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Abstract

Objectives. The aim of this study is to develop a method for automatic quantitative estimation of the Gaussian
blur parameter in digital images, which typically arises due to defocus of the optical system, various optical and
camera-induced aberrations, as well as the influence of the propagation medium. This task is highly relevant for
a wide range of applied fields, including remote sensing, forensic analysis, photogrammetry, medical imaging,
automated inspection, and preprocessing of visual data prior to solving restoration, classification, or recognition
problems.

Methods. The proposed method is based on comparing the two-dimensional histogram of gradients of the
analyzed image with reference histograms precomputed for a high-sharpness image with similar texture and
scale. The reference image is artificially blurred using convolution with a Gaussian kernel at various blur levels.
For each level of blur, a two-dimensional gradient histogram is constructed, representing the distribution
of directions and magnitudes of local intensity changes. The comparison with the corresponding histogram
of the target image is performed after applying a logarithmic transformation and computing the Euclidean norm.
This approach provides high sensitivity, interpretability, and numerical stability. The method does not require
edge detection, neural network training, or labeled data, and can be implemented with minimal computational
cost.

Results. Tests on synthetic data demonstrate that the proposed approach achieves high accuracy: the relative
error in estimating the Gaussian blur parameter within the range of 0.7 to 2.0 pixels is less than 5%, and
in most cases does not exceed 2-3%. The method is robust to noise, compression, local artifacts, and texture
inhomogeneities.

Conclusions. The developed approach can be applied in automated image analysis systems as well as in blind
deconvolution preprocessing tasks. It offers high accuracy, implementation simplicity, and reproducibility, providing
reliable blur estimation under minimal data assumptions.

Keywords: image blur, Gaussian blur, blur parameter, gradient histogram, distribution comparison, distortion
estimation, reference image, blind deconvolution, sharpness measurement, histogram distance metric
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Pesiome

Llenu. Lienbto HacToSLLEro ccrneaoBaHus ABnseTcs pa3paboTka MeToga aBTOMaTUYECKOM KONMMYECTBEHHOMN OLIeH-
K1 NapamMeTpa rayCCoBCKOro pa3mbiTusi LMdPOBOro n3obpaxeHnsi, BO3HUKAIOLLErO, Kak NpaBusio, BCleacTeue ae-
bOKYCMPOBKM ONTUYECKOMN CUCTEMbI, HEKOTOPBIX APYr1X MOrPeLLIHOCTEN BHOCUMBbIX ONTUYECKOM CUCTEMOWN N Kame-
poW, a TaKkxe BCNeACTBUE BINAHUSA CPeabl pacnpocTpaHeHus ceeTa. [JaHHada 3ajaya akTyanbHa 18 MHOXEeCTBa
npuknagHbix obnacTtel, BkYas ANCTAHLUMOHHOE 30HAMPOBAHME, TEXHNYECKYD 3KCNepTm3y, GOoTorpaMMeTpuIo,
MEeAVLMHCKYIO BU3yann3auuio, aBTOMaTUYECKYIO MHCMEKLMIO U NMPeABapUTENbHY0 06paboTky n3obpaxeHuii nepeq,
peLueHnemM 3ana4y nx BOCCTaHOB/EHWS, Knaccudurkaumm nim pacno3HaBsaHus.

MeToabl. [pennoXeHHbIi MEeTOL, OCHOBAaH Ha CPaBHEHUW ABYMEPHOM FMCTOrpamMmbl rpagveHTOB aHanuau-
pyemMoro n3obpaxeHusi C 3TaJIOHHBIMU FTMCTOrpaMMamMu, 3apaHee BblYUCTIEHHbIMU S M306paXeHns BbICOKOM
4yeTKkoCTU, 06N1afaloLWEero CXo4HOM TEKCTYpOol 1 MacluTabom. DTanoHHoe n3obpaxeHne NCKYCCTBEHHO Pa3Mbl-
BaeTCs C pas/IM4yHbIMN 3HAYEHNAMU NnapamMeTpa Pa3MbiTUSG MyTEM BbIHUCIEHUS CBEPTKM C rayCCOBCKUM S14POM.
[n§a kaxaoro ypoBHSA pasMbITUS CTPOUTCS ABYMepHad rmctorpamMma rpagueHToB, oTpaxatowasa pacrnpeaeneHme
HanpaBfeHN N BEINYMH NOKaSIbHbIX U3MEHEeHUI spkocTn. CpaBHEHME C aHaNIOrMYHOM rmcTorpaMmon obpaba-
TbIBAEMOI0 N300paxXeHUs BbINOJIHAETCS Moce norapndMmMpoBaHms No eBKINAOBOM HOpME. ITO AaET BbICOKYHO
YYBCTBUTEJIbHOCTb, UHTEPMNPETUPYEMOCTb U YMCIIEHHYIO YCTONYMBOCTb. MeToa He TpebyeT BbIAENEHUS PE3KUX
rpaHuL, 00y4eHnst HEMPOCETEN NN HANIMYMS PAa3MEYEHHbIX JAaHHbIX 1 MOXET OblTb peanM3oBaH C MUHUMasbHbIMU
BbIHMCNINTENbHBIMUY 3aTpaTamMu.

PesynbTatbl. Ha CMHTETUYECKMX O@HHbIX MOKA3aHO, YTO MPenjIoXeHHbIN Noaxon obecrnevymMBaeT BbICOKYIO TOY-
HOCTb: OTHOCUTENIbHAs OLLIMOKa OLEHKM NapaMeTpa pa3MbITUs B Auana3oHe ero 3HavyeHuii 0.7-2.0 nukcensi cocTas-
nsetT meHee 5%, a B 6ONbLUMHCTBE CllydaeB He npeBbilaeT 2—3%. MeTo, yCTOMUMB K LUYMY, CXaTuio, JTOKasIbHbIM
apTedakTam 1 TEKCTYPHbIM HEOAHOPOAHOCTSM.

BbiBoAbl. Pa3paboTaHHbIi Noaxon MOXET NMPUMEHSATLCS B CUCTEMAx aBTOMATMYECKOrO aHanmsa u3obpaxeHui,
a Takxke B Ka4eCTBe NpeaBapuUTENbHOro atana B 3agadyax crnenom aekoHsonouum. OH OTIMYaeTCs BbICOKOW TOYHO-
CTbl0, MPOCTOTOW peanvsaumm 1 BOCNPON3BOANMOCTbLIO, 06ecneymBas HaAEXHYO OLLEHKY CTEMEHN Pa3MbITUS NMpu
MUHUMaJIbHBIX TPEOOBAHUSAX K UCXOOHBIM AAHHbLIM.
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KnioueBble cnoBa: pasmbiTiie N306paxeHunsi, rayCCOBCKOE pas3mbITe, NapaMeTp pa3MbITUs, FTMCTorpaMma rpaam-
E€HTOB, CpaBHEHWE pacnpeneneHnii, oLleHKa NCKaXKeHNn, 3TaNlIoHHOE N300paxeHune, cnenas AEKOHBOMIOLUUS, N3MEPEHNe

PE3KOCTU, MeTpUKa PacCTOSAHUS MEXy rMCTorpaMmmMamMm

Ansa untupoBaHusa: ®enopos B.B., Xapnamos C.I". OueHka napamMeTpa rayCCOBCKOr0 PasmbITUS METOA0M COMOCTaB-
JIEHNS TMCTOrpaMM rpaMeHTOB C 3TaNIOHHBLIM n3obpaxeHuem. Russian Technological Journal. 2025;13(6):139-147.
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MpospayHocTb hMHAHCOBOM AeATEeNbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTM B MPEACTaB/EH-

HbIX MaTepuanax niam MetToaax.

ABTOpbI 329BNASI0OT 06 OTCYTCTBUN KOHDINKTA MHTEPECOB.

INTRODUCTION

Estimating image blur parameters is an important
task in image processing and analysis. It plays a key role
in improving sharpness, diagnosing data quality, and
preprocessing images in satellite monitoring, medicine,
industrial control, and other fields. The task of estimating
the blur parameter ¢ in the case of Gaussian blur is
particularly relevant. It is widely used as a model of
spatial image degradation caused by defocusing or other
forms of optical degradation. A highly accurate method
for estimating the image blur parameter is important
for the successful solution of the blind deconvolution
problem.

Existing methods for evaluating blur parameters
can be divided into several classes. The first class
includes methods based on sharp edge analysis.
They require accurate extraction and approximation
of the transition profile, making them sensitive to
noise, compression, and complex scene structure. The
second class consists of frequency-based approaches,
including methods based on the evaluation of the
Modulation Transfer Function (MTF). These methods
are also susceptible to global texture and can produce
systematically overestimated values in heterogeneous
image regions. The third class consists of methods
based on machine learning, in particular convolutional
neural networks [1, 2]. They demonstrate a high level
of accuracy but require a large amount of labeled data
for training and may not transfer well to new domains
different from the training sample [1-7]. There are also
individual studies in the literature devoted to the direct
identification of the Gaussian blur parameter [8].

The method proposed in this paper aims to
overcome these limitations. It does not require the
localization of sharp boundaries and is resistant to noise
and compression artifacts. It is based on comparing the
two-dimensional histogram of gradients of the analyzed
image with similar histograms obtained in advance from
areference image of a similar texture, artificially blurred
with different values of . This allows for the degree
of blurring to be estimated using the nearest neighbor

principle in the histogram space. The method is easy
to implement, requires no training, and demonstrates
a high level of accuracy (the relative error, depending
on the blur parameter value, ranges from 2% to 5%).
In order to implement it, only one sufficiently arbitrary
high-quality image is required as a reference.

The objective of this article is to describe formally
the proposed method, experimentally evaluate its
accuracy on synthetically blurred images, and compare
its effectiveness with existing methods for estimating
blur parameters.

1. IMAGE BLURRING MODEL

Let us consider the Cartesian coordinate system Oxy
associated with the matrix of light-sensitive image
elements. Let g[x, y] bethe discrete image of the scene—
the reflected light signal coming from the object being
photographed before passing through the propagation
medium and the optical system. Let us assume that
the camera pixel size A meets the condition A< I/F__,
where Fis the highest significant spatial frequency
contained in the frequency spectrum of the image ¢[x, y],
which in this case, according to the sampling theorem,
is represented as:

glx,y]= D qlx’,y'Tsinc(x—x)sinc(y - »"), (1)
x\y'eZ

wherein, for convenience, A= 1 is assumed.

Taking into account distortions when the signal
passes through the optical channel and the camera’s
optical system, a Gaussian blurred image is projected
onto the camera’s touch panel:

g6y = [ a(x,y)gs(x =X,y =Y )ax'dy',  (2)
R2
wherein
2

X

e 20%.

g5l y]1=g5,(0)gs(»), g5(x)=
o

Russian Technological Journal. 2025;13(6):139-147

141


https://doi.org/10.32362/2500-316X-2025-13-6-139-147
https://www.elibrary.ru/OVEHAM

Estimation of the Gaussian blur parameter

by comparing histograms of gradients with a standard image

Victor B. Fedorov,
Sergey G. Kharlamov

Here, itis assumed that the Gaussian blur parameter o,
which models the properties of the optical channel and
certain design and manufacturing errors in the optical
system, is sufficiently large (6 > 0.7 pixels) and therefore
dominates over the effect caused by diffraction.

During the exposure time t a charge equal to

plx, v]=1A%¢'(x,y) =¢'[x,y] accumulates on the
sensor with the indices x, y, where Tt =1 and A=1 are
assumed.

From (2), taking into account (1), it follows that

plx,y]=

= D g[x,y"I(sinc* hy)(x — x')(sinc * hy)(y - "), )
x,y'el

wherein (sinc* i )(x) = j sinc(x") g (x —x")dx, “* is

the convolution operationfRdeﬁned by Eq. (2).

In [9], it is shown that for values of the blur
parameter ¢ > 0.7 pixels can be considered with high
accuracy as (sinc*h_)(x) =g (x). Taking this into
account, Eq. (3) can be written as:

plx,y]= Z q[xlay']hg[x_x'ay_y’]a
X, y'el

wherein A [x, y]=g;(x)gs(y) is the two-dimensional
isotropic Gaussian model of the discrete point blur
function (PBF) with the blur parameter ¢ > 0 that we
accept.

The accepted model is typical of satellite imaging of
the Earth in cases where directional distortions (related
to camera movement, object movement, or platform
instability) are compensated. This work assumes
that such directional blurring has been preliminarily
eliminated by hardware or software and therefore, in
a first approximation, the image can be considered
isotropically blurred, without any predominant direction
in the blurring.

2. THEORETICAL ASSUMPTIONS
OF THE METHOD

The proposed method for estimating linear blur
parameters is based on the assumption that, given the
known nature of the image texture and a specified
shooting scale (the ratio of the linear size of the terrain to
the pixel size), the two-dimensional histogram of image
gradients contains sufficient information to restore the
blur parameters. In other words, it is assumed that the
distribution of pixel brightness gradients, considered
as a realization of a two-dimensional random variable,
depends primarily on the properties of the scene texture,
image scale, and blur parameters, while not depending

on the content of the scene as a whole. This means that
images with similar textures and the same scale, but
different degrees of blur, will have different gradient
statistics. This dependence can be used to estimate the
distortion parameters.

Itis assumed that there are broad classes of images for
which the distribution of gradients can be described by
a parametric family depending only on blur parameters.
Such assumptions are typical for statistical models of
natural scenes (natural scene statistics [1, 3, 4]) used in
a number of works on distortion estimation [10—12].

It ca be presumed that such classes are determined
primarily by texture characteristics: large or small
details; contrasting or homogeneous structures; and
linear scale. As will be shown in Section 3, this
assumption is confirmed in practice: histograms of
gradients of images with similar textures but different
blur parameters demonstrate a stable dependence on
distortion parameters.

The main idea of the method is to use a reference
image belonging to the same class (i.e., with similar
texture and scale) as the one being analyzed. The
reference is synthetically subjected to Gaussian blurring
with a blurring parameter which varies across a regular
grid. For each blurred image obtained in this way, a two-
dimensional gradient histogram (reference histogram) is
calculated. The gradient histogram of the image being
analyzed is then compared with the pre-calculated
reference histograms. The following measures were
considered:

° lp—norms (p=1,2, o0) from the difference of logarithms

of histograms;

e Kullback—Leibler and Jensen—Shannon divergences.
This corresponds to standard practice in image quality
assessment tasks [13]. However, significantly better
results were obtained using logarithmic transformation
and the /,-norms.

Thus, the task is narrowed down to finding the
nearest neighbor in the space of reference histograms.
Each node of the parameter grid corresponds to one
reference histogram and, therefore, to a uniquely defined
vector of the blur parameters.

2.1. Plotting a two-dimensional histogram
of image gradients

For each pixel of the input image p[y, x], the discrete
gradient is calculated in the following way:

Vply,x1=(p. [y, x], p,[y,x])

wherein the gradient components are defined as the
convolution of the image with the Sobel operator D:

Py x1=(p *D )y, xl, - pyly,x]=(p* D)y, x],
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and the operators themselves have the form

-1 0 1

_pnT
-2 0 2|, D,=D].
-1 0 1

Each gradient vector Vp[y,x] is further interpreted
as the realization of a two-dimensional random variable
observed in independent “tests” across the entire image
area. Based on the set of these values, a two-dimensional
histogram of gradient distribution is constructed:

va[i,j], ls] :1>N9

wherein N is the number of histogram cells for each
measurement (p, and P, axes).

Let us assume that the gradient values fall within a fixed
limited window (e.g., [—Gmax, G pax 1% [—Gmax’ Grax )
which is evenly divided into N x N cells.

Choosing the N parameter requires a compromise
between smoothing and discretization. If V is too small, the
histogram becomes excessively smooth and loses important
features of the distribution. If NV is too large, the number of
observations in each cell drops sharply, and the histogram
becomes noisy. Thus, choosing the number of cells is part
of the method configuration and should correspond to the
sampling density and the nature of the gradients.

2.2. Reference histograms generation

A set of synthetically blurred images {pck} is

generated from the selected reference image petalonyy, ]
using a fairly fine two-dimensional grid of the blur
parameter o,. For each grid value o, the reference image
is blurred:

pgtkalon — (petalon * hck )[y’x],

wherein the blur kernel th [v,x] is calculated via

formula (3).
Then, for each variant of the reference image blur
pgflon [v,x] aseparate histogram of gradients H v petalon

S
Kak is plotted, as indicated in section 2.1.

2.3. Procedure for evaluating the blur parameter
based on comparison with reference values

An appropriate metric should be used to evaluate the
distances between the gradient histogram of the analyzed
image and variants of similar reference histograms.
Experiments have shown that the best results are
obtained using the following metric:

diStlog (HVp > vaetalon )=
Ok
2
= 2 [log Hy, [i, j1=10g Hy, eaion [ /]] -
i ok

In order to improve numerical stability under the
logarithm sign, a regularization procedure should be used
which consists of replacing the values of zero cells with the
smallest of all obtained cell values before logarithmization.
In such a situation, the expression of the type log(x) is
often replaced by log(x + &), where, for example, & = 107°.
However, as the experiment has shown, such a solution,
compared to the one proposed above, often leads to a multiple
increase in the relative error of the blur parameter estimation.

Thus, the evaluation of the blur parameters present
in the analyzed image is carried out according to the
following rule:

6 = argmindisto, (Hy,,, H, cqion )-
k ka

3. MODELING RESULTS

Figure 1 shows two high-quality images. The
first, blurred to different degrees, is considered as the
processed image, the degree of blurring of which needs
to be evaluated (at different blurring values). The second
is used as a reference (standard) image.

The modeling results are presented in Table 1.

Table 2 presents the results of modeling when
changing the roles of the images under consideration—
the image that was previously evaluated became the
reference image, and vice versa.

As can be seen from the tables above, when the evaluated
image is artificially blurred by the values o €[0.7, 2.0], the
relative accuracy of the estimates in most cases does not
exceed 5%. In fact, in most cases it is significantly lower.
Individual outliers in the estimate values are associated with
the high sensitivity of the method to the choice of histogram
cell boundaries. The estimates given in Tables 1 and 2 were
obtained with histogram cell boundaries taken in the range
from —2.1 to 2.1 with a step of 0.02126.

Figure 2 shows a typical one-dimensional logarithmic
histogram (natural logarithm of the histogram). The
corresponding one-dimensional histograms are obtained
by averaging the two-dimensional histogram in each of
the two directions.

Figure 3 shows typical graphs of the dependence
of the dist, og metric value on the o, parameter (at
a fixed 6). The minima on these curves correspond to the
estimation of the blur parameters. The graphs compare
the results for two values of the grid step along o:
0.01 and 0.001 pixels. As can be seen, the step of 0.01 is
already small enough, and further reduction does not
lead to a significant increase in accuracy.
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Fig. 1. Two high-quality images:
(a) the image being processed; (b) the image used as a reference

Table 1. Modeling results Table 2. Modeling results when changing the roles
of the images under consideration
True value ¢ Estimation ¢ Error value I T .
error, % . Relative
True value o Estimation ¢ Error value o
error, %

0.7 0.69 +0.01 4.3
0.7 0.69 +0.01 4.3

0.8 0.79 +0.01 1.3
0.8 0.80 0.00 5.0

0.9 0.88 +0.02 1.1
0.9 0.93 —0.03 2.2

1.0 0.99 +0.01 1.0
1.0 1.02 —0.02 1.0

1.1 1.07 +0.03 1.8
1.1 1.12 —0.02 0.9

1.2 1.24 —0.04 2.5
1.2 1.13 +0.07 2.5

1.3 1.35 —0.05 2.3
13 1.24 +0.06 3.1

14 1.42 —0.02 .

00 36 14 1.34 +0.06 3.6
1.3 1.54 004 73 15 1.44 +0.06 0.7
1.6 1.61 —0.01 3.1 1.6 1.56 +0.04 13
17 1.74 004 39 17 1.64 +0.06 18
18 1.82 0.2 17 1.8 1.77 +0.03 3.9
1.9 2:00 ~0.10 79 1.9 1.80 +0.10 3.2
20 2.10 -0.10 6.5 2.0 1.90 +0.10 6.0
2.1 2.20 —0.10 6.7 2.1 2.00 +0.10 8.1
2.2 2.30 —0.10 6.8 22 2.11 +0.09 1.4
2.3 2.40 —0.10 7.8 23 2.20 +0.10 5.7
2.4 2.50 —0.10 3.8 2.4 2.30 +0.10 5.4
2.5 2.60 —0.10 10.0 2.5 2.40 +0.10 9.2
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Fig. 3. A typical view of the dependence of the metric
determining the similarity of the compared images
on the value of the estimated blur parameter o
at grid step: (a) 0.01; (b) 0.001

4. COMPARISON WITH OTHER METHODS

This work proposes a method for estimating
the Gaussian blur parameter of an image based on
comparing a two-dimensional gradient histogram
with pre-calculated reference histograms obtained
from an image of similar texture and scale which has
been artificially blurred. The method does not require
boundary localization and works well even in the
presence of compression and noise.

The simulation showed that the method demonstrates
high accuracy in the range of blur parameter values
6 €[0.7, 2.0], achieving a relative error that in the vast
majority of cases does not exceed 5% and is often lower.
At the same time, one of the key factors affecting the
accuracy of the estimate is the choice of cell boundaries
when constructing the gradient histogram.

The minimum grid step for the blur parameter o,
sufficient for high accuracy is 0.01 pixels. Further
reduction does not provide any significant gain which
makes the method efficient in terms of computational
costs.

Thus, the proposed approach is simple to implement,
noise-resistant, and easily adaptable to different blur
ranges. It has the potential to be applied in automatic
image analysis tasks in technical, medical, and remote
applications, as well as used as a preliminary stage for
subsequent image restoration.

Table 3 presents a brief comparison of the proposed
method with a number of known approaches to
estimating Gaussian or linear blur parameters.

Thus, comparison with existing methods shows that
the approach proposed achieves accuracy comparable
to the best modern methods based on trainable neural
network models (2-5%), while requiring no prior
training, labeled data, or complex infrastructure.

It should be noted that the proposed method
essentially implements the simplest version of regression
in feature space, similar to how convolutional neural
networks work. Two-dimensional gradient histograms
serve as features, and a set of reference images
artificially blurred with known values of the parameter
o serves as the training sample. Instead of training the
model parameters, an explicit comparison is made using
a metric, making the method interpretable and robust.
Thus, the approach proposed can be considered an
effective and interpretable alternative to neural network
methods for blur estimation [4, 5-7, 14, 15].
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Table 3. Comparative table of different methods for evaluating image blur parameters

Requires Requires . . . Accuracy at
Method A P - Noise resistance | Automation s e[l.0,2.0] Comments
. zo . .
Proposed method Yes (similar No High Full A 2-5% High accuracy, highly
structure) (in most cases) | scalable
Requires a clear sharp
Sharp boundary No Yes (locally) Low Limited 5-15% boundary and may be
method sensitive to noise and edge
line direction
Froquency method Requires correct window
}1 No No Average Yes 5-10% selection, depends on
(MTF-fit)
texture
Gradlent statistics No No Average Yes 10-20% Easy to implement,
without a reference low accuracy
Methods based on Requires Good results on
convolutional neural | Not always No High tracilnin 2-5% the trained sample,
networks & but difficult to apply

' Modulation Transfer Function is an experimental fitting of the modulation transfer function.

CONCLUSIONS

This work used a single reference image with
texture characteristics similar to those of the image
being analyzed. However, in order to increase the
stability and versatility of the method in practice,
it is reasonable to use not just one reference, but
a representative set of references. This approach
involves the preliminary formation of a basic set of
high-quality images, their clustering by characteristics
(for example, by gradient histograms at ¢ = 0), and

the subsequent selection of the closest reference for
each image under analysis. This can enable the method
to be adapted to a variety of scene structures and
textures, increasing the accuracy and expanding the
applicability of the approach.

The method could be further developed in the
direction of automatically selecting image areas with
high textural informativeness, potentially reducing the
requirements for selecting a reference image.
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