Bearing in mind that RjA[j is the length of the jth
curve and L is its minimum value, and denoting the

cur, mm
calculated maximum values of R AI as Lj max> WE obtain
the system of two-sided 1nequaht1es
Loemin SRALSL 0 0j=1,2, .

Let us convert this system of nonlinear inequalities to a
linear system by change of variables from radii to curvatures
o= l/R The constrainton L, is AI L. G at R >0

‘j,max 7, max®, 7

and Lj max(;] < A[J at R] < 0. The constraint on Lcur min is
Loyemin® <AL at R, >0and AL<L, .0,at R, <0.

The signs of R.  are known; hence, we have the linear
system of the form

AIJ < GJB j=12,..,n 3)
At R > 0, B jmax and o = Ly min- At Rj <0,
conversely, B]. Lcur min and 0 =L e

The algorithm of solving the nonlinear programming
problem of finding min®(x), where x is the vector of
unknowns and ®(x) is the objective function, under
linear constraints Ax < b consists of the following steps:

1. Construction of an allowable initial approximation.

2. Calculation of antigradient f.

3. Construction of active constraint matrix A, and
descent direction p.

4. Check of conditions of termination of calculation.
If the length of the descent vector exceeds given e,

then go to step 5, else check the possibility of eliminating
constraints from the active set. If there are no such
constraints, then the process is over, else exclude one of
the constraints and go to step 3.

5. Search for a step in the direction of the descent as
the minimum of the steps to the boundary and to
the minimum point. In this case, a one-dimensional
minimum search problem is solved.

6. Transition to a new point. Further, if the antigradient
at the new point has already been calculated in the
search for a step, then go to step 3, else go to step 2.
In the general case, the algorithm ensures a hit of

the vicinity of the local minimum point. Therefore, it
is important to obtain a good initial approximation by
dynamic programming.

There are two key steps: the construction of the
descent direction and the elimination of constraints from
the active set [22—24]. The problem can be solved using
standard algorithms, which require solving systems of
linear equations (matrix inversion) at each iteration. For
example, the projection of the gradient at the kth iteration
can be calculated from the Rosen formula:

p=E-A (A ADTADS.

To solve the question of the elimination of constraints
from the active set, the vector u=(A AD)TAT,
should be calculated, for which the matrix A A[.
should be inverted.

Instead of this, let us consider the possibility of
constructing the descent direction using the simple
structure of the system of constraints [25]. For this purpose,
it is necessary to be capable of constructing a basis in the
null space of the matrix A, for any active set, which was
implemented in the program of spline optimization as a
broken line without inscribed curves [14].
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For example, if the basis matrix C has already
been constructed, then the descent vector has the form
p = CCTf, where f is the antigradient.

Constraints (3) contain additional variables ¢, but
the previously constructed basis vectors [25] can also be
converted for this system.

If, in our problem, a certain variable z. is contained in
none of the active constraints, then p. = ]; The presence
of such free points enables one to divide the profile into
legs of independent construction of basis vectors and
the corresponding components of the descent vector.
For example, for system (3) of active constraints on the
straight-line insert in the range of CVs from the (2 + 1)th
to the (m + r — 1)th (Fig. 6), the variables are z

s Zypareps Zyepand o, © , O
variables are z, , and z

m—1> Zm>

; and the free

m+1> 0 Ymtr=10

m+trtl”

Zk

Fig. 6. Example of construction of basis vectors
The active constraints are the following:

-Al, +o,6, <0,

_Nm+l - Bm+16m+1 <0,

“)
—Al

m+r=1""

<0.

Ocm+r—l(5m+r—l =

This system in the variable ordinates has the form:

-Ys z +Q1/S +1S .z, —

=1/ 41 Zp1 + ©,,0,, SO,

1S, 12, +A/S, 1S, )2 —

=182 Zmi2 —B1Cm1 SO, (5)

_I/Sm+r—1 Zpar—2 T (I/Sm+r—1 + I/Sm+r) X

The sought basis vectors should convert the
inequalities of this system to equalities and be
linearly independent. For example, the vector
¢,=(11...11000)T (»+ 2 units and r zeros) shifts all
the CVs along the ordinate axis without changing slopes
and radii. Obviously, the difference of the adjacent
slopes and the curvature also remain unchanged.

If all slopes are increased equally, e.g., by 1 (i.e., if
a rotation with the center at the (m — 1)th CV is made)
without changing radii, then the constraints of system
(4) and its corresponding system (5) remain active.
Therefore, the vectore, =(0 S, S, +S, ., S, +S,.,+
+8, 0. S, +S +S ,+S, 0 ... 0)Tcanalsobe
included in the sought basis. Another » basis vectors are
obtained by making rotations about the mth, (m + 1)th, ...,
and (m + r — 1)th CVs chosen sequentially as the centers
of rotation, changing the right-hand slopes by 1, and
compensating the change in the difference of the slopes
at the center of rotation by changing the corresponding
curvature: (6).

The linear independence of the obtained vectors
follows from their construction method.

If, in such a leg, a certain curve o, takes the limiting
value, then the corresponding component of the descent
vector is zero, 5, is excluded from the variables taken
into account in constructing the basis, and the vector
corresponding to the change in this variable is not
included in the basis.

If the limiting value is taken by the slope of a certain
element /,, then the vector ¢, remains in the basis, but the
vectors corresponding to the rotations about the centers
at CVj (G=m—1,m, ..., k— 1) change this slope and are
not included in the basis.

New basis vectors are constructed by searching
through the CVs, beginning with the (k — 1)th to the mth,
if k> m. The center of rotation is taken to be the (k — 1)th
CV, but the left-hand part is rotated, so that all the left-
hand slopes gain equal increments. The difference of the
slopes changes only at the (k — 1)th CV by 1, which is
compensated by changing the (k — 1)th curvature. The
basis vector is obtained:

C=(s TS, T ts

m Sk-1 +Sk72 + ...+

+s S 1 TS 5.4 0...00...1/8...0...0)7

mtl
XZpr—1 _1/Sm+r Zitr ~ Q=19 -1 <0.
where 6 =a,_, or6=f, |, depending on the sign of 5,_,.
— T
c3=(00S,.1S,:1%S, Sy TS+t S0, /o, 0O L0,
— T
¢, =000 S, ., S S8,y e S0t S, 3t +S, 0 1/B,,4 - 0", ©)
— T
€, =(000 0 .. O Spsr 0. 0Va, . '
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If the limiting slope is not the last one, then vertices
k,k+1,...,m+r—1 are sequentially taken to be the
centers of rotation (Fig. 6), the right-hand part is rotated,
and the corresponding basis vector is constructed with
the compensation of the change in the difference of the
slopes at the center of rotation.

If the limiting slope is the slope of the initial
element, then only the rotation of the right-hand part and
the motion only to the right are considered. Similarly, if
the limiting slope is the slope of the last element, then
only left-hand part of the profile is rotated, and the CVs
are tested only to the left.

If the limiting value is also taken by the gth slope
(g > k+ 1), then the basis vectors are constructed to the
left of the (k — 1)th CV and to the right of the gth CV, as
for the only limiting slope. [f g =k + 1, then it is sufficient,
else the basis vectors should also be constructed for
k <j < gq. For this purpose, sequentially, beginning with
j=k+1landtoj=g—1,all the components of the basis
vector are ¢; = 0 ati <jand ¢; = 1 ati >. In this case,
only the slope I] changes, and the constraints are violated
at the (j — 1)th and jth CVs. They are compensated
by changing O and o; in view of the fact that the
increments A/, = 1/S; and Al = —1/S,. The next basis
vector is constructed.

¢=(0..01..1 0...0-1/3._;S)1/(8,5.)0...0)T.

If, at some j of k <j < g, the curvature o, is limiting,
then the number of basis vectors is decreased by 1, and
in constructing each of them, A/, is retained, and the
violation of the difference of the slopes at other CVs is
compensated using the curvature at the CVs with the
nonlimiting curvature values.

If the leg under active constraints of type (3) contains
more than two limiting slopes in, the basis vectors are
constructed similarly.

If two legs of the considered form share one common
CV to which an inactive constraint of type (3) corresponds,
then, for these legs, the basis vectors are constructed as for
an integral whole. But for the basis vector obtained by the
rotation with the center at this CV, the curvature is not
required to be changed. If two legs have no common CVs,
then they are considered separately.

To satisfy the conditions for the fixed initial and final
points and directions, these conditions are converted
to constraints of the form 21 min = 21 S 21 max and
Zp, min < Zn SZn, max [25].

If some of them becomes active, then the shift vector
is not included in the basis. If an active constrain of type
(3) is imposed at CV, or CV,, then the vector of rotation
with the center at these points is constructed with the
compensation of the difference of the slopes by changing
the corresponding curvature.

The height constraints at points in the inscribed
curves are nonlinear and have to be taken into account
by penalty functions [25].

To solve the question of the possibility of eliminating
aconstraint from the active set, it is necessary to construct
vector g that violates this and only this constraint. If (f,
g) <0, the constraint is excluded. For active constraints of
type (3), this is a basis vector, but without compensation
at the center of rotation. And if the corresponding
curvature is limiting, then it is necessary to construct
vector g as a basis vector with compensation. If it
does not violate the curvature constraint and (f, g) > 0,
then the curvature constraint can be excluded. For the
active constraint on the slope 7, (Fig. 6), such a vector
is obtained by allowing the rotation of the right-hand
part of the leg with the center at the (X — 1)th CV, which
was not used in the construction of the basis, with the
compensation of the change in AZ,_,.

If the active set does not contain constraints of type
(3), then the question of the possibility of eliminating
such constraints from the active set is solved quite
simply [25].

CONCLUSIONS

The proposed method to construct the basis enables
one to solve the problem of optimization of parameters
of a spline with circular arcs and at variable CV
abscissas obtained at the first stage. This question, as
well as the optimization of parameters of a spline that
is not a one-to-one function, which often takes place in
designing the plan of road routes, requires a separate
consideration.

As was determined as far back as the 1970s—1980s
[1, 26], using adequate mathematical models and
correct optimization algorithms yielded a significant
economic effect. The Profil, Profil-r, Profil-2a, and
Profil-2r systems, which were used at that time on slow
(by modern standards) computers for designing the
longitudinal profile of roads and railways [1, 26], are
currently not used, first of all, because of the absence
of entities interested in reducing the cost estimate of
construction and reconstruction by improving project
quality. These systems were replaced by foreign-
made CAD systems, which accelerated the processes
of preparation and release of numerous drawings and
other project documents. However, these systems do
not include designing programs. In an expert designer’s
apt words, they are “convenient drawing tools with no
signs of optimization.” On the other hand, both updated
old systems of longitudinal profile design, and new
programs of route plan design solve complex problems
of optimization and visualization of computer design
solutions, but they cannot completely replace the
used foreign-made interactive-design CAD systems.
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The point is that designing systems are developed
“by inertia,” as a personal initiative, without funding
sources; therefore, they do not contain subsystems of
preparation and release of drawings and various output
documents.

The emerging trend toward artificial intelligence
in other sciences and technologies gives promise that
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