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Abstract
Objectives. The aim of this study is to develop a method for automatic quantitative estimation of the Gaussian 
blur parameter in digital images, which typically arises due to defocus of the optical system, various optical and 
camera-induced aberrations, as well as the influence of the propagation medium. This task is highly relevant for 
a wide range of applied fields, including remote sensing, forensic analysis, photogrammetry, medical imaging, 
automated inspection, and preprocessing of visual data prior to solving restoration, classification, or recognition 
problems.
Methods. The proposed method is  based on  comparing the two-dimensional histogram of  gradients of  the 
analyzed image with reference histograms precomputed for a high-sharpness image with similar texture and 
scale. The reference image is artificially blurred using convolution with a Gaussian kernel at various blur levels. 
For each level of  blur, a  two-dimensional gradient histogram is  constructed, representing the distribution 
of  directions and magnitudes of  local intensity changes. The comparison with the corresponding histogram 
of the target image is performed after applying a logarithmic transformation and computing the Euclidean norm. 
This approach provides high sensitivity, interpretability, and numerical stability. The method does not require 
edge detection, neural network training, or labeled data, and can be implemented with minimal computational 
cost.
Results. Tests on synthetic data demonstrate that the proposed approach achieves high accuracy: the relative 
error in  estimating the Gaussian blur parameter within the range of  0.7  to 2.0  pixels is  less than 5%, and 
in most cases does not exceed 2–3%. The method is robust to noise, compression, local artifacts, and texture 
inhomogeneities.
Conclusions. The developed approach can be  applied in  automated image analysis systems as  well as  in blind 
deconvolution preprocessing tasks. It offers high accuracy, implementation simplicity, and reproducibility, providing 
reliable blur estimation under minimal data assumptions.

Keywords: image blur, Gaussian blur, blur parameter, gradient histogram, distribution comparison, distortion 
estimation, reference image, blind deconvolution, sharpness measurement, histogram distance metric
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Резюме
Цели. Целью настоящего исследования является разработка метода автоматической количественной оцен-
ки параметра гауссовского размытия цифрового изображения, возникающего, как правило, вследствие де-
фокусировки оптической системы, некоторых других погрешностей вносимых оптической системой и каме-
рой, а  также вследствие влияния среды распространения света. Данная задача актуальна для множества 
прикладных областей, включая дистанционное зондирование, техническую экспертизу, фотограмметрию, 
медицинскую визуализацию, автоматическую инспекцию и предварительную обработку изображений перед 
решением задач их восстановления, классификации или распознавания.
Методы. Предложенный метод основан на  сравнении двумерной гистограммы градиентов анализи-
руемого изображения с  эталонными гистограммами, заранее вычисленными для изображения высокой 
четкости, обладающего сходной текстурой и  масштабом. Эталонное изображение искусственно размы-
вается с различными значениями параметра размытия путем вычисления свертки с гауссовским ядром. 
Для каждого уровня размытия строится двумерная гистограмма градиентов, отражающая распределение 
направлений и величин локальных изменений яркости. Сравнение с аналогичной гистограммой обраба-
тываемого изображения выполняется после логарифмирования по евклидовой норме. Это дает высокую 
чувствительность, интерпретируемость и  численную устойчивость. Метод не  требует выделения резких 
границ, обучения нейросетей или наличия размеченных данных и может быть реализован с минимальными 
вычислительными затратами.
Результаты. На  синтетических данных показано, что предложенный подход обеспечивает высокую точ-
ность: относительная ошибка оценки параметра размытия в диапазоне его значений 0.7–2.0 пикселя состав-
ляет менее 5%, а в большинстве случаев не превышает 2–3%. Метод устойчив к шуму, сжатию, локальным 
артефактам и текстурным неоднородностям.
Выводы. Разработанный подход может применяться в  системах автоматического анализа изображений, 
а также в качестве предварительного этапа в задачах слепой деконволюции. Он отличается высокой точно-
стью, простотой реализации и воспроизводимостью, обеспечивая надежную оценку степени размытия при 
минимальных требованиях к исходным данным.
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INTRODUCTION

Estimating image blur parameters is an important 
task in image processing and analysis. It plays a key role 
in improving sharpness, diagnosing data quality, and 
preprocessing images in satellite monitoring, medicine, 
industrial control, and other fields. The task of estimating 
the blur parameter  σ in the case of Gaussian  blur is 
particularly relevant. It is widely used as a  model of 
spatial image degradation caused by defocusing or other 
forms of optical degradation. A highly accurate method 
for estimating the image blur parameter is important 
for the successful solution of the blind deconvolution 
problem.

Existing methods for evaluating blur parameters 
can be divided into several classes. The first class 
includes methods based on sharp edge analysis. 
They require accurate extraction and approximation 
of the transition profile, making them sensitive to 
noise, compression, and complex scene structure. The 
second class consists of frequency-based approaches, 
including methods based on the evaluation of the 
Modulation Transfer Function  (MTF). These methods 
are also susceptible to global texture and can produce 
systematically overestimated values in heterogeneous 
image regions. The third class consists of methods 
based on machine learning, in particular convolutional 
neural networks  [1,  2]. They demonstrate a  high level 
of accuracy but require a  large amount of labeled data 
for training and may not transfer well to new domains 
different from the training sample [1–7]. There are also 
individual studies in the literature devoted to the direct 
identification of the Gaussian blur parameter [8].

The method proposed in this paper aims to 
overcome these limitations. It does not require the 
localization of sharp boundaries and is resistant to noise 
and compression artifacts. It is based on comparing the 
two-dimensional histogram of gradients of the analyzed 
image with similar histograms obtained in advance from 
a reference image of a similar texture, artificially blurred 
with different values of  σ. This allows for the degree 
of blurring to be estimated using the nearest neighbor 

principle in the histogram space. The method is easy 
to implement, requires no training, and demonstrates 
a  high level of accuracy  (the relative error, depending 
on the blur parameter value, ranges from  2%  to  5%). 
In order to implement it, only one sufficiently arbitrary 
high-quality image is required as a reference.

The objective of this article is to describe formally 
the proposed method, experimentally evaluate its 
accuracy on synthetically blurred images, and compare 
its effectiveness with existing methods for estimating 
blur parameters.

1. IMAGE BLURRING MODEL

Let us consider the Cartesian coordinate system Oxy 
associated with the matrix of light-sensitive image 
elements. Let q[x, y] be the discrete image of the scene—
the reflected light signal coming from the object being 
photographed before passing through the propagation 
medium and the optical system. Let us assume that 
the camera pixel size Δ meets the condition Δ < 1/Fmax, 
where Fmax  is the highest significant spatial frequency 
contained in the frequency spectrum of the image q[x, y], 
which in this case, according to the sampling theorem, 
is represented as:

	
', '

[ , ] [ , ]sinc( )sinc( ),
x y

q x y q x y x x y y
∈

′ ′ ′ ′= − −∑


� (1)

wherein, for convenience, Δ = 1 is assumed.
Taking into account distortions when the signal 

passes through the optical channel and the camera’s 
optical system, a  Gaussian  blurred image is projected 
onto the camera’s touch panel:

	
2

( , ) ( , ) ( , ) ,q x y q x y g x x y y dx dyσ′ ′ ′ ′ ′ ′ ′= − −∫


�  (2)

wherein
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Here, it is assumed that the Gaussian blur parameter σ, 
which models the properties of the optical channel and 
certain design and manufacturing errors in the optical 
system, is sufficiently large (σ > 0.7 pixels) and therefore 
dominates over the effect caused by diffraction.

During the exposure time  τ a  charge equal to 
2[ , ] ( , ) [ , ]p x y q x y q x y′ ′= τ∆ =  accumulates on the 

sensor with the indices x, y, where τ = 1 and Δ = 1 are 
assumed.

From (2), taking into account (1), it follows that 

,

[ , ]
[ , ](sinc )( )(sinc )( ),

x y

p x y
q x y h x x h y yσ σ

′ ′∈

=

′ ′ ′ ′= ∗ − ∗ −∑


�(3)

wherein (sinc )( ) sinc( ) ( ) ,h x x g x x dxσ σ′ ′∗ = −∫


 ‘*’ is 

the convolution operation, defined by Eq. (2).
In [9], it is shown that for values of the blur 

parameter  σ  >  0.7  pixels can be considered with high 
accuracy as (sinc )( ) ( ).h x g xσ σ∗ =  Taking this into 
account, Eq. (3) can be written as:

,
[ , ] [ , ] [ , ],

x y
p x y q x y h x x y yσ

′ ′∈

′ ′ ′ ′= − −∑


 

wherein [ , ] ( ) ( )h x y g x g yσ σ σ=  is the two-dimensional 
isotropic Gaussian  model of the discrete point blur 
function  (PBF) with the blur parameter σ > 0  that we 
accept.

The accepted model is typical of satellite imaging of 
the Earth in cases where directional distortions (related 
to camera movement, object movement, or platform 
instability) are compensated. This work assumes 
that such directional blurring has been preliminarily 
eliminated by hardware or software and therefore, in 
a  first approximation, the image can be considered 
isotropically blurred, without any predominant direction 
in the blurring.

2. THEORETICAL ASSUMPTIONS  
OF THE METHOD

The proposed method for estimating linear blur 
parameters is based on the assumption that, given the 
known nature of the image texture and a  specified 
shooting scale (the ratio of the linear size of the terrain to 
the pixel size), the two-dimensional histogram of image 
gradients contains sufficient information to restore the 
blur parameters. In other words, it is assumed that the 
distribution of pixel brightness gradients, considered 
as a realization of a  two-dimensional random variable, 
depends primarily on the properties of the scene texture, 
image scale, and blur parameters, while not depending 

on the content of the scene as a whole. This means that 
images with similar textures and the same scale, but 
different degrees of blur, will have different gradient 
statistics. This dependence can be used to estimate the 
distortion parameters.

It is assumed that there are broad classes of images for 
which the distribution of gradients can be described by 
a parametric family depending only on blur parameters. 
Such assumptions are typical for statistical models of 
natural scenes (natural scene statistics [1, 3, 4]) used in 
a number of works on distortion estimation [10–12].

It ca be presumed that such classes are determined 
primarily by texture characteristics: large or small 
details; contrasting or homogeneous structures; and 
linear scale. As will be shown in  Section  3, this 
assumption is confirmed in practice: histograms of 
gradients of images with similar textures but different 
blur parameters demonstrate a  stable dependence on 
distortion parameters.

The main idea of the method is to use a  reference 
image belonging to the same class  (i.e., with similar 
texture and scale) as the one being analyzed. The 
reference is synthetically subjected to Gaussian blurring 
with a blurring parameter which varies across a regular 
grid. For each blurred image obtained in this way, a two-
dimensional gradient histogram (reference histogram) is 
calculated. The gradient histogram of the image being 
analyzed is then compared with the pre-calculated 
reference histograms. The following measures were 
considered:

•	 lp-norms (p = 1, 2, ∞) from the difference of logarithms 
of histograms;

•	 Kullback–Leibler and Jensen–Shannon divergences.
This corresponds to standard practice in image quality 
assessment tasks  [13]. However, significantly better 
results were obtained using logarithmic transformation 
and the l2-norms.

Thus, the task is narrowed down to finding the 
nearest neighbor in the space of reference histograms. 
Each node of the parameter grid corresponds to one 
reference histogram and, therefore, to a uniquely defined 
vector of the blur parameters.

2.1. Plotting a two-dimensional histogram 
of image gradients

For each pixel of the input image p[y, x], the discrete 
gradient is calculated in the following way:

[ , ] ( [ , ], [ , ]),x yp y x p y x p y x∇ =

wherein the gradient components are defined as the 
convolution of the image with the Sobel operator D:

[ , ] ( )[ , ], [ , ] ( )[ , ],x x y yp y x p D y x p y x p D y x= ∗ = ∗



143

Russian Technological Journal. 2025;13(6):139–147

Victor B. Fedorov,  
Sergey G. Kharlamov

Estimation of the Gaussian blur parameter  
by comparing histograms of gradients with a standard image

and the operators themselves have the form

T
1 0 1
2 0 2 , .
1 0 1

y xD D
− 

 − = 
 − 

Each gradient vector [ , ]p y x∇  is further interpreted 
as the realization of a two-dimensional random variable 
observed in independent “tests” across the entire image 
area. Based on the set of these values, a two-dimensional 
histogram of gradient distribution is constructed:

[ , ], , 1, ,pH i j i j N∇ =

wherein N  is the number of histogram cells for each 
measurement (px and py axes).

Let us assume that the gradient values fall within a fixed 
limited window  (e.g., max, max max, max[ ] [ ],G G G G− × −  
which is evenly divided into N  × N cells.

Choosing the N   parameter requires a  compromise 
between smoothing and discretization. If N  is too small, the 
histogram becomes excessively smooth and loses important 
features of the distribution. If N  is too large, the number of 
observations in each cell drops sharply, and the histogram 
becomes noisy. Thus, choosing the number of cells is part 
of the method configuration and should correspond to the 
sampling density and the nature of the gradients.

2.2. Reference histograms generation

A set of synthetically blurred images  { }
k

pσ  is 
generated from the selected reference image  etalon[ , ]p y x  
using a  fairly fine two-dimensional grid of the blur 
parameter σk. For each grid value σk, the reference image 
is blurred:

( )etalon etalon [ , ],
kk

p p h y xσσ = ∗

wherein the blur kernel [ , ]
k

h y xσ  is calculated via 
formula (3).

Then, for each variant of the reference image blur 
etalon[ , ]

k
p y xσ  a separate histogram of gradients  etalon

k
pH

σ∇  

как is plotted, as indicated in section 2.1.

2.3. Procedure for evaluating the blur parameter 
based on comparison with reference values

An appropriate metric should be used to evaluate the 
distances between the gradient histogram of the analyzed 
image and variants of similar reference histograms. 
Experiments have shown that the best results are 
obtained using the following metric:

etalon

etalon

log

2

,

dist ( , )

log [ , ] log [ , ] .

k

k

p p

p p
i j

H H

H i j H i j

σ

σ

∇ ∇

∇ ∇

=

= −∑

In order to improve numerical stability under the 
logarithm sign, a regularization procedure should be used 
which consists of replacing the values of zero cells with the 
smallest of all obtained cell values before logarithmization. 
In such a  situation, the expression of the type  log(x) is 
often replaced by log(x + ε), where, for example, ε = 10−6. 
However, as the experiment has shown, such a  solution, 
compared to the one proposed above, often leads to a multiple 
increase in the relative error of the blur parameter estimation.

Thus, the evaluation of the blur parameters present 
in the analyzed image is carried out according to the 
following rule:

etalonlogˆ arg min dist ( , ).
k

p pk
H H

σ
∇ ∇

σ =

3. MODELING RESULTS

Figure 1  shows two high-quality images. The 
first, blurred to different degrees, is considered as the 
processed image, the degree of blurring of which needs 
to be evaluated (at different blurring values). The second 
is used as a reference (standard) image.

The modeling results are presented in Table 1.
Table 2  presents the results of modeling when 

changing the roles of the images under consideration—
the image that was previously evaluated became the 
reference image, and vice versa.

As can be seen from the tables above, when the evaluated 
image is artificially blurred by the values  [0.7, 2.0]σ∈ , the 
relative accuracy of the estimates in most cases does not 
exceed 5%. In fact, in most cases it is significantly lower. 
Individual outliers in the estimate values are associated with 
the high sensitivity of the method to the choice of histogram 
cell boundaries. The estimates given in Tables 1 and 2 were 
obtained with histogram cell boundaries taken in the range 
from −2.1 to 2.1 with a step of 0.02126.

Figure 2 shows a typical one-dimensional logarithmic 
histogram  (natural logarithm of the histogram). The 
corresponding one-dimensional histograms are obtained 
by averaging the two-dimensional histogram in each of 
the two directions.

Figure 3  shows typical graphs of the dependence 
of the  distlog metric value on the  σk  parameter  (at 
a fixed σ). The minima on these curves correspond to the 
estimation of the blur parameters. The graphs compare 
the results for two values of the grid step along  σ: 
0.01 and 0.001 pixels. As can be seen, the step of 0.01 is 
already small enough, and further reduction does not 
lead to a significant increase in accuracy.
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Table 1. Modeling results

True value σ Estimation σ Error value Relative 
error, %

0.7 0.69 +0.01 4.3

0.8 0.79 +0.01 1.3

0.9 0.88 +0.02 1.1

1.0 0.99 +0.01 1.0

1.1 1.07 +0.03 1.8

1.2 1.24 −0.04 2.5

1.3 1.35 −0.05 2.3

1.4 1.42 −0.02 3.6

1.5 1.54 −0.04 7.3

1.6 1.61 −0.01 3.1

1.7 1.74 −0.04 5.9

1.8 1.82 −0.02 1.7

1.9 2.00 −0.10 7.9

2.0 2.10 −0.10 6.5

2.1 2.20 −0.10 6.7

2.2 2.30 −0.10 6.8

2.3 2.40 −0.10 7.8

2.4 2.50 −0.10 3.8

2.5 2.60 −0.10 10.0

(а) (b)

Fig. 1. Two high-quality images: 
(a) the image being processed; (b) the image used as a reference

Table 2. Modeling results when changing the roles  
of the images under consideration

True value σ Estimation σ Error value Relative 
error, %

0.7 0.69 +0.01 4.3

0.8 0.80 0.00 5.0

0.9 0.93 −0.03 2.2

1.0 1.02 −0.02 1.0

1.1 1.12 −0.02 0.9

1.2 1.13 +0.07 2.5

1.3 1.24 +0.06 3.1

1.4 1.34 +0.06 3.6

1.5 1.44 +0.06 0.7

1.6 1.56 +0.04 1.3

1.7 1.64 +0.06 1.8

1.8 1.77 +0.03 3.9

1.9 1.80 +0.10 3.2

2.0 1.90 +0.10 6.0

2.1 2.00 +0.10 8.1

2.2 2.11 +0.09 1.4

2.3 2.20 +0.10 5.7

2.4 2.30 +0.10 5.4

2.5 2.40 +0.10 9.2
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Fig. 2. A typical view of one-dimensional logarithmic 
histograms
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Fig. 3. A typical view of the dependence of the metric 
determining the similarity of the compared images  

on the value of the estimated blur parameter σ  
at grid step: (a) 0.01; (b) 0.001

4. COMPARISON WITH OTHER METHODS

This work proposes a  method for estimating 
the Gaussian  blur parameter of an image based on 
comparing a  two-dimensional gradient histogram 
with pre-calculated reference histograms obtained 
from an image of similar texture and scale which has 
been artificially blurred. The method does not require 
boundary localization and works well even in the 
presence of compression and noise.

The simulation showed that the method demonstrates 
high accuracy in the range of blur parameter values 

[0.7, 2.0],σ∈  achieving a relative error that in the vast 
majority of cases does not exceed 5% and is often lower. 
At the same time, one of the key factors affecting the 
accuracy of the estimate is the choice of cell boundaries 
when constructing the gradient histogram.

The minimum grid step for the blur parameter  σk 
sufficient for high accuracy is  0.01  pixels. Further 
reduction does not provide any significant gain which 
makes the method efficient in terms of computational 
costs.

Thus, the proposed approach is simple to implement, 
noise-resistant, and easily adaptable to different blur 
ranges. It has the potential to be applied in automatic 
image analysis tasks in technical, medical, and remote 
applications, as well as used as a preliminary stage for 
subsequent image restoration.

Table 3 presents a brief comparison of the proposed 
method with a  number of known approaches to 
estimating Gaussian or linear blur parameters.

Thus, comparison with existing methods shows that 
the approach proposed achieves accuracy comparable 
to the best modern methods based on trainable neural 
network models  (2–5%), while requiring no prior 
training, labeled data, or complex infrastructure.

It should be noted that the proposed method 
essentially implements the simplest version of regression 
in feature space, similar to how convolutional neural 
networks work. Two-dimensional gradient histograms 
serve as features, and a  set of reference images 
artificially blurred with known values of the parameter 
σ serves as the training sample. Instead of training the 
model parameters, an explicit comparison is made using 
a  metric, making the method interpretable and robust. 
Thus, the approach proposed can be considered an 
effective and interpretable alternative to neural network 
methods for blur estimation [4, 5–7, 14, 15].
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CONCLUSIONS

This work used a  single reference image with 
texture characteristics similar to those of the image 
being analyzed. However, in order to increase the 
stability and versatility of the method in practice, 
it is reasonable to use not just one reference, but 
a  representative set of references. This approach 
involves the preliminary formation of a  basic set of 
high-quality images, their clustering by characteristics 
(for example, by gradient histograms at σ =   0), and 

the subsequent selection of the closest reference for 
each image under analysis. This can enable the method 
to be adapted to a  variety of scene structures and 
textures, increasing the accuracy and expanding the 
applicability of the approach.

The method could be further developed in the 
direction of automatically selecting image areas with 
high textural informativeness, potentially reducing the 
requirements for selecting a reference image.
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Table 3. Comparative table of different methods for evaluating image blur parameters

Method Requires 
a reference?

Requires 
a boundary? Noise resistance Automation Accuracy at

[1.0, 2.0]σ ∈ Comments

Proposed method Yes (similar 
structure) No High Full 2–5%

(in most cases)
High accuracy, highly 
scalable

Sharp boundary 
method No Yes (locally) Low Limited 5–15%

Requires a clear sharp 
boundary and may be 
sensitive to noise and edge 
line direction

Frequency method 
(MTF-fit)1 

No No Average Yes 5–10%
Requires correct window 
selection, depends on 
texture

Gradient statistics 
without a reference No No Average Yes 10–20% Easy to implement, 

low accuracy

Methods based on 
convolutional neural 
networks

Not always No High Requires 
training 2–5%

Good results on 
the trained sample, 
but difficult to apply

1   Modulation Transfer Function is an experimental fitting of the modulation transfer function.
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