
104

Russian Technological Journal. 
2025;13(6):104–115

УДК 539.3
https://doi.org/10.32362/2500-316X-2025-13-6-104-115
EDN NGHUVB

Математическое моделирование

Mathematical modeling

© Э.М. Карташов, 2025

ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)

НАУЧНАЯ СТАТЬЯ

Метод расщепления интегрального преобразования  
в задачах сложного теплообмена

Э.М. Карташов @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: professor.kartashov@gmail.com

• Поступила: 11.04.2025 • Доработана: 02.07.2025 • Принята к опубликованию: 06.10.2025

Резюме
Цели. Статья посвящена развитию достаточно редкого метода расщепления интегрального преобразо-
вания Фурье  –  Ханкеля при нахождении точного аналитического решения обобщенной третьей краевой 
задачи сложного теплообмена с переменным во времени коэффициентом теплообмена и переменной 
во времени температурой окружающей среды. Обобщение заключается в том, что исходная задача рассма-
тривается одновременно в трех системах координат: декартовой (полупространство, ограниченное плоской 
поверхностью), цилиндрической (пространство, ограниченное изнутри цилиндрической полостью), сфери-
ческой (пространство, ограниченное изнутри сферической полостью).
Методы. Используется развитое для этих целей обобщенное интегральное преобразование одновременно 
в трех системах координат и метод его расщепления применительно к задаче сложного теплообмена.
Результаты. Предварительно создан специальный математический аппарат – обобщенное интегральное преобра-
зование Фурье – Ханкеля одновременно для трех систем координат (в литературе указанное преобразование сфор-
мулировано для каждой системы координат отдельно). Наличие указанного математического аппарата позволило 
развить метод его расщепления и получить точное аналитическое решение третьей краевой задачи нестационарной 
теплопроводности сложного теплообмена одновременно для всех трех систем координат. В качестве иллюстрации 
рассмотрен частный случай в декартовых координатах и установлен быстрый рост пикаровского процесса.
Выводы. На основе развитого специального математического аппарата получено точное аналитическое ре-
шение обобщенной третьей краевой задачи теплопроводности с переменными во времени коэффициентом 
теплообмена и температуры окружающей среды одновременно в трех системах координат. Полученные ре-
зультаты составляют научную новизну работы и являются новыми в аналитической теплофизике.

Ключевые слова: интегральное преобразование обобщенного типа, метод расщепления, аналитическое 
решение тепловой задачи
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Abstract
Objectives. This paper presents the development of a rather rare method for splitting the integral Fourier–Hankel 
transform when finding an exact analytical solution to the generalized third boundary value problem of complex heat 
transfer, where both the heat transfer coefficient and ambient temperature vary in time. The generalization lies in the 
simultaneous consideration of the problem in three different coordinate systems: Cartesian (a half-space bounded by 
a flat surface), cylindrical (a space bounded by a cylindrical cavity from the inside), and spherical (a space bounded 
by a spherical cavity from the inside). The aim was to develop a method for splitting the integral transformation 
as applied to finding an exact analytical solution to a generalized model problem of non-stationary thermal conductivity 
of complex heat exchange with an arbitrary dependence of the heat exchange coefficient and ambient temperature 
on time.
Methods. The generalized integral transformation developed for these purposes is used simultaneously in three 
coordinate systems, and the method for its splitting is applied to the problem of complex heat transfer.
Results. Initially, a special mathematical apparatus constituting a generalized integral Fourier–Hankel transform for 
three coordinate systems simultaneously was developed. For comparison, in the literature, such a transformation is 
formulated, as a rule, separately for each coordinate system. The availability of this mathematical apparatus made 
it possible to develop a method for its splitting and to obtain an exact analytical solution to the third boundary value 
problem for nonstationary thermal conductivity in complex heat transfer, simultaneously for all three coordinate 
systems. To illustrate this, a specific case in Cartesian coordinates was considered and a rapid growth of the Picard 
process was established.
Conclusions. Based on the developed special mathematical apparatus, an exact analytical solution to the 
generalized third boundary value problem of heat conductivity with time-varying heat transfer coefficient and ambient 
temperature, simultaneously in three coordinate systems, was obtained. These results constitute the scientific 
novelty of the work and represent a significant contribution to analytical thermal physics.
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ВВЕДЕНИЕ

Задачи тепло- и массопереноса с граничным ус-
ловием

c( / ) ( ) ( ) ,  0T n h t T T t t ∂ ∂ = − > Ã Ã

относятся к сложному теплообмену вследствие зави-
симости h(t)  =  α(t)/λ*. Здесь TΓ  – температура 

на границе области, n  – вектор нормали, Tс – темпе-
ратура окружающей среды, α(t)  – коэффициент те-
плообмена, λ*  – теплопроводность материала, t  – 
время. Так как его определение оказывается весьма 
затруднительным, то практически во всех критери-
альных уравнениях α(t) принимается постоянной ве-
личиной α = const  (h = α/λ* = const), что позволяет 
получать точные аналитические решения соответ-
ствующих задач теплообмена. Для этих целей 
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разработаны специальные расчетные таблицы  [1], 
вошедшие в  теорию теплообмена как табли-
цы Карташова № 1, № 2, позволяющие быстро вы-
писать и улучшить аналитическое решение тепловой 
задачи в  декартовой, цилиндрической и  сфериче-
ской системах координат и далее улучшить решение 
в виде ряда Фурье – Ханкеля до абсолютной и рав-
номерной сходимости ряда вплоть до  границы об-
ласти определения дифференциального уравнения 
теплопроводности. В  случае задания зависимости 
коэффициента h от времени (h = h(t)) ситуация с на-
хождением аналитических решений модельных за-
дач резко меняется: точное аналитическое решение 
задачи получить не  удается  [2–6]. До  настоящего 
времени указанная проблема остается открытой.

Начиная с  1950-х гг. прошлого столетия в  боль-
шом числе публикаций авторов различных направ-
лений (математиков, физиков, механиков, химиков – 
последние изучали процессы диффузии в  металлах 
в физической химии) предпринимались попытки по-
лучить точное или приближенное аналитическое ре-
шение задачи сложного теплообмена. Использовались 
многочисленные подходы классических дифферен-
циальных уравнений математической физики  [7,  8]. 
Однако, несмотря на многообразие подходов, каждый 
из них, в конечном счете, приводил к приближенно-
му решению задачи либо к  наиболее удачному пер-
вому приближению пикаровского процесса  (также 

1  Савельева Ю.И. Разработка и анализ математической модели термомеханики структурно-чувствительных матери-
алов: автореферат дис. … д.ф.-м.н. М.: МГТУ им. Н.Э. Баумана; 2023. 32 с. [Savelyeva I.Yu. Development and analysis of the 
mathematical model of thermomechanics of structurally sensitive materials. Dr. Sci. Thesis (Phys.-Math.), Bauman Moscow State 
Technical University; 2023, 32 p. (in Russ.).]

приближенному решению). По существу, данная про-
блема остается открытой до сих пор.

Рассмотрим обобщенную постановку задачи 
в виде:

0 0

2
02

0 0 0 0

( , ) 2 1 , , 0,

( , ) , , ( , ) , , 0,

( , ) ( ) ( , ) ( ) , 0.

t

x x x x

T x t T m Ta x x t
t x xx

T x t T x x T x t x x t

T x t h t T x t t t
x

=

= =

 ∂ ∂ + ∂
= + > >  ∂ ∂∂  

= ≥ < ∞ ≥ ≥ 
∂   = −j >   ∂ 

� (1)

Здесь m = –1/2, 0, 1/2 соответственно для декарто-
вой, цилиндрической и  сферической систем коорди-
нат, а  – температуропроводность, x,  x0  – параметры 
модели. Функции h(t), φ(t) – неотрицательные и абсо-
лютно интегрируемые на  полупространстве  [0,  +∞). 
В  этом случае выполняются условия теоремы суще-
ствования и  единственности решения рассматривае-
мой задачи (1), т.е. существует и является единствен-
ным решение  2 1

0( , ) ( , ) (0, ) ,T x t L x L ∈ ∞ × ∞   где 
Ln – множество функций, непрерывно дифференциру-
емых до порядка n [8–10]. Нахождению этого решения 
и посвящена настоящая работа. Дальнейшее обобще-
ние обсуждаемой здесь теории  – переход к  локаль-
но-неравновесному теплообмену, где учитывается ко-
нечная скорость распространения теплоты1 [11–16].

ПОСТАНОВКА ЗАДАЧИ

Аналитическое решение задачи  (1) получим методом расщепления интегрального преобразова-
ния Фурье – Ханкеля обобщенного типа. Указанное преобразование строится на основе соотношений опера-
ционного исчисления, развитых в [1]. Выпишем окончательный результат всех определяющих соотношений.

Обобщенное интегральное преобразование функции T(x, t) для третьей краевой задачи:

	
0

2 1( , ) ( , ) ( , ) ,m

x
T t T t d

∞
+λ = ρ ρ Ψ λ ρ ρ∫ � (2)

	 2 2
0 1 0 0 1 0 0

( , ) ( , )( , ) ,
( ) ( ) ( ) ( )m m m m

T t xT x t d
J x hJ x Y x hY x

∞

+ +

λ Ψ λ
= λ λ

   λ λ + λ + λ λ + λ   
∫ � (3)

	 { }1 0 1 0 0 0( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .m
m m m m m m m mx x J x Y x Y x J x h J x Y x Y x J x−

+ +   Ψ λ = λ λ λ − λ λ + λ λ − λ λ    � (4)

При этом изображение оператора ∆T(x, t) имеет вид:

	
0

0

02 1 22 ( , )( , ) ( , ) ( , ) ( , ).
m

m
x x

x

x T x tT t d hT x t T t
x

∞ −
+

=
∂ ρ ∆ ρ Ψ λ ρ ρ = − − λ λ π ∂ ∫ � (5)

Здесь Jm(·), Ym(·) – функции Бесселя.
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Имея обобщенное интегральное преобразование  (2)–(5), нетрудно выписать точное аналитическое ре-
шение задачи (1) при h = const, включая все неоднородности как в уравнении (внутренний нестационарный 
источник теплоты), так и  в краевых условиях  (наличие начальной температуры и  температуры окружаю-
щей среды). Из (2)–(5) нетрудно получить соответствующие преобразования в цилиндрических координатах 
при m = 0, в декартовых – при m = –1/2 и в сферических – при m = 1/2.

ПОСТРОЕНИЕ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ОБОБЩЕННОЙ ЗАДАЧИ 
МЕТОДОМ РАCЩЕПЛЕНИЯ ИНТЕГРАЛЬНОГО ПРЕОБРАЗОВАНИЯ

Рассмотрим задачу (1) в безразмерных переменных:

	 02
0 0 0 0

( )
/ , / , ( ) ,

t x
x x F at x Bi F

∗

α
ρ = = =

λ
 0 0

0 c 0
c 0 c 0

( , ) ( )
( , ) , ( ) ,

T x t T t T
F T F

T T T T∗ ∗

− j −
Θ ρ = =

− −
� (6)

где cT ∗  – выбранная единица масштаба, Bi  – безразмерный коэффициент теплообмена.
Теперь можно записать задачу (1) в следующем виде:

	
0

2
02

0

0 0 0 0

0
1 0 0 1 c 0 0

2 1 , 1, 0,

( , ) 0, 1, ( , ) , 1, 0,

( , )
( ) ( , ) ( ) , 0.

F

m F
F

F F F

F
Bi F F T F F

=

ρ= ρ=

∂Θ ∂ Θ + ∂Θ
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
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
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 � (7)

Обобщенное интегральное преобразование (2)–(5) запишем в виде:

	 2 1
0 0 0

1
( , ) ( , ) ( , , ) ,mF F K F d

∞
+Θ λ = ρ Θ ρ ρ λ ρ∫ � (8)

	
{ }0 1 1 0
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Обозначим:
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Тогда формула обращения для преобразования (8) будет иметь вид:

	 0
0 0 2 2

0 00
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При этом
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Введем ряд важных обозначений:
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Тогда можно записать:

	 0 0 0 0 0
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F F A F F A F Θ λ = ω λ λ + ω λ λ  � (15)

или

	 0 0 0( , ) Re ( , ) ( , ) .F F A F Θ λ = ω λ λ  � (16)

Дальнейшая цель – перевести исходную задачу (7) в пространство изображений (8). Вначале запишем 
интегральное преобразование левой части уравнения в (7):
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Изображение оператора 0( , )F∆Θ ρ  в (13) будет иметь вид:
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Теперь исходную задачу (7) можно записать в виде:
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 ω λ + ω λ + λ ω λ λ + ω λ λ = − >  ∂ ∂ π 


λ = λ = 

� (18)

или

	

0 2
0 0 0 0 c 0

0

0 2
0 0 0 0 c 0 0

0

( , ) 2( , ) ( , ) ( , ) ( ) ( )

( , ) 2( , ) ( , ) ( , ) ( ) ( ) , 0,

( ,0) ( ,0) 0.

A F
F F A F Bi F T F

F

A F
F F A F Bi F T F F

F

A A

 ∂ λ
ω λ + λ ω λ λ + =  

∂ π   


 ∂ λ = − ω λ + λ ω λ λ + >  
∂ π   


λ = λ = 




� (19)
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Рассмотрим подробнее равенство (18). После преобразований получим важное соотношение:

	 02 1 2 2 1
0 0 0 c 0 0

01 1

( , ) 2( , , ) ( , ) ( ) ( ) ( , ) 0.m mF
K F d F d Bi F T F W F

F

∞ ∞
+ +∂Θ ρ

ρ ρ λ ρ + λ ρ Θ ρ ρ + = λ =
∂ π∫ ∫ � (20)

Теперь раскроем левую часть уравнения в (19). Находим:

02 1
0 0

01

2 2 1
0 0 0

1

02 1 2 2 1
0 c 0 0 0 0

01

( , )
( , ) ( , ) ( ( ) ( ))

( , ) ( , ) ( , ) ( ( ) ( ))

( , )2 ( ) ( ) ( , , ) ( , ) ( , , )

m m
m m

m m
m m

m m

F
F i F J iY d

F

F i F F J iY d

F
Bi F T F K F d F K F d

F

∞
+ −

∞
+ −

∞
+ +

∂Θ ρ
  α λ + β λ ρ λρ + λρ ρ ρ +   ∂

  +λ α λ + β λ ρ Θ ρ λρ + λρ ρ ρ +   

∂Θ ρ
+ = ρ ρ λ ρ + λ ρ Θ ρ ρ λ

π ∂

∫

∫

∫

}

0 c 0
1

02 1
0 0

01

2 2 1
0 0 0 0 0 0

1

2 ( ) ( )

( , )
( , )( ( ) ) ( , )( ( ) )

( , ) ( , )( ( ) ) ( , )( ( ) ) ( , ) ( , ) ( , ).

m m m
m m

m m m
m m

Bi F T F

F
i F J F Y d

F

F F J F Y d W F i F i F

∞

∞
+ − −

∞
+ − −

ρ + +
π

 ∂Θ ρ  + ρ β λ λρ ρ + α λ λρ ρ ρ +  ∂

 + λ ρ Θ ρ β λ λρ ρ + α λ λρ ρ ρ = λ + Ψ λ = Ψ λ 

∫

∫

∫

Здесь:

	

02 1
0 0 0

01

2 2 1
0 0 0

1

( , )
( , ) ( , )( ( ) ) ( , )( ( ) )

( , ) ( , )( ( ) ) ( , )( ( ) ) .

m m m
m m

m m m
m m

F
F F J F Y d

F

F F J F Y d

∞
+ − −

∞
+ − −

∂Θ ρ
 Ψ λ = ρ β λ λρ ρ + α λ λρ ρ ρ + ∂

 + λ ρ Θ ρ β λ λρ ρ + α λ λρ ρ ρ 

∫

∫
� (21)

Теперь искомая задача сводится к следующей задаче Коши:

	
0 0 02

0 c 0 0
0 0 0

( , ) ( ) ( , )2( , ) ( ) , 0,
( , ) ( , )

( ,0) 0

A F Bi F F
A F T F i F

F F F
A

∂ λ Ψ λ 
+ λ λ = − ⋅ + > ∂ π ω λ ω λ 

λ = 

 � (22)

с решением в виде:

	
0 0

c 2 2
0 0 0

0 0

( ) ( )2 ( , )( , ) exp ( ) exp ( ) .
( , ) ( , )

F FBi T
A F F d i F d

τ τ Ψ λ τ   λ = − −λ − τ τ + −λ − τ τ   π ω λ τ ω λ τ∫ ∫ � (23)

При этом

2 2
1 ( , ) ( , ) .

( , ) ( , ) ( , )
iα λ τ − β λ τ

=
ω λ τ α λ τ + β λ τ

Принципиальное равенство для дальнейших исследований имеет вид:

	 0 0 0( , ) Re ( , ) ( , ) .F F A F Θ λ = ω λ λ  � (24)
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Раскроем Ψ(λ, F0): 

	

2 1
0 0 0 0

1

2 2 1
0 0 0

1

02 1
0 0

1

( , ) ( , ) ( , )( ( ) ) ( , )( ( ) )

( , ) ( , )( ( ) ) ( , )( ( ) )

( , )
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F F F J F Y d

F F J F Y d

F
F J F Y d

∞
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∞
+ − −

∞
+ − −

 Ψ λ = ρ ∆Θ ρ β λ λρ ρ + α λ λρ ρ ρ + 

 + λ ρ Θ ρ β λ λρ ρ + α λ λρ ρ ρ = 

∂Θ ρ ∂  = ρ β λ λρ ρ + α λ λρ ρ   ∂ρ ∂ρ 

∫

∫

∫

2 2 1
0 0 0

1
( , ) ( , )( ( ) ) ( , )( ( ) ) .m m m

m mF F J F Y d
∞

+ − −

ρ +

 + λ ρ Θ ρ β λ λρ ρ + α λ λρ ρ ρ ∫

� (25)

Интегрируя дважды по частям (первый интеграл в (25)) и учитывая соотношения

2 1 2
2 1

1

( ( ) )1 ( ( ) ),

( ) ( ) ,

m
mm m

mm

m m
m m

J
J

J J

−
+ −

+

− −
+

 ∂ λρ ρ∂
ρ = −λ λρ ρ 

∂ρ ∂ρρ   
∂    λρ ρ = −λ λρ ρ   ∂ρ

справедливые также и для [Ym(λρ)ρ–m], устанавливаем, что

	 { }2 2
0 0 0 0 0 c 0 0 0( , ) (1, ) ( , ) ( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) .m mF F F F Bi F T F F J F Y   Ψ λ = − Θ α λ + β λ − β λ λ + α λ λ   � (26)

Используем (24). Перемножая ω(λ, F0) из (14) и A(λ, F0) из (23), выделяем действительную часть и после 
длительных преобразований приходим к результату:

}
0

0

c c 2
0 0 0 02 2 2 2

0

2
0 0 0

0

c

( ) ( ) ( , ) ( ) ( ) ( , )2( , ) ( , ) ( , ) exp ( )
( , ) ( , ) ( , ) ( , )

(1, ) ( , ) ( , ) ( , ) ( , ) exp ( )

( ) ( )

F

F

Bi T Bi T
F F F F d

F F F d

Bi T

 τ τ α λ τ τ τ β λ τ    Θ λ = − α λ + β λ −λ − τ τ −     π α λ τ + β λ τ α λ τ + β λ τ   

  − Θ τ α λ β λ τ − β λ α λ τ −λ − τ τ +   

+ τ τ

∫

∫

{
0

0 0 2
02 2

0

( , ) ( , ) ( , ) ( , )
( , ) ( ) ( , ) ( ) exp ( ) .

( , ) ( , )

F

m m
F F

J Y F d
 β λ τ α λ − α λ τ β λ     β λ τ λ + α λ τ λ −λ − τ τ   α λ τ + β λ τ 

∫

По теореме обращения (11) можно записать искомую функцию Θ(ρ, F0) – решение задачи (7):

0
0 0

0 0 c2 2 2 2
0 00 0 0

00 0 2
0 c2 2

0 0

( , , ) ( , , )2( , ) ( , ) ( ) ( )
( , ) ( , ) ( , ) ( , )

( , , ) ( , ) ( )( , ) ( , ) ( , ) ( , )
exp ( ) ( ) ( )
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F
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K F K F
F F d Bi T d

F F

K F JF F
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F F
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F
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F F
F d
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K F F F
d F d
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∞

∞

 λ τ λ  ×
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β λ τ α λ − α λ τ β λ
 × −λ − τ λ λ − α λ + β λ

 ρ λ α λ β λ τ − β λ α λ τ   − Θ τ τ −λ − τ λ λ α λ + β λ

∫ ∫

∫ ∫

 
� (27)
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Правая часть (27) зависит от неизвестной величины Θ(1, F0). Полагая в (27) ρ = 1 и используя соотноше-
ние Jm(z)Ym+1(z) – Jm+1(z)Ym(z) = –2/(πz), приходим к интегральному уравнению Вольтера второго рода отно-
сительно Θ(1, F0): 

	
0

0 1 0 2 0
0

2(1, ) ( ) ( , ) (1, ) ,
F

F F F dΘ = Θ + Θ τ Θ τ τ
π ∫ � (28)

где

0

0

22
00 0

1 0 c 2 2 2 2
0 00 0

0
c 2 2

0 0

exp ( )( , ) ( , ) ( , ) ( , )2( ) ( ) ( )
( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( ) ( , ) ( , ) ( , ) ( ,2 ( ) ( )
( , ) ( , )
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FF F
F Bi T d d

F F

J Y F
Bi T d

∞

∞

 −λ − τα λ α λ τ + β λ β λ τ   Θ = τ τ τ ⋅ λ λ − π α λ τ + β λ τ α λ + β λ 

β λ τ λ + α λ τ λ β λ τ α λ − α λ τ β λ
− τ τ τ ⋅

π α λ τ + β λ τ

∫ ∫

∫ ∫ 0 2
02 2

0 0

)
exp ( ) ,

( , ) ( , )
F

F d
F F

 −λ − τ λ λ α λ + β λ

� (29)

	 0 0 2
2 0 02 2

0 00

( , ) ( , ) ( , ) ( , )
( , ) exp ( ) .

( , ) ( , )
F F

F F d
F F

∞ α λ β λ τ − β λ α λ τ
 Θ τ = −λ − τ λ λ α λ + β λ∫ � (30)

Решение интегрального уравнения (28) можно представить в виде пикаровского процесса последователь-
ных приближений:

	 0 0 0 0
1

2(1, ) ( ) ( ),
n

n
n

F F F
∞

=

 Θ = Ψ + Ψ π 
∑  � (31)

где

	
0

0 0 1 0 0 2 0 1
0

( ) ( ), ( ) ( , ) ( ) .
F

n nF F F F d−Ψ = Θ Ψ = Θ τ Ψ τ τ∫ � (32)

Из (31), (32) находим искомую величину в виде:

	
0 2

0 1 0 2 0 2 1 1 2 1 2 1 1 1
1 0 0 0

2(1, ) ( ) ( , ) ( , ) ... ( , ) ( ) ,
nn F

n n n n
n

F F F d d d
−ττ∞

− − − −
=

 Θ = Θ + Θ τ τ Θ τ τ τ Θ τ τ Θ τ τ π 
∑ ∫ ∫ ∫ � (33)

чем и завершается процедура нахождения точного аналитического решения обобщенной задачи (7) сложного 
теплообмена.

Следует отметить, что это решение (в обобщенной форме) – первое в литературе по аналитической те-
плофизике.

ПРИМЕР ИСПОЛЬЗОВАНИЯ РАЗВИТОГО ПОДХОДА

В качестве приложения развитого подхода при решении задачи (1) рассмотрим случай декартовых коор-
динат: m = –1/2, x0 = 0, φ(t) = Tc. При этом необходимо учесть, что

1/2 1/2

1/2 1/2

( ) 2 / sin( ), ( ) 2 / cos( ),

( ) 2 / cos( ), ( ) 2 / sin( ).

J z z z J z z z

Y z z z Y z z z
−

−

= π = π

= − π = π

В безразмерных переменных

02
0 0 0

c 0

( , )
/ , / , ( ) ( ) / , ( , ) ,

T x t T
z x l F at l Bi F t l z F

T T
∗ −

= = = α λ Θ =
−

где l – выбранная единица масштаба, имеем задачу:
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0
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
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
∂Θ 

 = Θ − >  ∂ 

� (34)

Опуская длительные преобразования перехода от обобщенных координат к декартовым, получим следу-
ющее аналитическое решение задачи (34):

	

0

0

2
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0 02 2
00 0

2
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( )2( , ) ( ) cos sin exp ( )
( )
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∞

∞
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  ξ   + Θ τ − τ τ ξ + ξ −ξ − τ ξ    π ξ ξ + 

∫ ∫

∫ ∫
� (35)

где

	
0 2

0 1 0 2 0 2 1 1 1 1 2 2 1 1
1 0 0 0

2(0, ) ( ) ( , ) ( , ) ... ( ) ( , ) ,
nFn

n n n n
n

F F F d d d
−ττ∞
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=

 Θ = Θ + Θ τ τ Θ τ τ τ Θ τ Θ τ τ τ π 
∑ ∫ ∫ ∫ � (36)

0

1 0 0 0
0

2( ) ( ) ( , ) ,
F

F Bi F dΘ = τ Ψ τ τ
π ∫

	 2 0 0 0 0( , ) ( ) ( ) ( , ),F Bi F Bi F Θ τ = − τ Ψ τ  � (37)

	 0 2 2 2
0 0 0 0 0 0

0

( )/ 2( , ) exp ( )( ) ( )( ) .
2

Bi F
F Bi F F Bi F F

F
∗ππ    Ψ τ = − − τ Φ − τ   − τ

� (38)

Одним из доказательств справедливости найденного соотношения (35) является рассмотрение частного 
классического случая Bi(F0) = Bi = const. Для этого случая соотношение (35) автоматически дает классиче-
ское решение:

2
0 0 0

0 0
( , ) exp( ) ,

2 2
z zz F Biz Bi F BiF
F F

∗ ∗
   
   Θ = Φ − − Φ +
   
   

где ( ) 1 ( ),z z∗Φ = − Φ  ( )zΦ – функция Лапласа.
Можно показать, что при выполнении условия  0( ) / 2Bi F M≤  ряд  (36) сходится равномерно при 

всех F0 > 0 в любом конечном промежутке изменения F0 и мажорируется рядом:

1/2 ( 1/2)

1 1
1 1

0 1 ( 1/2)
1

2 , 2 1,
2 ( 1)!!
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2 , 2 ,
( 1)!!

n

n n
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M d n

F d
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n

− +

∞ − +
+ +

+ +
=

π
= + += 

π  = +

∑

сходимость которого при всех F0 > 0 легко проверить по признаку Даламбера. В качестве численного примера 
возьмем Bi(F0) = exp(–F0) и выпишем ряд последовательных приближений для Θ(0, F0) из (36):
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F F d

F F d d
τ

Θ = Θ

Θ = Θ τ Θ τ τ

Θ = Θ τ τ Θ τ τ Θ τ τ

∫

∫ ∫

На рисунке приведены результаты численного счета приближений температурной функции Θ(z,  F0): 
Ψ1 = Θ1(z, F0), Ψ2 = Θ1(z, F0) + Θ2(z, F0), Ψ3 = Θ1(z, F0) + Θ2(z, F0) + Θ3(z, F0) и т.д., рассчитанных в зависи-
мости от критерия F0 для точек: (а) z = 0.707, (б) z = 2. Из рисунка видно, что графики для первого и второго 
приближения охватывают сверху и снизу – «берут в клещи» (автор), график для третьего приближения, а гра-
фики для второго и третьего приближения охватывают снизу и сверху график для четвертого приближения 
и т.д., что свидетельствует о достаточно быстрой сходимости процесса итерации для Θ(z,  t), так что с до-
статочной для практики точностью можно ограничиться третьим приближением. Что касается сферических 
координат, то этот случай сводится к рассмотренному в декартовых координатах с помощью подстановки 
W(z, F0) = zΘ(z, F0).
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Рисунок. Приближения температурной функции Θ(z, F0) в зависимости от F0 в точках: 
(а) z = 0.707, (б) z = 2

ЗАКЛЮЧЕНИЕ

В статье представлено развитие метода расщепления обобщенного интегрального преобразования Фурье 
применительно к нахождению точного аналитического решения температурной задачи сложного теплооб-
мена – при произвольной зависимости от времени коэффициента теплообмена и температуры окружающей 
среды в обобщенных координатах. Метод распространен на декартовы, цилиндрические и сферические коор-
динаты. Полученные результаты являются новыми в аналитической теплофизике.
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