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The creation of monitoring clusters based on cloud computing technologies is a promising
direction for the development of systems for continuous monitoring of objects for various
purposes in the web space. Hadoop web-programming environment is the technological basis for
the development of algorithmic and software solutions for the synthesis of monitoring clusters,
including information security and information counteraction systems. The International
Telecommunication Union’ (ITU) recommendations Y. 3510 present the requirements for cloud
infrastructure that require monitoring the performance of deployed applications based on the
collection of real-world statistics. Often, computing resources of monitoring clusters of cloud
data centers are allocated for continuous parallel processing of high-speed streaming data, which
imposes new requirements to monitoring technologies, necessitating the creation and research
of new models of parallel computing. The need to use service monitoring plays an important role
in the cloud computing industry, especially for SLA/QoS assessment, as the application or service
may experience problems even if the virtual machines on which the work is taking place appear
to be operational. This requires to study the methodological possibilities of organization to study
of parallel processing high-speed streaming services with the processing of huge amounts of bit
data, and, simultaneously, to estimate the necessary computational resource. In the conditions of
high dynamics of changes in the bit rate of information generation from the source, a model of the
bit rate of Discretized Stream (DStream) formation is proposed, which has a common application.
Based on the poly-burst nature of the bit rate model, a model of group content traffic of any
sources of different services processed in the cloud cluster was created. The obtained results
made it possible to develop mathematical models of parallel DStreams from sources processed in
a cloud cluster via Hadoop technology using the micro-batch architecture of the Spark Streaming
module. These models take into account the flow of requests for maintenance from sources of
different services, on the one hand, and, on the other hand, the needs of services in bit rate, taking
into account the multichannel traffic of sources of various services. At the same time, analytical
relations are obtained to calculate the required performance of the Hadoop cluster at a given value
of the probability of batch loss.
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Co3/laHe MOHUTOPUHIOBBIX KJIACTEPOB 006/1a4HbIX BBIYMCEHUH SIBJ/ISIETCS NEPCIEKTUBHBIM
HalpaBJieHHeM CO3/IaHUs CUCTEM HellPePbIBHOTO KOHTPOJISI 06'bEKTOB Pa3/IMYHOI'0 Ha3HAYEHU
B web-npoctpaHcTBe. Cpesa web-nporpamMmMmupoBaHust Hadoop siBiisieTcsl TeXHOJIOTMYECKON
OCHOBOH pa3paboTKH aJrOPUTMHUYECKUX U NPOrPAaMMHBIX peLleHUH N0 CUHTe3y MOHUTOPHH-
rOBBIX KJIACTEPOB, BKJ/OYasi CUCTeMbl UHGOPMALlMOHHON 6e30M1acHOCTH U MHPOPMALMOHHOTO
npoTuBojielcTBUsA. B pekomenganuax Y.3510 MexayHapo/iHOTO coro3a asnektpocBsdu (ITU)
npe/iCTaBJeHbl TPeOOBaHUS, NPeAbsBAsIEMble K 06J1adHON UHPPACTPYKType, 06YCI0BIMBAIO-
1i1e Heo6X0AUMOCTb B MOHUTOPHUHIE IPOU3BOJAUTENbHOCTH Pa3BEPHYThIX NPHUJIOKEHUH Ha OC-
HOBe c60pa peajibHbIX CTATUCTUYECKUX JAHHBIX. 3a4aCTy0 BbIYHUCJIUTE/NbHbIE PeCypPChl MOHHU-
TOPUHIOBBIX KJIACTEPOB 00JIaYHBIX LIEHTPOB 06pabOTKU JaHHBIX BblJeJIeHbl AJ51 OCTOSIHHOU
napaJijieJJbHOM 06paboTKH BbICOKOCKOPOCTHBIX IOTOKOBBIX JaHHBIX, YTO NpeLbsIBJAseT HOBbIE
TpebOBaHUs K TEXHOJIOTUSIM MOHUTOPHHTA, 00YCI0BJIHMBAKOILHE HEOOXOAMMOCTb CO3/IaHUS U HC-
c/le/J0BaHUs HOBBIX MO/ieJiel NapasijieIbHbIX BbIluMcaAeHU. Heo6x04MMOCTh NpUMEHEHHS] MOHU-
TOPUHTA YCAYT UTPAET BaXKHYIO POJIb B UHAYCTPUH 06J1a4HbIX BBIYMCIEHUH, B 0COGEHHOCTH JJIs1
oueHkd SLA/QoS, Tak Kak B NPUJIOKEHUU UJIH YCJIyTe MOTYT BOSHUKHYTb IPO6JIEMBI, JaKe eCIv
BUPTya/IbHblEe MAILUHBI, HA KOTOPBIX IPOMUCXOAUT paboTa, BBIVISAJAT paboTocnocobHbIMU. [Ipu
3TOM He0o6XOJMMO pelleHHe 3a/aul UCC/Ie[,0BaHUsI METOJUYEeCKUX BO3MOXKHOCTEN MO OLeHKe
He06X0AUMOT0 BBIYMC/IUTENBHOTO pecypca B yCJA0BUAX BbICOKOCKOPOCTHBIX IOTOKOBBIX CEPBU-
COB € 06pabOTKON Ir'MraHTCKUX 06 beMOB OGUTOBBIX JAHHBIX. PaspaboTaHbl MaTeMaTUUYECKHE MO-
JleJIU TlapaJljieIbHbIX TOTOKOB DStream oT HCTOYHUKOB, 06pabaTbiBaeMbIX B 06/J1a4HOM KJacTe-
pe Ha TexHoJsioruu Hadoop ¢ ncnosib30BaHHEM «MUKPOMAKETHOW» apXUTEKTYPhl MOAyJist Spark
Streaming, yyuThIBarliMe, C OAHON CTOPOHBI, TOTOK 3asBOK UCTOYHUKOB Pa3/IMYHbIX CEPBHUCOB
Ha 06CIy>KUBaHHUE, @, C APYTol CTOPOHBI, IOTPEGHOCTHU CEPBUCOB B GUTOBON CKOPOCTH Nepesayn
C YyYeTOM IOJIMNAaYevYHOCTH TpadrKa UCTOYHUKOB Pa3/IMUHbIX CEPBHCOB.

Kawueessvie caoea: monutopunr, Hadoop, Spark, maket, 6UTOBasi CKOPOCTb, MUKPOIAKET,
apXUTEKTYpa, NapaJljieIbHbIH NOTOK, 06J1a4Hble BbIYMCIEHUSIMAaTeMAaTUUYECKOE OKUAAHUE, JHC-
nepcus, BeposTHOCTb, QyHKIMsS pacnpefie/ieHUs BEPOSTHOCTEH, IJIOTHOCThb paciipe/ie/IeHUs Be-
POSITHOCTEH, cilydaliHbIM npolecc, Jlenbra-GyHKIus.

Jlna yumuposanusn: Nazarov A.N. Processing streams in a monitoring cloud cluster. Poccutickuii mexnonoeuue-
cxuil ocypran. 2019;7(6):56-67. https://doi.org/10.32362/2500-316X-2019-7-6-56-67

Introduction

he highest rates of use of Internet technologies and, above all, the Internet of things, in

various areas of human activity, impose new requirements to ensure the control of various
objects in the web space, including the interests of information security. Automation processes
of industrial facilities with a continuous production cycle widely used technologies of industrial
Internet and cloud monitoring. Intellectual analysis of the blogosphere is developing, which
allows us to predict and synthesize political actions. Monitoring procedures are constantly
functionally improved, including based on the latest technological solutions derived from the
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achievements of artificial intelligence and cloud computing. Cyberattacks can cause enormous
material and financial damage, especially in relation to critical information infrastructure.

Cloud computing is a dynamically scalable way to access external computing resources in
the form of a service [2] provided via the Internet [3]. Efforts to standardize cloud technologies
are consolidated by the International Telecommunication Union, whose work was initially
carried out within the Focus Group on Cloud Computing. The results of this work were issued
in the form of several reports [4, 5], and in the summer of 2013, specifications [6, 7] defining
the requirements for the quality of cloud services, infrastructure and features of computing
resources management were issued. As cloud computing technologies evolve, end-to-end and
trusted management are of particular interest [8—12].

The requirements for cloud infrastructure include the need to monitor the performance of
the data center, including parallel processing of streaming services.

The creation of a cloud monitoring cluster based on Hadoop technology allows solving
many problems of continuous monitoring of objects in cyberspace.

Apache Spark is a versatile and high-performance cluster platform. Spark performance
outperforms popular implementation of the MapReduce model, including streaming processing [13].

If Spark is installed on an existing Hadoop YARN cluster, it is possible to use the built-in
managers of these clusters. RDD (Resilient Distributed Datasets) datasets are a collection of
elements distributed among many computational nodes that can be processed in parallel. Spark
Core provides many functions for managing such collections [13].

At the same time, it is necessary to solve the problem of studying methodological
possibilities for assessing the necessary computing resource in the conditions of high-speed
streaming services with the processing of huge volumes of bit data.

Concurrency in a cluster

At the logical level, RDD is a single collection of objects. During execution, RDD is
divided into many partitions, each containing a subset of all the data. When Spark schedules
and executes tasks, one task is created for each partition, and each task will run on the same
core by default. In the Hadoop HDFS cluster, the original RDD sets are partitioned into HDFS
file blocks.

If the degree of parallelism is not high enough, the Spark source resources may be idle. For
example, if an application has 1000 cores at its disposal and it is performing a stage of only
30 tasks, you could increase the degree of parallelism and use more cores. In contrast, if the
degree of parallelism is too high, the small overhead costs associated with each partition can be
substantial in total.

The Spark Streaming module is built using a micro-batch architecture, when the data stream
is interpreted as a continuous sequence of small data batches. Spark Streaming takes data from
different sources and combines them into small batches (see Fig. 1) [13]. New batches are
created at regular intervals. A new batch is created at the beginning of each time interval, and
any data received during that interval is included in the batch. At the end of the interval, the
batch increment stops. The size of the interval is determined by a parameter called the batch
interval. Typically, the batch interval is between 500 milliseconds and a few seconds. Each
batch generates a set of RDD and is processed by Spark job that creates another set of RDD.
The batch processing results can then be transmitted to external systems for further analysis
[13].
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Fig. 1. [llustration of a micro-batch architecture.

Software abstraction in Spark Streaming is a discretized stream, or DStream, schematically
represented in Fig. 2 as a sequence of RDD sets, where each RDD corresponds to one time
interval.

Data in Data in Data in Data in
DStream = - =|time intervall _| time intervall Jtime intervall |time intervall __ ____ 2
from O to 1 from 1 to 2 from 2 to 3 from 3 to 4

0 1 2 3 4 Time row
Fig. 2. Scheme of formation of a DStream.

Hadoop-based monitoring of objects in web space.
Statement of the research problem

Monitoring of objects in the web-space implies regular observations of Internet objects (IP-
addresses of users of the world wide web, sites, etc.), of their information and other resources,
of services for both legal entities and individuals. These observations allow highlighting the
state of these objects and the processes occurring in them under the influence of Internet activity
on the Earth. Depending on the target function, web-monitoring also assesses the status and
functional activities, the value of Internet ecosystems. Secondly conditions are created to
determine corrective actions in cases where the targets of problem-oriented conditions are not
achieved.

Using the ideas of artificial intelligence [14, 15] in combination with the capabilities of
cloud computing for the development of monitoring technologies is very promising.

Hadoop, as a cloud technology of distributed processing of large amounts of data in the web
environment, is rapidly becoming an important tool, a skill for a wide range of programmers [16].

In this regard, monitoring in the Hadoop environment will be understood as organized
monitoring of selected objects in the web-space (in the subject area) using the capabilities of
Hadoop.

Hadoop was created to work with Big Data in the web space. And in this regard it has a
number of unique properties and abilities. Relevant quote [16]: “Technically speaking, Hadoop
is an open source framework designed to create and run distributed applications that process
large amounts of data.”

Hadoop operates on the basis of the MapReduce technology developed by Google.
MapReduce is a simple but very powerful way to process and analyze very large datasets, and
it is particularly effective for volumes ranging from a few petabytes.

In [17] the principles, approaches and technological procedures for the organization of
monitoring are analyzed from rather general premises. Methodological approaches to the
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creation of algorithms and software solutions in the Hadoop web-programming environment
applied to a wide class of tasks for monitoring objects in the web-space were developed.

For the first time, the topology of the Hadoop monitoring cluster, which has a common
application and is schematically shown in Fig. 3, was developed. Research was conducted, and
algorithms were proposed for the measurement of attributes of monitored objects in the web
space taking into account the requirements of measurements uniformity. System requirements
for the design of the Hadoop monitoring cluster were developed.
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Fig. 3. Topology of the Hadoop monitoring cluster.
Daemons description is given in [17].

Forthe topology ofthe Hadoop monitoring cluster[16], the methodological recommendations
were developed and studied for the synthesis of TaskTraker state and DataNode_state daemons.
The recommendations are responsible for solving the problem of assessing the state of the object
of observation and identifying its information model taking into account the features of cloud
computing. Principles and approaches were proposed [17] based on neuro-fuzzy solutions that
can be used as a basis for the design of intelligent automated systems for monitoring objects in
the web-space.

Decision-making mechanisms based on the formalization of a priori experience of experts
in the fuzzy base of fuzzy production rules are proposed [17]. The possibilities of a neuro-
fuzzy classifier in the form of a three-layer fuzzy neural network were investigated within the
framework of solving the problems of classification and expansion of the classification of input
data on the characteristics of the attributes of the monitoring object. The network consists of
the following levels:

— system of fuzzy production rules describing the identifier operation taking into account
expert assessments;

— neuro-fuzzy network, the structure of which reflects the system of fuzzy production rules;

— clear self-learning neural network for solving the problem of clustering (classification) of
input data from the web-space.
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Moreover, the lower level solves the problems of operational identification of attribute
changes, and the upper one solves the problems of the accumulation of experience in detecting
the effects of such changes on the elements and nodes of the monitoring object.

To train a neural network, a general approach is proposed that allows taking into account the
stochastic dynamics of the attributes of the monitoring object in the web-space. The approach is
based on the standard method of minimizing the generalization error on the basis of minimizing
the quadratic residual functional on the training sample.

An approach to the mathematical formalization of the synthesis of the TaskTracker state
daemon in a task of conditional optimization was proposed [17]. Limitations in the form of
inequalities reflecting the specifics of cloud computing in Hadoop environment are proposed.
The possibilities of using the bootstrap method to assess the dynamics of the attributes of the
monitoring object are analyzed.

The results obtained during the computer experimental study of the possibility of practical
implementation of the neural network method for determining the type of computer attack
showed a fairly high quality of the method s work [17].

Known approaches to parallel data processing in cloud systems [18] are reduced to the
implementation of parallel operations, which is applicable to work with databases, tables, but
does not reflect the specifics of the general problem of the synthesis of the Hadoop monitoring
cluster, since the problem of scientific and methodological justification of the required cloud
resource in parallel processing of streaming services with proper quality remains unresolved.
To achieve this goal, it is necessary first to develop mathematical models for the bit rate of
DStream formation and for a group of parallel DStreams from sources processed in a cloud
cluster via the Hadoop technology.

Model for the bit rate of DStream formation

We assume that in the current interval of time [7, 7] as a result of measurements to a random
process of bit rate of DStream formation from the s-th source of the £-th service with a variable
bit rate, it is possible to match a finite set of discrete values that reflect the poly-burst nature of
the bit rate.

The term “poly-burst” means that there are time intervals in which the source generates
information with a high bit rate (burst), significantly exceeding the average bit rate for the entire
time the service is provided to the consumer.

. K 0 :
Let us denote a finite set of these values {Bgax), } . Elements of this set correspond
i) j=1

ng (1)
k k
uniquely to elements of the set of time intervals {[f ((,j ) s Z;Sj ) }} , the set of probability values
j=1

" e B(sk)
{ pﬁ.Sk) }j_(z) and the set of burst coefficients {ksk) }j_(l) [19], where kl(;k) = Bn(f:)’ .

J
aver

The result of a stepwise approximation of a random process of bit rate of DStream formation
from the s-th source of the k-th service at time ¢ will be written as

Z;d(Sk) (Z) _ Z;’s:(lf) B(Sk) {@ (Z — to,» ) — @(t — tpi )

max;
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and the probability distribution density of the random process of bit rate of DStream formation
from the s-th source of the k-th service at time ¢ can be expressed in terms of the sum of Delta
functions [14]

f (5§Sk)) =y pg.Sk)é([;yk) (c)-BLY )[@(z -1, )—@(t -, ) , (1)
0, <0 o _
Where @(t ) = {1 (>0 is the Heaviside step function, and

(sk)

j:(i) p£~Sk)k1(;k) = 1>k$jk) = %a Zj:(i) ﬁSk)kl(;.k - 1 is the characteristic property of poly-

J J
aver

2

burst DStream traffic.
Bit rate probability distribution function from the s-th source of the &-th service at time ¢ is
obtained by integrating

Bk (t)

( .
=5 plt) G (t —t, ) 0 (t —t, ) ik) s (T — B )d T=
=506, )~ 6(t—1, )]0 (B (1)~ B ).

since the primitive of the Delta function is the Heaviside function.

The first moment and variance of stepwise approximation of a random process of the poly-
burst bit rate of DStream formation from the s-th source of the k-th service on the time interval
[7,, ] by [19] can be expressed as follows:

E[b (6)] =1 p 8L @
DI ()] = 0 0 (B — 580 ) o

By time 7 the average value and the variance of the rate of the random process of DStream
formation from the s-th source of the k-th service can be easily converted to the average value
and the variance of the rate of transmission of micro-batches for the selected time intervals:
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o )= 20
E [I" micro—batch (f )} Linf
jls0)
Dl -0

where L ,,is the bit length of the information part of the micro-batch.
Mathematical model of DStreams group

There is a technological possibility to combine many DStreams from multiple sources.
Then, for the superposition N (#) of independent streams at time ¢ we obtain an expression for
the probability distribution density of their group bit rate B

ft <B ) = H;iv;(lt) f (Z;CSSk)) , given the formula (1).

Accordingly, the probability distribution function of the poly-burst bit rate B of the
superposition N_(7) of streams at time ¢ is the following expression:

F(B) =10 F, (B ) =5l o (e—2, )~ 0 (1, )

t

0(by" (1)- B ).

max;

In general, the number of DStreams in a significant time interval (¢, #) in i-th cloud of an
ecosystem of N clusters (i = 1,---, N) from the sources of the k-th service is a random process

N(DkS?lreami <t> — ’ygj) <t><t o tO) ’

where
(k)

W (1) == ) @
(¥) (¥)

,ng ) (t) = Nsi <t) + Nsz <t> is the value of the intensity of the stream of service requests

t—t,

from the s-th source 1 < s < N (k)

source;

(t ) of the k-th service,

k
N él) (f ) is the number of DStreams serviced at time ¢, and

N ékz) (t ) is the number of DStreams claimed, but maintenance-free at time ¢.
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The value of a random summation process of DStreams from all K services in i-th cloud
cluster at time ¢, taking into account the formula (4), is

2 ()= gvg? (1)

The total number of requests for processing DStreams from all the sources of all K services
of i-th cluster at time ¢ can be considered a random value — the value of a random process at
time ¢

(k) )
stourcei <t> o /}/Et (t><t o t()) .

Taking into account (2) and (3), the numerical characteristics of the bit rate of DStreams
processing that is required by the sources of the &-th service of the i-th cluster at a time # can be
found as the numerical characteristics of the sum of the random number of independent random
processes [20]:

J=1

E [bék) (t)] _ ENEfim,. (t)E[[;‘gjk) (t)] ’

o2 [bék) <l‘)] _ D[bék) (l‘)] _ ZNAEZM,» (t)D[Z;cE,jk) (l‘)] '

J=l

Since the cluster will serve a sufficiently large number of DStreams of each service (k= 1,
..., K), the law of distribution of the sum of transfer rates can be approximated by the normal
distribution law even if the source transfer rate is subject to any distribution law [20]. The main
limitation imposed on summable quantities is that they should be more or less the same, which
is naturally the case for sources of the same service.

It is shown [20] that in this case, at the moment of time #, the probability density of the
random process of the bit rate of DStreams, which is required by the sources of the .-th service
of the i-th cluster, has the form:

1 (51(6) = o|b (t)]\/ﬂ I 2 (1)] |
Bl 0] 52 £ 0], (]2 o ]

Omitting the intermediate integro-differential conversion and the introduction of new
variables, using the office of the special functions, we express the probability distribution
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function of a random process £ (bgl_ (l‘ )) with parameters £ [bE,- (f )] and 0 [bE,- (l‘ )]

using the normal distribution function ®(x)) [21]:

This makes it possible to find the probability of the event that at time 7 the value of a random

process of bit rate of DStreams processing bz;. (l‘) , which is required to meet the

current needs of the sources of the i-th cluster, can be given by the i-th cluster, respectively
having performance or bandwidth B,

P(b, (1)<B,)=2|— ~ 2 =0(u).

However, it is also necessary to solve the inverse problem, i.e., to determine the probability of

the event that at time ¢ the value of a random process of the rate of DStreams processing bz_ (l‘ ) ,
which is necessary to meet the needs of all K services of i-th cluster, will exceed its performance

P(by (t)>B,)=1-®(u). )

Expression (5) means that with probability 1 — ®(«) some source at time ¢ will not receive
from the cluster the computing resource necessary for processing the information stream. The
resource can be expressed in the number of cores.

Conclusion

We developed a mathematical model of parallel DStreams from sources processed in a cloud
cluster via the Hadoop technology using the micro-batch architecture of the Spark Streaming
module. The model takes into account, on the one hand, the stream of maintenance requests
from the sources of various services and, on the other hand, the needs of services in transfer
rate, taking into account poly-burst bit rate traffic sources with different services.

The formulas of the probability distribution functions of a random process of bit rate of the
DStream formation from the s-th source of the 4-th service with variable bit rate and a group of
streams.

Analytical relations are obtained to calculate the required performance of the Hadoop
cluster at a given value of the probability of micro-batch loss.

On the basis of the developed models it is possible to develop new guidelines for the
automatic selection (adaptation) of the time batch interval with a focus on a particular service
selected in the range from 500 milliseconds to several seconds. Each batch will create a set
of RDD and will be processed by Spark in terms that reflect the technological features of real
services of the Hadoop monitoring cluster, which appear regardless of the cluster functioning.
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The developed models allow us to carry out the numerical analysis of parallel
stream processing in a cloud cluster at the pre-project stage and to develop requirements,
recommendations and algorithmic framework for the refinement of the functional of the Hadoop
monitoring cluster in order to organize a predictable parallel process for maintenance of the
monitoring objects of different nature in the web-space.
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