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Abstract. In the article, computer design of routes of linear structures is considered as a spline approximation problem. 
A fundamental feature of the corresponding design tasks is that the plan and longitudinal profile of the route consist 
of elements of a given type. Depending on the type of linear structure, line segments, arcs of circles, parabolas of the 
second degree, clothoids, etc. are used. In any case, the design result is a curve consisting of the required sequence 
of elements of a given type. At the points of conjugation, the elements have a common tangent, and in the most difficult 
case, a common curvature. Such curves are usually called splines. In contrast to other applications of splines in the 
design of routes of linear structures, it is necessary to take into account numerous restrictions on the parameters of 
spline elements arising from the need to comply with technical standards in order to ensure the normal operation of 
the future structure. Technical constraints are formalized as a system of inequalities. The main distinguishing feature 
of the considered design problems is that the number of elements of the required spline is usually unknown and must 
be determined in the process of solving the problem. This circumstance fundamentally complicates the problem and 
does not allow using mathematical models and nonlinear programming algorithms to solve it, since the dimension 
of the problem is unknown. The article proposes a two-stage scheme for spline approximation of a plane curve. 
The curve is given by a sequence of points, and the number of spline elements is unknown. At the first stage, the 
number of spline elements and an approximate solution to the approximation problem are determined. The method of 
dynamic programming with minimization of the sum of squares of deviations at the initial points is used. At the second 
stage, the parameters of the spline element are optimized. The algorithms of nonlinear programming are used. They 
were developed taking into account the peculiarities of the system of constraints. Moreover, at each iteration of the 
optimization process for the corresponding set of active constraints, a basis is constructed in the null space of the 
constraint matrix and in the subspace – its complement. This makes it possible to find the direction of descent and 
solve the problem of excluding constraints from the active set without solving systems of linear equations. As an 
objective function, along with the traditionally used sum of squares of the deviations of the initial points from the spline, 
the article proposes other functions taking into account the specificity of a particular project task.
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НАУЧНАЯ СТАТЬЯ

Двухэтапная сплайн-аппроксимация  
в компьютерном проектировании  

трасс линейных сооружений

Д.А. Карпов, 
В.И. Струченков @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: str1942@mail.ru 

Резюме. В статье компьютерное проектирование трасс линейных сооружений рассматривается как за-
дача сплайн-аппроксимации. Принципиальной особенностью соответствующих проектных задач являет-
ся то, что план и продольный профиль трассы состоят из элементов заданного вида. В зависимости от 
типа линейного сооружения используются отрезки прямых, дуги окружностей, парабол второй степени, 
клотоид и др. В любом случае результатом проектирования является кривая, состоящая из нужной по-
следовательности элементов заданного вида. В точках сопряжения элементы, как правило, имеют об-
щую касательную, а в наиболее сложном случае – и общую кривизну. Подобные кривые принято называть 
сплайнами. В отличие от других применений сплайнов в проектировании трасс линейных сооружений при-
ходится учитывать многочисленные ограничения на параметры элементов сплайна, возникающие из необ-
ходимости соблюдения технических нормативов с целью обеспечения нормальной эксплуатации будущего 
сооружения. Технические ограничения формализуются в виде системы неравенств. Главная отличитель-
ная особенность рассматриваемых проектных задач состоит в том, что число элементов искомого сплайна 
неизвестно и должно быть определено в процессе решения задачи. Это обстоятельство принципиально 
усложняет задачу и не позволяет применить для ее решения математические модели и алгоритмы нели-
нейного программирования, так как неизвестна размерность задачи. В статье предлагается двухэтапная 
схема сплайн-аппроксимации плоской кривой, заданной последовательностью точек, при неизвестном 
числе элементов сплайна и наличии ограничений на параметры его элементов. На первом этапе опреде-
ляется число элементов сплайна и приближенное решение задачи аппроксимации. Используется метод 
динамического программирования. На втором этапе выполняется оптимизация параметров элементов 
сплайна. Используются алгоритмы нелинейного программирования, разработанные с учетом особенно-
стей системы ограничений. При этом на каждой итерации процесса оптимизации для соответствующего 
набора активных ограничений строится базис в нуль-пространстве матрицы ограничений. Это позволяет 
найти направление спуска и решить вопрос об исключении ограничений из активного набора без реше-
ния систем линейных уравнений вообще, а в наиболее сложных случаях − решая линейные системы малой 
размерности. В качестве целевой функции наряду с традиционно используемой суммой квадратов откло-
нений аппроксимируемых точек от сплайна в статье предлагаются другие функции с учетом специфики 
конкретной проектной задачи.

Ключевые слова: трасса, план и продольный профиль, сплайн, динамическое программирование, целевая 
функция, ограничения
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INTRODUCTION

A linear structure is a structure the ground position 
of which is determined by the axis of the structure, which 
is called the route. Among linear structures are roads and 
railways, pipelines of various purposes, channels, water 
conduits, etc. A route is a three-dimensional curve, which 
is conventionally represented by two plane curves: the 
plan and the longitudinal profile.

The plan of a route is its projection on the XOY 
plane, and the longitudinal profile is the graph of the 
function Z(s), where s is the length of the curve in plan 
as calculated from a given initial point. The longitudinal 
profile is a developed view of the vertical surface passing 
through the route.

Design of the longitudinal profile of a structure 
of any type can be considered as the construction of 
a spline consisting of elements of a given shape. This 
spline should have the minimum (in a given meaning) 
deviation from the initial broken line, which is the 
ground profile in the case of design of new structures 
and is the profile of the existing structure in the case of 
design a reconstruction.

The simplest spline of the first order is the grade 
line of the longitudinal profile of a railway. In this case, 
the problem is to convert the initial broken line (ground 
profile) to another broken line that satisfies a variety of 
constraints: on the slopes of elements and the differences 
of the slopes of neighboring elements, on the minimum 
length of elements, and on the height at some points 
and in some zones [1, 2]. Because the design slopes 
are small, the length of an element and the difference 
of the abscissas of its ends virtually coincide; therefore, 
the difference of the slopes of neighboring elements 
is equated with the angle of rotation, and the slope is 
identified with the angle between the element and the 
abscissa axis.

Meanwhile, the number of elements of the sought 
spline is unknown. This fact and also numerous constraints 
distinguish significantly the considered design problem 
of spline approximation from problems solved in spline 
theory and its applications [3−5], where the number of 
spline knots and their abscissas are considered to be 
given, and constraints are typically absent.

In a simplified formulation, the problem of seeking 
the optimal spline as a broken line at an unknown 
number of elements under constraints was solved in the 
last century as applied to the design of the longitudinal 
profile of new railways [6, 7].

The problem was solved in two stages. At the first 
stage, the initial ground profile was converted to a broken 
line comprising short elements under all the constraints, 
except the constraint on the length of an element. The 
developers of the first designing algorithms called such 
a profile the chain [6].

At the second stage, the chain was converted to the 
grade line under all the constraints, including those on 
the length of elements.

In a realistic formulation as applied to design 
under rugged terrain and complex geology conditions, 
the problem was solved on a BESM-4 computer by 
nonlinear programming. The corresponding program 
gained a wide practical use despite a long computational 
time because of the extremely low computational speed 
of this and subsequent computer models (Minsk 32, 
ES 1020, and others) of the last century [1].

In CAD systems, highly popular in Russia, which 
were developed by international companies [8−10], 
and their Russian [11] and Belarusian [12] analogs, the 
computer is used to solve auxiliary problems, rather 
than to elaborate the optimal design solutions. In these 
systems, a spline approximation problem is solved 
“through the eyes”; i.e., the designer should specify some 
information that completely determines a sought line. 
At best, he or she considers several of the theoretically 
infinitely many possible solutions.

At the present time, the mathematical model, 
algorithm, and previously developed designing programs 
should be improved because of changes in the technical 
specifications for design of high-speed railways. The first 
order spline should be replaced by a spline comprising 
line segments and circular arcs, the number of which 
remains unknown.

A similar spline is also used in designing big-inch 
pipelines.

In designing the longitudinal profile of roads, a 
problem arises to seek a parabolic spline of the second 
order [13] with the above specific features. This problem 
was solved by nonlinear programming [13].

A spline with circular arcs is used as an alternative 
to a spline with parabolas in designing the longitudinal 
profile of roads and also the plane of the routes of various 
linear structures [14].

The study aimed to analyze the above design 
problems from a single theoretical standpoint as 
problems of spline approximation and to present 
the key stages and specific features of their solution 
algorithms.

1. FORMULATION OF A PROBLEM OF CIRCULAR 
ARC SPLINE APPROXIMATION AND ITS 

FORMALIZATION

Let us consider a problem of designing a longitudinal 
profile using straight-line elements conjugated to circular 
arcs.

In the case of redesigning, the initial profile is the 
profile of the existing structure. If a new structure is 
designed, the initial profile is the ground profile. The 
chain longitudinal profile (Fig. 1, dashed line), which 
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can be constructed using the existing designing programs 
[14], is used to find the number of spline elements. The 
lengths of elements of the chain need not be equal, but 
the abscissas of its knots and the abscissas of the knots 
of the initial broken line coincide.

A

B С

θ

D E

Ground profile
«Chain» z(s)

Spline Z(s)

F

CV1

CV2

Fig. 1. Spline with circular arcs

Thus, we have the broken line z(s), which should be 
converted with minimum deviations to the spline Z(s) 
consisting of line segments conjugated to circular arcs 
(Fig. 1).

There are the following constraints:
(1)	on the slopes Ij of the straight-line spline elements: 

−Imin ≤ Ij ≤ Imax, j  =  1, 2, …, N  −  1, where N is 
the number of spline knots (vertices of the sought 
broken line, hereinafter referred to as control 
vertices (CVs)). Actually, this is a constraint on the 
first derivative of the function Z(s);

(2)	on the radii (curvature) of the convex and concave 
inscribed curves: 1/Rconvex ≤ 1/Rj ≤ 1/Rconcave, j = 1, 
2, …, N, Rconvex < 0, and Rconcave > 0;

(3)	on the lengths of the circular arcs (BC, DE in Fig. 1): 
Larc,j ≥ Larc,min;

(4)	on the lengths of the straight-line inserts between the 
curves (CD in Fig. 1): Lins,j ≥ Lins,min.
Additional constraints can be imposed on the 

ordinates of some points (height constraints at points of 
intersection of water conduits, other communications, 
and so on).

Objective function

Equal deviations in different directions from the 
initial line can often be nonequivalent. Therefore, the 
conventional minimization of the sum of the squared 
deviations at given points (also with different weights) 
is inappropriate.

In designing new roads, the total cut-and-fill 
quantity can be taken to be the objective function 
at this stage. The construction costs can be taken to 
be the objective function if the cut and fill does not 
give rise to a relationship between elements, which 
arises if the earth removed from cuts is used to 
construct fills and requires one to consider the grade 
line as a whole [14] as in nonlinear programming. 

At the stage of the conversion of the initial broken 
line (the chain or the existing profile) to a spline of 
a necessary type, the ordinate deviations (working 
marks) are small (about 0.5 m [14]), which allows 
one to use simplified efficiency criteria because the 
purpose of this stage is to determine the number 
of elements and their approximate positions, i.e., 
construct the initial approximation for nonlinear 
programming.

In redesigning of the longitudinal profile of a 
road, at this stage, it is expedient to use modeling 
functions, which take into account specific features 
of a problem.

For example, in designing the longitudinal profile 
during redesigning railways by straight-line elements 
without taking into account circular curves, which were 
inscribed into the found line, smooth modeling function 
F(h) (a spline of the second order with the defect 1) was 
successfully used (Fig. 2). Here, h is the working mark, 
i.e., the difference of the ordinates of the sought and 
initial splines: h(s) = Z(s) − z(s). The h0 and Δ values 
and the parameters of the elements of F(h) were found 
from the existing and designed depths of ballast (Hex and 
Hdes, respectively), and the rail and tie heights. 

Δ = max(0, Hex – Hdes), and the portions of the graph 
of F(h) represent (1) filling up of ballast, (2) cutting of 
ballast, and (3) cutting of roadbed.

At Δ = 0, portion 2 of the graph of F(h) is absent. If 
the existing and designed heights of rails and toes are 
equal, we have h0 = 0.

F

0 h0 – ∆ h0 h

1
2

3

Fig. 2. Modeling function

The F(hi) values were calculated at the knots of the 
initial spline, and the objective function had the form

	
min ( ) ( ),Φ h = ∑v F hi

k

i
1

� (1)

where the coefficients vi are equal to the half-sums of 
the lengths of its adjacent elements. Similar modeling 
functions were used in redesigning the longitudinal 
profile of roads using parabolic splines [13].

If the objective function is the cut-and-fill 
quantity, then F(hi)—the cross-sectional area at the ith 
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point—remains piecewise quadratic and corresponds to 
the calculation of the volume as an integral using the 
trapezoidal rule.

2. SPLINE APPROXIMATION BY DYNAMIC 
PROGRAMMING

Dynamic programming under a number of conditions 
[15−20] makes it possible to create algorithms of 
several-step construction of the optimal route of motion 
of a certain system from a given initial state to a final 
state by solving same-type problems at each of the steps, 
which are simpler than the initial problem [21]. Variants 
of reaching one and the same state by various ways are 
considered to be comparable, and in each state, only the 
best (according to a chosen criterion) variant remains.

CVs variants

A
I1

Lmin

1 2

S0

Z

Fig. 3. First step of algorithm

The key concept of dynamic programming is the 
state of a system, which, for our problem, we define as a 
pair of two items: one is a point in a straight-line element 
of a spline, such that beginning with this point a circular 
arc can be constructed or a straight line can be continued, 
and the other is the angle between this element and the 
ОS (abscissa) axis. The initial state (point A and slope I1 
in Fig. 3) is considered to be given.

With respect to the knots of the initial spline (the 
broken line z(s)), a variation grid at a given step is 
constructed (points in verticals 1 and 2 in Fig. 3). At 
each of these points, proceeding from the slope of the 
initial spline, angles with the ОS axis (search sector) 
are assigned. The step of assignment of points and 
angles in the verticals, and the numbers of steps in the 
vertical and angular directions at each of the points are 
the initial parameters of an algorithm of seeking the 
design spline and are specified before calculation. If 
necessary, the calculation can initially be performed at 
large increments and then, using the obtained solution, 
at smaller increments. This is a common trick to reduce 
the computational time in dynamic programming, 
which was successfully used in parabolic spline 
approximation [13, 14].

The first vertical was chosen to be the one spaced 
apart from the initial point A (in abscissas) at distance 

Lmin, which is given under constraints 3 and 4 on the 
lengths of curves and straight-line inserts. In addition, 
distance Lmax is given as the sum of the maximum 
length of the curve and the length of the straight-line 
insert. Dynamic programming is performed using the 
angles of rotation (Fig. 1) and the coordinates of their 
vertices.

In seeking the first curve of the design spline, the 
left-hand side of the angle is given (the point A and the 
angle I1). The points in each vertical within the range 
from Lmin to Lmax together with the directions assigned 
at each of the points constitute the possible variants of 
the right-hand side of the first angle of rotation (Fig. 3) 
and determine the corresponding variants of the first 
CV. For each variant, using the minimum radius of a 
convex or concave curve (depending on the sign of the 
angle of rotation), the possibility of satisfying all the 
constraints is analyzed, and only the variants for which 
all the constraints are met are retained. Further, it is 
considered whether or not the radius of the inscribed arc 
can be increased without violation of constraints using 
the difference of the slopes of the adjacent elements 
of the initial spline that are within the angle under 
consideration. The radius is chosen such that the value 
of the objective function for the corresponding CV is 
minimum.

At the first step of comparing paths and rejecting 
variants, one and the same state is not reached. Each 
of the allowed states of the first step together with the 
corresponding values of the objective function (the cost 
to reach the initial state), the CV coordinates, the radius, 
and the angle of rotation are stored in memory.

General step of algorithm

The knots of the initial spline are considered such 
that the abscissas (and the corresponding verticals) of 
which are within the range from SA + 2Lmin to S − Lmin, 
where S is the abscissa of the end of the profile. For 
each vertical, a sequential analysis is made of all the 
preceding knots that are no less than Lmin and no more 
than Lmax apart from the vertical and of the straight lines 
passing through them. For each intersection, the same 
operations as at the first step are sequentially performed. 
The difference is that, in the considered state (the right-
hand side of the angle, line BC in Fig. 4), there may be 
many intersections with the sides of the preceding angles 
that originate from one or different CVs (the points Ai 
and Аi+1 in Fig. 4). As at the first step, only the joints 
that satisfy the constraints are considered and compared. 
As a result, each state in each vertical (the point C and 
the angle) is reached by either one variant, or none. For 
each of such variants, additionally stored in memory are 
the point and the direction (the point Ai and the angle 
AiB with the abscissa axis in Fig. 4) corresponding to 
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the left-hand side of the angle; i.e., for each new state, 
the relationship with the best of the preceding states is 
memorized.

Ai
Ai+1

B

C

Fig. 4. Comparison and rejection of variants

Last step of algorithm

At the last step, the right-hand side of the angle of 
rotation is known. These are the final point and the angle 
determining the final direction. The same operations as 
at the general step are carried out, and a comparison 
of the allowable joints determines the minimum value 
of the objective function. The optimal spline and its 
parameters are restored by a turn over memorized ties, 
which is typical for dynamic programming [21, 22].

Of course, one can also consider several final 
directions and points and perform the same operations 
for each of them with subsequent selection of the best 
variant.

The use of the algorithm encountered difficulties 
in handling long line segments. This gave rise to small 
angles of rotation. Depending on a specific problem, 
either such angles are not allowed at all, or curves 
are not inscribed in them (e.g., in designing low-type 
roads). In the former case, instead of two intersecting 
straight lines, one straight line can be formed (using 
the terminal points) in the course of the exhaustion of 
variants. But because the algorithm is intended only 
for the construction of the initial assumption, such 
transformations were made only for the obtained spline 
to avoid excessive complications. This is also justified 
by the fact that not nearly all such intersections at small 
angles are contained in the final solution.

3. OPTIMIZATION OF SPLINE PARAMETERS

The design line is completely determined by the 
coordinates of the vertices of the angles of rotation and 
the radii of the inscribed circles, which are found by 
dynamic programming (Fig. 5).

To start with, we consider the CV abscissas 
constant, i.e., analyze the possibility of optimization of 
the position of the spline by moving CVs along fixed 
verticals. Because the slopes are small (no more than 
several tens of permille), the lengths of the sides of each 

angle are considered to be equal to the difference of the 
CV abscissas, which are invariable. Since the initial 
and final points and the directions at them are given, 
the ordinates of the first and last CVs cannot change. 
Therefore, the variables are only Zj, j  =  1, 2, …, n, 
the ordinates of the CVs being varied (their number is 
n = N − 2), and the radii Rj of the inscribed curves. The 
given boundary conditions are taken into account by the 
calculation of the limiting values of the slopes, I1 and In, 
and then the ordinates, Z1 and Zn [14].

To obtain a nonlinear programming problem with 
objective function Ф(h) (1), one should express in terms 
of these variables the working marks at the knots of the 
initial broken line, i.e., the difference of the ordinates 
of the design spline and the initial broken line (B′B″ in 
Fig. 5), and all the constraints.

In designing the longitudinal profile of new roads, 
the objective function corresponds to the minimum cost 
of construction of subgrade and artificial structures. The 
corresponding models are the same as in the case of 
using parabolic splines in codesigning the longitudinal 
and transverse profiles with taking into account the earth 
mass distribution [14].

If there are such expressions, the calculation of the 
gradient of objective function (1) reduces to the simple 
recalculation of derivatives [14] because the ordinates of 
the points (D and B in Fig. 5) in straight-line elements 
depend linearly on the CV ordinates. Because the slopes 
are small, the angle of rotation is considered to be equal 
to the difference of the adjacent slopes (DIj in Fig. 5).

This enables one to express, with sufficient 
accuracy, the deviations of the points of the curve from 
the corresponding points of the straight lines (CC″ and 
BB″ in Fig. 5), i.e., the corrections to the working marks 
calculated from the sides of the angle or rotation (“of a 
boom”).

Z

0 sA sC

Sj

Rj

Bʺ

B′ C′
C

B
E

d F

G

s

D

∆Ij

Cʺ

A

Fig. 5. To the recalculation of derivatives in the presence 
of circular arcs

In Fig. 5, CC″  =  dj  =  RjDIj
2/8; BB″  =  dB  = 

= dj  −  tBDIj/2  +  tB
2/(2Rj), where tB  =  |sC  −  sB| is the 

difference of the abscissas of the CV and the point in 
the curve; DIj =  Ij+1 −  Ij, where Ij =  (Zj − Zj−1)/Sj, Zj 
are unknown design marks of the vertices of the angles 
of rotation, and Sj are the differences of the abscissas, 
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which differ insignificantly from the lengths of the sides 
of the angles; and sC − sA = Sj ≈ AC.

Instead of the constraints on the difference of the 
slopes, there are constraints on the minimum lengths of 
the curves, RjDIj ≥ Lj,min, and on the minimum length of 
the straight-line insert, i.e., the sum CE + FG (Fig. 5), 
should meet the condition

	 RjDIj/2 + Rj+1DIj+1/2 + Lins, min ≤ Sj+1, j = 1, 2, ..., n.� (2)

Here, Lins,min is a given minimum length of the 
straight-line inset, and n is the number of CVs.

At small DIj, to change the length of the straight-line 
insert by 10 m, it is required to change the radius by 1000 m 
and more, which can hardly be done by optimizing a spline 
constructed by dynamic programming. Therefore, condition 
(2) can be simplified by eliminating the relationship 
between the variables for the adjacent CVs using the spline 
obtained at the first stage as the initial approximation.

This can be done by making the following operations:
1.	Calculate all the Тj = RjDIj/2 (in design practice, they 

are called tangents).
2.	Calculate all the straight-line inserts 

dj = Sj − (Tj−1 + Tj), j = 2, …, n, and cj = dj – Lins,min 
(“store”).

3.	If dj  =  Lins,min, then Tj−1 and Tj are fixed as the 
maximum values of Rj−1DIj−1/2 and RjDIj/2. The 
fixed values are not further changed.

4.	Sequentially consider the straight-line inserts in 
ascending order, beginning with the smallest dk. The 
values Tk−1 + Tk can be increased by сk = dk – Lins,min 
without risking a violation of the constraint on the 
straight-line insert at the neighboring elements. If 
the maximum values of Rk−1DIk−1/2 and RkDIk/2 
are not yet fixed, then Tk−1  +  сk/2 and Tk  +  сk/2, 
respectively, are taken as their maximum values. 
The values сk−1 and сk+1 are decreased by сk/2. If the 
value Tk−1 is fixed, then max(RkDIk/2) = Tk + сk and 
сk+1 are decreased by сk. If the value Tk is fixed, then 
max(Rk−1DIk−1/2) = Tk−1 + сk.

5.	Let us proceed to step 3 and continue the process 
until there are unfixed maximum values of RjDIj/2. 
If necessary, the positions of the initial and final 
points of the profile are taken into account, and 
the maximum values of R1DI1/2 and RnDIn/2 are 
corrected (decreased).
Bearing in mind that RjDIj is the length of the jth 

curve and Lcur,min is its minimum value, and denoting the 
calculated maximum values of RjDIj as Lj,max, we obtain 
the system of two-sided inequalities

Lcur,min ≤ RjDIj ≤ Lj max, j = 1, 2, ..., n.

Let us convert this system of nonlinear inequalities to a 
linear system by change of variables from radii to curvatures 
σj = 1/Rj. The constraint on Lj,max is DIj ≤ Lj,maxσj at Rj > 0 

and Lj,maxσj ≤ DIj at Rj < 0. The constraint on Lcur,min is 
Lcur,minσj ≤ DIj at Rj > 0 and DIj ≤ Lcur,minσj at Rj < 0. 

The signs of Rj are known; hence, we have the linear 
system of the form

	 αjσj ≤ ΔIj ≤ σjβj, j = 1, 2, ..., n.� (3)

At Rj > 0, βj =  Lj,max and αj =  Lcur,min. At Rj < 0, 
conversely, βj = Lcur,min and αj = Lj,max.

The algorithm of solving the nonlinear programming 
problem of finding minФ(x), where x is the vector of 
unknowns and Ф(x) is the objective function, under 
linear constraints Ax ≤ b consists of the following steps:

1.	Construction of an allowable initial approximation.
2.	Calculation of antigradient f.
3.	Construction of active constraint matrix Ak and 

descent direction p.
4.	Check of conditions of termination of calculation.

If the length of the descent vector exceeds given ɛ, 
then go to step 5, else check the possibility of eliminating 
constraints from the active set. If there are no such 
constraints, then the process is over, else exclude one of 
the constraints and go to step 3.

5.	Search for a step in the direction of the descent as 
the minimum of the steps to the boundary and to 
the minimum point. In this case, a one-dimensional 
minimum search problem is solved.

6.	Transition to a new point. Further, if the antigradient 
at the new point has already been calculated in the 
search for a step, then go to step 3, else go to step 2.
In the general case, the algorithm ensures a hit of 

the vicinity of the local minimum point. Therefore, it 
is important to obtain a good initial approximation by 
dynamic programming.

There are two key steps: the construction of the 
descent direction and the elimination of constraints from 
the active set [22−24]. The problem can be solved using 
standard algorithms, which require solving systems of 
linear equations (matrix inversion) at each iteration. For 
example, the projection of the gradient at the kth iteration 
can be calculated from the Rosen formula:

p E A A A A fk k k
T

k= − −( ( ) ) .1

To solve the question of the elimination of constraints 
from the active set, the vector u A A A fk k

T
k= −( ) ,1  

should be calculated, for which the matrix A Ak k
T.  

should be inverted.
Instead of this, let us consider the possibility of 

constructing the descent direction using the simple 
structure of the system of constraints [25]. For this purpose, 
it is necessary to be capable of constructing a basis in the 
null space of the matrix Аk for any active set, which was 
implemented in the program of spline optimization as a 
broken line without inscribed curves [14].



52

Dmitry A. Karpov, 
Valery I. Struchenkov

Two-stage spline-approximation  
in linear structure routing

Russian Technological Journal. 2021;9(5):45–56

For example, if the basis matrix C has already 
been constructed, then the descent vector has the form 
p = CCTf, where f is the antigradient.

Constraints (3) contain additional variables σj, but 
the previously constructed basis vectors [25] can also be 
converted for this system.

If, in our problem, a certain variable zj is contained in 
none of the active constraints, then pj = fj. The presence 
of such free points enables one to divide the profile into 
legs of independent construction of basis vectors and 
the corresponding components of the descent vector. 
For example, for system (3) of active constraints on the 
straight-line insert in the range of CVs from the (m + 1)th 
to the (m + r − 1)th (Fig. 6), the variables are zm−1, zm, 
…, zm+r−1, zm+r and σm, σm+1, …, σm+r−1; and the free 
variables are zm−2 and zm+r+1.

Z

0 s

zm–1

zm

Im
I

Sm Sk Sj Sq Sm+r

zm+r

zm+r–1
zqzq–1

zk

Fig. 6. Example of construction of basis vectors

The active constraints are the following:
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This system in the variable ordinates has the form:
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The sought basis vectors should convert the 
inequalities of this system to equalities and be 
linearly independent. For example, the vector 
c1 = (1 1 … 1 1 0 0 0)T (r + 2 units and r zeros) shifts all 
the CVs along the ordinate axis without changing slopes 
and radii. Obviously, the difference of the adjacent 
slopes and the curvature also remain unchanged.

If all slopes are increased equally, e.g., by 1 (i.e., if 
a rotation with the center at the (m − 1)th CV is made) 
without changing radii, then the constraints of system 
(4) and its corresponding system (5) remain active. 
Therefore, the vector с2 = (0  Sm  Sm + Sm+1  Sm + Sm+1 +
+ Sm+2  …  Sm + Sm+1 + Sm+2 + Sm+r  0  …  0)T can also be 
included in the sought basis. Another r basis vectors are 
obtained by making rotations about the mth, (m + 1)th, …, 
and (m + r − 1)th CVs chosen sequentially as the centers 
of rotation, changing the right-hand slopes by 1, and 
compensating the change in the difference of the slopes 
at the center of rotation by changing the corresponding 
curvature: (6).

The linear independence of the obtained vectors 
follows from their construction method.

If, in such a leg, a certain curve σj takes the limiting 
value, then the corresponding component of the descent 
vector is zero, σj is excluded from the variables taken 
into account in constructing the basis, and the vector 
corresponding to the change in this variable is not 
included in the basis.

If the limiting value is taken by the slope of a certain 
element Ik, then the vector с1 remains in the basis, but the 
vectors corresponding to the rotations about the centers 
at CVj (j = m − 1, m, …, k − 1) change this slope and are 
not included in the basis.

New basis vectors are constructed by searching 
through the CVs, beginning with the (k − 1)th to the mth, 
if k > m. The center of rotation is taken to be the (k − 1)th 
CV, but the left-hand part is rotated, so that all the left-
hand slopes gain equal increments. The difference of the 
slopes changes only at the (k − 1)th CV by 1, which is 
compensated by changing the (k – 1)th curvature. The 
basis vector is obtained:

c = (sk−1 + sk−2 + … + sm    sk−1 + sk−2 + … +

+ sm+1  …  sk−1 + sk−2   sk−1  0 … 0  0… 1/δ … 0 … 0)T,

where δ = αk−1 or δ = βk−1, depending on the sign of σk−1.

c

c
3

4

= + + + +

=
+ + + + + +( ... ... ... ) ,

(

0 0 1 0 0

0 0 0
1 1 2 1 2S S S S S Sm m m m m m r mα T

SS S S S S Sm m m m m m r m+ + + + + + ++ + + +2 2 3 2 3 10 1 0... ... ... ... ) ,
...

β T

cr+2 == + + −( ... ... ... ) .0 0 0 0 0 0 0 1 1Sm r m rα T

(6)
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If the limiting slope is not the last one, then vertices 
k, k + 1, …, m + r − 1 are sequentially taken to be the 
centers of rotation (Fig. 6), the right-hand part is rotated, 
and the corresponding basis vector is constructed with 
the compensation of the change in the difference of the 
slopes at the center of rotation.

If the limiting slope is the slope of the initial 
element, then only the rotation of the right-hand part and 
the motion only to the right are considered. Similarly, if 
the limiting slope is the slope of the last element, then 
only left-hand part of the profile is rotated, and the CVs 
are tested only to the left.

If the limiting value is also taken by the qth slope 
(q > k + 1), then the basis vectors are constructed to the 
left of the (k – 1)th CV and to the right of the qth CV, as 
for the only limiting slope. If q = k + 1, then it is sufficient, 
else the basis vectors should also be constructed for 
k < j < q. For this purpose, sequentially, beginning with 
j = k + 1 and to j = q – 1, all the components of the basis 
vector are сi = 0 at i < j and сi = 1 at i ≥ j. In this case, 
only the slope Ij changes, and the constraints are violated 
at the (j  –  1)th and jth CVs. They are compensated 
by changing σj−1 and σj in view of the fact that the 
increments ΔIj = 1/Sj and ΔIj+1 = −1/Sj. The next basis 
vector is constructed.

c = −
+ −

+ + −

( ... ... ... ) ) ... ) .0 0 1 1 0 0 1 1 0 01
1j m r j j

m r j
j jS S(δ (δ T

If, at some j of k < j < q, the curvature σj is limiting, 
then the number of basis vectors is decreased by 1, and 
in constructing each of them, ΔIj is retained, and the 
violation of the difference of the slopes at other CVs is 
compensated using the curvature at the CVs with the 
nonlimiting curvature values.

If the leg under active constraints of type (3) contains 
more than two limiting slopes in, the basis vectors are 
constructed similarly.

If two legs of the considered form share one common 
CV to which an inactive constraint of type (3) corresponds, 
then, for these legs, the basis vectors are constructed as for 
an integral whole. But for the basis vector obtained by the 
rotation with the center at this CV, the curvature is not 
required to be changed. If two legs have no common CVs, 
then they are considered separately.

To satisfy the conditions for the fixed initial and final 
points and directions, these conditions are converted 
to constraints of the form z1,  min ≤ z1  ≤ z1,  max and 
zn, min ≤ zn ≤ zn, max [25].

If some of them becomes active, then the shift vector 
is not included in the basis. If an active constrain of type 
(3) is imposed at CV1 or CVn, then the vector of rotation 
with the center at these points is constructed with the 
compensation of the difference of the slopes by changing 
the corresponding curvature.

The height constraints at points in the inscribed 
curves are nonlinear and have to be taken into account 
by penalty functions [25].

To solve the question of the possibility of eliminating 
a constraint from the active set, it is necessary to construct 
vector g that violates this and only this constraint. If (f, 
g) < 0, the constraint is excluded. For active constraints of 
type (3), this is a basis vector, but without compensation 
at the center of rotation. And if the corresponding 
curvature is limiting, then it is necessary to construct 
vector g as a basis vector with compensation. If it 
does not violate the curvature constraint and (f, g) > 0, 
then the curvature constraint can be excluded. For the 
active constraint on the slope Ik (Fig. 6), such a vector 
is obtained by allowing the rotation of the right-hand 
part of the leg with the center at the (k − 1)th CV, which 
was not used in the construction of the basis, with the 
compensation of the change in DIk−1.

If the active set does not contain constraints of type 
(3), then the question of the possibility of eliminating 
such constraints from the active set is solved quite 
simply [25].

CONCLUSIONS

The proposed method to construct the basis enables 
one to solve the problem of optimization of parameters 
of a spline with circular arcs and at variable CV 
abscissas obtained at the first stage. This question, as 
well as the optimization of parameters of a spline that 
is not a one-to-one function, which often takes place in 
designing the plan of road routes, requires a separate 
consideration.

As was determined as far back as the 1970s−1980s 
[1, 26], using adequate mathematical models and 
correct optimization algorithms yielded a significant 
economic effect. The Profil, Profil-r, Profil-2a, and 
Profil-2r systems, which were used at that time on slow 
(by modern standards) computers for designing the 
longitudinal profile of roads and railways [1, 26], are 
currently not used, first of all, because of the absence 
of entities interested in reducing the cost estimate of 
construction and reconstruction by improving project 
quality. These systems were replaced by foreign-
made CAD systems, which accelerated the processes 
of preparation and release of numerous drawings and 
other project documents. However, these systems do 
not include designing programs. In an expert designer’s 
apt words, they are “convenient drawing tools with no 
signs of optimization.” On the other hand, both updated 
old systems of longitudinal profile design, and new 
programs of route plan design solve complex problems 
of optimization and visualization of computer design 
solutions, but they cannot completely replace the 
used foreign-made interactive-design CAD systems. 
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The point is that designing systems are developed 
“by inertia,” as a personal initiative, without funding 
sources; therefore, they do not contain subsystems of 
preparation and release of drawings and various output 
documents.

The emerging trend toward artificial intelligence 
in other sciences and technologies gives promise that 

designing programs will also be in demand in routing 
of linear structures, which will significantly reduce 
the labor and money inputs in construction by using 
intelligent design systems.
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